Enhancing Object Detection Robustness for Cross-Depiction Through Neural Style Transfer

Francesca Fiani¹, Adriano Puglisi² and Christian Napoli¹²³

¹Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy
²Institute for Systems Analysis and Computer Science, Italian National Research Council, 00185 Roma, Italy
³Department of Computational Intelligence, Czestochowa University of Technology, 42-201 Czestochowa, Poland

Abstract
Modern neural networks models for computer vision are trained on millions of images. The idea is that models are able to increase generalization when the dataset contains well diversified images, e.g. with varied illumination and environmental conditions of the same objects. Generalization is particularly relevant in object detection, especially for what concerns the cross-depiction problem. In this work we explore the use of Neural Style Transfer as a novel technique to morph the original data, with the aim to enhance model generalization. To verify the effect on performances for object detection models, we selected the Faster R-CNN model to be applied on the Pascal VOC 2012 dataset. A number of tests were performed through style variations on images and by tuning Neural Style Transfer parameters to maintain the content of the original images. The experiments showed promising results, which effectively provide a foundation for future studies on cross-depiction via Neural Style Transfer.

Keywords
Neural Style Transfer, Object detection, Faster R-CNN, Pascal VOC 2012

1. Introduction
Object detection is a challenging task in computer vision which has a wide range of possible real-life applications, ranging from autonomous driving and healthcare to entertainment [1, 2]. This problem, while relatively new, has already been tackled in literature with several different approaches [3, 4]. The solutions are mainly classifiable in conventional methods, which are comprised of three phases (region selection, feature extraction and classification), and deep learning based methods [5]. The most advanced approaches focus on the use of deep neural networks, in particular convolutional neural networks (CNN), with the most popular solution to object detection being YOLO [6], developed in the years up to YOLOv8 [7]. Achieving high performance in this task is fundamental for several applications, with some examples being forensics or real-time usage (e.g. for autonomous driving). In order to improve the effectiveness of object detection models, various solutions to enhance generalization in unforeseen situations have been developed, the main ones being data augmentation and Neural Style Transfer. Data augmentation encompasses many different basic techniques, such as linear transformations, rotations and flipping, random cropping, random noise and brightness modulation. By applying these transformations to the original images, the data augmentation process generates new training data, therefore increasing the initial training data’s variability and diversity to improve response to unseen images. One common challenge in object detection is dealing with noisy images. These are images that contain various types of distortions, such as blurring, noise and compression artifacts. Data augmentation can mitigate the effects of these distortions by generating new images with such features, thus making the model more robust to noisy inputs. Despite the success of these methods, however, accurately localizing small objects or objects with complex shapes, as well as dealing with occlusions and cluttered backgrounds, still present a challenge. Moreover, as proved by adversarial attacks, even state-of-the-art models can very easily miss the recognition of an object with basic manipulation on part of the image [5]. For this reason, different data augmentation techniques have been developed to face the aforementioned issues. Neural Style Transfer is one such solution and one of the most popular ones. Style transfer consists of the ability of models to transfer the style of one image to another. Before the advent of neural networks, style transfer applications were realized through several traditional methods such as region-based techniques, stroke-based rendering, example-based rendering and image processing and filtering [9, 10]. Such methods originally aimed at non-photorealistic rendering, and only later shifted towards the artistic stylization of 2D images, which is the pivotal concept on which Neural Style Transfer is built on. This process has been called image-based artistic rendering (IB-AR) [11]. Modern Neural Style Transfer, instead, makes use of two different starting im-
with Neural Style Transfer transformations, the model is
will have to consider less specific features and focus on
which perform a single forward pass after optimizing
VGG19 model [12, 13]. From then, a whole taxonomy
This translates to the capability of a neural network to
visual objects regardless of their form and style, and it’s
and be used as a test set. The experiments show that the
performances of the model after the application of Neu-
and Model-Optimization-Based Offline Neural Methods,
which perform a single forward pass after optimizing
the model offline. Starting from Neural Style Transfer,
several sub-applications were derived. Some examples
are Visual Style Modeling, which aims at synthesizing
textures from images, and Image Reconstruction, which
instead tries to reconstruct whole images from extracted
fragments. This paper, instead, tackles a particular case
of interdisciplinary task between object detection and
 Neural Style Transfer referred to as the cross-depiction
 problem [14]. Cross-depiction consists of recognising
visual objects regardless of their form and style, and it’s
still an under-researched problem in computer vision.
This translates to the capability of a neural network to
correctly identify objects portrayed in artistic styles that
are more or less different from their realistic representa-
tion in photographs. A neural network trained in the
usual way will struggle to recognize a dog painted in an
abstract way. To perform cross-depiction, the network
will have to consider less specific features and focus on
the shape of the dog itself, as well as other features that
are not necessarily typical of realistic photos. Our aim is
to train and fine-tune our object classification model to
be more focused on the shape of the objects and on more
generic features that would not be considered, or would be
considered with a minor weight, in a conventional
environment. In this work we show how applying style
transfer on a particular dataset with different hyperpara-
eters can increase the performance of a model like
Faster R-CNN on a object detection classification task.
By augmenting the data already present in the dataset
with Neural Style Transfer transformations, the model is
made more robust to outliers and edge cases, therefore
rendering it applicable to more general situations. In
particular, we focus on the application of Faster R-CNN
on the Pascal VOC 2012 dataset, performing different
tests to verify the preservation or improvement of the
performances of the model after the application of Neu-
ral Style Transfer on the dataset. A subset of the total
images was chosen to apply Neural Style Transfer on
and be used as a test set. The experiments show that the
style variation during training positively affects the per-
formances of object recognition on a dataset of artistic
images, cementing our approach as a possible solution
to the cross-depiction problem.

2. Related Works
Several data augmentation techniques have been pre-
seated in modern deep learning as an efficient solution
to improve model performances and limit overfitting dur-
ing training [15]. Models, however, require substantial
amounts of data in order to learn to classify images cor-
rectly, and the inability to provide this data usually corre-
lates with poor performances during inference. The idea
of using Neural Style Transfer as a form of data augmen-
tation is not new, and it has already been verified as a
domain-agnostic approach, making it suitable for various
image classification tasks with several models (ResNet,
 VGG19 and Inception) [16]. One of the main problems
in the original paper on Neural Style Transfer was the
time needed by the algorithm to apply the style transfer,
among the longest in all available Neural Style Transfer
approaches [12, 9]. Following papers therefore showed
how to increase the speed at which the style transfer is
applied to the original image using a feed-forward ap-
proach, reducing the strain on the resources available
for training purposes [17]. However, this method is only
able to reproduce one style per model, and new, more
flexible models were proposed to solve both problems.
The category of Arbitrary-Style-Per-Model algorithms
(ASPM MOB-NST) efficiently solves the scalability prob-
lem, with also the possibility of completely removing
learning limitations through feature transform [10], but
introducing less impressive results compared to more
specific approaches [19, 20, 21, 18]. It has also been veri-
fied that Neural Style Transfer can be used to reduce bias,
and a novel pipeline for Antibody Mediated Rejection
classification has provided an implementation faster than
current SOTA approaches [22]. One of the most robust
choice for object detection is R-CNN, or Region-based
Convolutional Neural Networks, which marked a sig-
nificant breakthrough in object detection performance,
outperforming many rival algorithms [23]. The key con-
cept behind Region-based Convolutional Neural Network
architectures is region proposals (RPNs), regions in the
image that could contain an object of interest, which are
then fed to a Convolutional Neural Network, typically
a ResNet or a VGG. The extracted features are finally
passed to a series of fully connected layers for the final
predictions of the classification and the object detection.
The largest drawback and bottleneck of the original R-
CNN architecture is its computational expensiveness,
as it requires running the CNN separately for each ob-
ject proposal. Moreover, the selective search algorithm
is fixed, which means that no learning happens at that
stage. A whole family of state-of-the-art models spanned
from R-CNN to address these issues, with architectures
such as Fast R-CNN [24] and Faster R-CNN [25] building upon the previous model’s success to improve object detection accuracy and speed. These models replace the separate CNN for each proposal with a shared CNN used to extract features for all the proposals, allowing faster processing. Also, instead of feeding the region proposals to the CNN, the same CNN generates both object proposals and detection. The difference between Fast R-CNN and Faster R-CNN is that the latter, instead of using the slower selective search algorithm on the feature map to draw the region proposals, utilizes a separate network to get the region proposals, further reducing execution time. Models like Faster R-CNN are able to perform relatively well when presented with images that resemble the ones seen during training, showing the capability to generalize and opening to the possibility of being fine-tuned for custom datasets.

3. Implementation

Our work aims at presenting a novel approach and solution for the cross-depiction problem, with Faster R-CNN being a particularly good fit for our task. More precisely, the model that we used is the Faster R-CNN ResNet50 FPN from the Torchvision models, which combines the ResNet50 model as feature extraction backbone with a Feature Pyramid Network (FPN). This way, object detection performance is improved by generating a set of feature maps at different scales, which helps the model detect objects of varying sizes and aspect ratios. The experiments performed in our work are aimed at understanding how a CNN performs on unusual abstract images under various conditions, and how much it is able to generalize in the presence of non-realistic features, with the goal of achieving object detection in artwork-like images. This would present a solution to the cross-depiction problem by making an object identifiable regardless of the style of the image. To perform the task, we employed the Neural Style Transfer methods previously described to widely augment a well-known dataset, Pascal VOC [26], used as a standard benchmark for evaluating object detection models. In particular, we used the 2012 version, the latest available. It contains 17,125 images annotated for object detection, as well as object classification and image segmentation. The images consist of 20 object classes, including animals, vehicles, and common household items. Some examples of images contained in the dataset are shown in Figure 1. A similar data augmentation has already been presented in previous works [27], but we won’t focus solely on people recognition and the people class, instead employing the whole dataset.

Faster R-CNN ResNet50 FPN is deployed in its version pre-trained on ImageNet [28], a large-scale image database widely used in computer vision research, composed of 1000 classes. In order to be trained on the 20 Pascal VOC classes, the model is initialized replacing the last layer responsible for the regions of interest (RoI) with a new one that has 21 output features, the 20 classes plus the background. Before starting the fine-tuning, which is performed on the Pascal VOC dataset, a pre-processing phase in which the images are resized to the standard format of 256x256 pixels and the pixel values are normalized in the range [0, 1] was necessary. The dimensions of the bounding boxes’ labels have also been adapted accordingly to keep the ratio with the resized images. After this, the network goes through the fine-tuning. This process is performed on 80% of the dataset, leaving the remaining 20% for evaluating it. The model uses stochastic gradient descent (SGD) as optimizer, with a starting learning rate of 0.001, a momentum of 0.9, and weight decay of 0.0005. The fine-tuning lasts 10 epochs. The learning rate first goes through a warm-up period of 1000 iterations in order to get to the starting learning rate in a gradual way. Then, it is adjusted over the fine-tuning period following a learning rate scheduler, with step size 4 and gamma 0.1, which are the values that best optimized the performances while also avoiding overfitting.

We first created a variety of subsets of the initial Pascal VOC dataset through Neural Style Transfer. Specifically, 12 different artistic styles of different time periods were selected (e.g. Cubism or Puntinism), and the NST was applied in two versions, one with a lighter stylization and another with a stronger one. The intuition is that by performing the NST, one is able to produce a dataset of a desired style which is already labelled, since the position and the dimension of the bounding boxes of the objects remain unchanged. The parameters used to
obtain the enhanced datasets are $\text{total_steps} = 35$ and $\text{learning_rate} = 0.02$ for the lighter stylization one and $\text{total_steps} = 55$ and $\text{learning_rate} = 0.05$ for the stronger stylization one, with alpha = 0.8 and beta = 0.3 in both versions. These values have been chosen as a compromise between a recognizable adaptation of the applied style and the preservation of the objects in the image, although in the stronger version objects of smaller dimensions are often distorted and unrecognizable. Some examples of results of NST application to the Pascal VOC dataset are shown in Figure 2. Afterwards, we performed several experiments to verify how our model acts when lighter or stronger stylized images are fed to it. We also study how it performs when trained in different ways on the previously produced subsets of stylized images, evaluating it both on the light and the strong stylization, and both on seen and unseen styles. To evaluate the results of the experiments, we used a group of average precision and recall measurements that can estimate the performance of the object detection at various levels of overlap between the predicted bounding boxes and ground truth ones. The standard metric is the mean average precision (mAP) with a 50% bounding box overlap with the labelled box [26]. The performance has been evaluated with average precision AP, AP50 and AP75 as they are defined in the COCO detection evaluation metrics. AP is the average precision value at different thresholds of intersection over union (IoU), respectively 0.50 for AP50, 0.75 for AP75 and 0.50 to 0.95 for AP, evaluated for maximum detection of 100% for all areas. Separate AP scores are also available for different area sizes, divided into small, medium, and large objects, to measure the model’s ability to detect objects of different sizes. The model pre-trained and fine-tuned only on the original Pascal VOC performs very poorly, with an AP50 of 0.318 on the light stylization and with an AP50 0.147 on the strong one. With just 10 epochs of training on the stylized images, however, the evaluation gets to AP50 0.549 on the light stylization and 0.556 on the strong one, which is already a good result compared to similar experiments [29]. We found that the best way to train the model is to conduct the training with a group of subsets of stylized images and a group of normal photographs at the same time. This keeps the object recognition grounded to a certain degree of reality, reducing weight assignment to some features and maintaining a slightly better ability of generalization. The AP50 score with the mixed training set is 0.553, with respect to the 0.530 of the model trained only on the stylized images, and a better score over the original test set was also maintained. It is possible to achieve even better results by training for more epochs, but to avoid overfitting on the training images we will use the fine-tuned model weights with 10 epochs as a starting point. The next experiments aimed at evaluating the performances of the aforementioned models over other images of different styles. We trained the model on eight of the subsets, leaving the remaining four styles for the test, with subsets composed of images unseen during the training. The final results evaluated in AP50 are 0.525 as the average of the scores obtained with light NST, and 0.247 with strong NST. In both cases the model fine-tuned on the light stylization has been used. For the model fine-tuned on a training set of strong stylization, instead, we got an AP50 of 0.519 and 0.316 on light and strong NST respectively. These results show that correspondence between the fine-tuned models and the training set positively reflects on the performance of the object detection. In Table 1 we show an overview of the results for each subset obtained from the model fine-tuned on the strong stylization and tested on light stylization comparing the different metrics (AP, AP50 and AP75). It is possible to observe that after this type of fine-tuning the model obtains a certain degree of generalization, showing detection performances on the last four unknown styles which are in line with the results obtained for the other classes.

4. Conclusion

The analyzed results confirm the concrete possibility to achieve data augmentation on images with varied artistic styles for any given dataset. We also demonstrate that a CNN is able to generalize under the presence of different features derived from different styles, therefore confirming the effectiveness of this method. This opens up to several possible applications, such as performing...
Table 1
Average precision of Faster R-CNN fine-tuned on strong NST applied on subsets of PascalVOC with light stylization.

<table>
<thead>
<tr>
<th>Dataset Subset</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubism</td>
<td>0.383</td>
<td>0.690</td>
<td>0.380</td>
</tr>
<tr>
<td>Puntinism</td>
<td>0.262</td>
<td>0.527</td>
<td>0.218</td>
</tr>
<tr>
<td>Van Gogh</td>
<td>0.300</td>
<td>0.599</td>
<td>0.241</td>
</tr>
<tr>
<td>Yukhnovich</td>
<td>0.249</td>
<td>0.514</td>
<td>0.220</td>
</tr>
<tr>
<td>William Turner</td>
<td>0.164</td>
<td>0.383</td>
<td>0.122</td>
</tr>
<tr>
<td>Jackson Pollock</td>
<td>0.289</td>
<td>0.570</td>
<td>0.263</td>
</tr>
<tr>
<td>Futurism</td>
<td>0.291</td>
<td>0.564</td>
<td>0.286</td>
</tr>
<tr>
<td>Monet</td>
<td>0.267</td>
<td>0.581</td>
<td>0.185</td>
</tr>
<tr>
<td>Surrealism</td>
<td>0.207</td>
<td>0.415</td>
<td>0.172</td>
</tr>
<tr>
<td>Kandinski</td>
<td>0.346</td>
<td>0.607</td>
<td>0.342</td>
</tr>
<tr>
<td>Pop Art 2</td>
<td>0.238</td>
<td>0.509</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Acknowledgements
This work has been developed at is.Lab() Intelligent Systems Laboratory at the Department of Computer, Control, and Management Engineering, Sapienza University of Rome (https://islab.diag.uniroma1.it). The work has also been partially supported from Italian Ministerial grant PRIN 2022 “ISIDE: Intelligent Systems for Infrastructural Diagnosis in smart-concrete”, n. 2022S8SWAY - CUP B53D2301318, and by the Age-It: Ageing Well in an ageing society project, task 9.4.1 work package 4 spoke 9, within topic 8 extended partnership 8, under the National Recovery and Resilience Plan (PNRR), Mission 4 Component 2 Investment 1.3—Call for tender No. 1557 of 11/10/2022 of Italian Ministry of University and Research funded by the European Union—NextGenerationEU, CUP B53C22004090006.

References

