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Abstract
Modern neural networks models for computer vision are trained on millions of images. The idea is that models are able to
increase generalization when the dataset contains well diversified images, e.g. with varied illumination and environmental
conditions of the same objects. Generalization is particularly relevant in object detection, especially for what concerns the
cross-depiction problem. In this work we explore the use of Neural Style Transfer as a novel technique to morph the original
data, with the aim to enhance model generalization. To verify the effect on performances for object detection models, we
selected the Faster R-CNN model to be applied on the Pascal VOC 2012 dataset. A number of tests were performed through
style variations on images and by tuning Neural Style Transfer parameters to maintain the content of the original images.
The experiments showed promising results, which effectively provide a foundation for future studies on cross-depiction via
Neural Style Transfer.
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1. Introduction
Object detection is a challenging task in computer vision
which has a wide range of possible real-life applications,
ranging from autonomous driving and healthcare to en-
tertainment [1, 2]. This problem, while relatively new,
has already been tackled in literature with several dif-
ferent approaches [3, 4]. The solutions are mainly clas-
sifiable in conventional methods, which are comprised
of three phases (region selection, feature extraction and
classification), and deep learning based methods [5]. The
most advanced approaches focus on the use of deep neu-
ral networks, in particular convolutional neural networks
(CNN), with the most popular solution to object detection
being YOLO [6], developed in the years up to YOLOv8 [7].
Achieving high performance in this task is fundamental
for several applications, with some examples being foren-
sics or real-time usage (e.g. for autonomous driving). In
order to improve the effectiveness of object detection
models, various solutions to enhance generalization in
unforeseen situations have been developed, the main
ones being data augmentation and Neural Style Transfer.
Data augmentation encompasses many different basic
techniques, such as linear transformations, rotations and
flipping, random cropping, random noise and brightness
modulation. By applying these transformations to the
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original images, the data augmentation process generates
new training data, therefore increasing the initial train-
ing data’s variability and diversity to improve response
to unseen images. One common challenge in object de-
tection is dealing with noisy images. These are images
that contain various types of distortions, such as blurring,
noise and compression artifacts. Data augmentation can
mitigate the effects of these distortions by generating
new images with such features, thus making the model
more robust to noisy inputs. Despite the success of these
methods, however, accurately localizing small objects
or objects with complex shapes, as well as dealing with
occlusions and cluttered backgrounds, still present a chal-
lenge. Moreover, as proved by adversarial attacks, even
state-of-the-art models can very easily miss the recogni-
tion of an object with basic manipulation on part of the
image [8]. For this reason, different data augmentation
techniques have been developed to face the aforemen-
tioned issues. Neural Style Transfer is one such solution
and one of the most popular ones. Style transfer consists
of the ability of models to transfer the style of one im-
age to another. Before the advent of neural networks,
style transfer applications were realized through sev-
eral traditional methods such as region-based techniques,
stroke-based rendering, example-based rendering and
image processing and filtering [9, 10]. Such methods orig-
inally aimed at non-photorealistic rendering, and only
later shifted towards the artistic stylization of 2D images,
which is the pivotal concept on which Neural Style Trans-
fer is built on. This process has been called image-based
artistic rendering (IB-AR) [11]. Modern Neural Style
Transfer, instead, makes use of two different starting im-
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ages, the content image and the style image. The first one
defines the context on which the artistic style depicted
in the second must be applied, thus generating a new hy-
brid image with the content of the content image but the
style of the style image. The generation is performed by
a CNN, with the first tests being performed with a classic
VGG19 model [12, 13]. From then, a whole taxonomy
of algorithms for Neural Style Transfer was developed,
broadly divisible in Image-Optimization-Based Online
Neural Methods, which rely on multiple executions of
the image optimization and gradual online style transfer,
and Model-Optimization-Based Offline Neural Methods,
which perform a single forward pass after optimizing
the model offline. Starting from Neural Style Transfer,
several sub-applications were derived. Some examples
are Visual Style Modeling, which aims at synthesizing
textures from images, and Image Reconstruction, which
instead tries to reconstruct whole images from extracted
fragments. This paper, instead, tackles a particular case
of interdisciplinary task between object detection and
Neural Style Transfer referred to as the cross-depiction
problem [14]. Cross-depiction consists of recognising
visual objects regardless of their form and style, and it’s
still an under-researched problem in computer vision.
This translates to the capability of a neural network to
correctly identify objects portrayed in artistic styles that
are more or less different from their realistic represen-
tation in photographs. A neural network trained in the
usual way will struggle to recognize a dog painted in an
abstract way. To perform cross-depiction, the network
will have to consider less specific features and focus on
the shape of the dog itself, as well as other features that
are not necessarily typical of realistic photos. Our aim is
to train and fine-tune our object classification model to
be more focused on the shape of the objects and on more
generic features that would not be considered, or would
be considered with a minor weight, in a conventional
environment. In this work we show how applying style
transfer on a particular dataset with different hyperpa-
rameters can increase the performance of a model like
Faster R-CNN on a object detection classification task.
By augmenting the data already present in the dataset
with Neural Style Transfer transformations, the model is
made more robust to outliers and edge cases, therefore
rendering it applicable to more general situations. In
particular, we focus on the application of Faster R-CNN
on the Pascal VOC 2012 dataset, performing different
tests to verify the preservation or improvement of the
performances of the model after the application of Neu-
ral Style Transfer on the dataset. A subset of the total
images was chosen to apply Neural Style Transfer on
and be used as a test set. The experiments show that the
style variation during training positively affects the per-
formances of object recognition on a dataset of artistic
images, cementing our approach as a possible solution

to the cross-depiction problem.

2. Related Works
Several data augmentation techniques have been pre-
sented in modern deep learning as an efficient solution
to improve model performances and limit overfitting dur-
ing training [15]. Models, however, require substantial
amounts of data in order to learn to classify images cor-
rectly, and the inability to provide this data usually corre-
lates with poor performances during inference. The idea
of using Neural Style Transfer as a form of data augmen-
tation is not new, and it has already been verified as a
domain-agnostic approach, making it suitable for various
image classification tasks with several models (ResNet,
VGG19 and Inception) [16]. One of the main problems
in the original paper on Neural Style Transfer was the
time needed by the algorithm to apply the style transfer,
among the longest in all available Neural Style Transfer
approaches [12, 9]. Following papers therefore showed
how to increase the speed at which the style transfer is
applied to the original image using a feed-forward ap-
proach, reducing the strain on the resources available
for training purposes [17]. However, this method is only
able to reproduce one style per model, and new, more
flexible models were proposed to solve both problems.
The category of Arbitrary-Style-Per-Model algorithms
(ASPM MOB-NST) efficiently solves the scalability prob-
lem, with also the possibility of completely removing
learning limitations through feature transform [18], but
introducing less impressive results compared to more
specific approaches [19, 20, 21, 18]. It has also been veri-
fied that Neural Style Transfer can be used to reduce bias,
and a novel pipeline for Antibody Mediated Rejection
classification has provided an implementation faster than
current SOTA approaches [22]. One of the most robust
choice for object detection is R-CNN, or Region-based
Convolutional Neural Networks, which marked a sig-
nificant breakthrough in object detection performance,
outperforming many rival algorithms [23]. The key con-
cept behind Region-based Convolutional Neural Network
architectures is region proposals (RPNs), regions in the
image that could contain an object of interest, which are
then fed to a Convolutional Neural Network, typically
a ResNet or a VGG. The extracted features are finally
passed to a series of fully connected layers for the final
predictions of the classification and the object detection.
The largest drawback and bottleneck of the original R-
CNN architecture is its computational expensiveness,
as it requires running the CNN separately for each ob-
ject proposal. Moreover, the selective search algorithm
is fixed, which means that no learning happens at that
stage. A whole family of state-of-the-art models spanned
from R-CNN to address these issues, with architectures
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such as Fast R-CNN [24] and Faster R-CNN [25] build-
ing upon the previous model’s success to improve object
detection accuracy and speed. These models replace the
separate CNN for each proposal with a shared CNN used
to extract features for all the proposals, allowing faster
processing. Also, instead of feeding the region proposals
to the CNN, the same CNN generates both object propos-
als and detection. The difference between Fast R-CNN
and Faster R-CNN is that the latter, instead of using the
slower selective search algorithm on the feature map to
draw the region proposals, utilizes a separate network to
get the region proposals, further reducing execution time.
Models like Faster R-CNN are able to perform relatively
well when presented with images that resemble the ones
seen during training, showing the capability to general-
ize and opening to the possibility of being fine-tuned for
custom datasets.

3. Implementation
Our work aims at presenting a novel approach and solu-
tion for the cross-depiction problem, with Faster R-CNN
being a particularly good fit for our task. More precisely,
the model that we used is the Faster R-CNN ResNet50
FPN from the Torchvision models, which combines the
ResNet50 model as feature extraction backbone with a
Feature Pyramid Network (FPN). This way, object de-
tection performance is improved by generating a set of
feature maps at different scales, which helps the model
detect objects of varying sizes and aspect ratios. The
experiments performed in our work are aimed at under-
standing how a CNN performs on unusual abstract im-
ages under various conditions, and howmuch it is able to
generalize in the presence of non-realistic features, with
the goal of achieving object detection in artwork-like im-
ages. This would present a solution to the cross-depiction
problem by making an object identifiable regardless of
the style of the image. To perform the task, we employed
the Neural Style Transfer methods previously described
to widely augment a well known dataset, Pascal VOC
[26], used as a standard benchmark for evaluating object
detection models. In particular, we used the 2012 version,
the latest available. It contains 17,125 images annotated
for object detection, as well as object classification and
image segmentation. The images consist of 20 object
classes, including animals, vehicles, and common house-
hold items. Some examples of images contained in the
dataset are shown in Figure 1. A similar data augmenta-
tion has already been presented in previous works [27],
but we won’t focus solely on people recognition and the
people class, instead employing the whole dataset.
Faster R-CNN ResNet50 FPN is deployed in its ver-

sion pre-trained on ImageNet [28], a large-scale image
database widely used in computer vision research, com-

Figure 1: Examples of images from the Pascal VOC dataset.
Each image has all the objects pertaining to the 20 object
classes classified via bounding boxes, which are allowed to
overlap. The labels are also indicative of the orientation of the
object.

posed of 1000 classes. In order to be trained on the 20
Pascal VOC classes, the model is initialized replacing the
last layer responsible for the regions of interest (RoI) with
a new one that has 21 output features, the 20 classes plus
the background. Before starting the fine-tuning, which is
performed on the Pascal VOC dataset, a pre-processing
phase in which the images are resized to the standard
format of 256x256 pixels and the pixel values are normal-
ized in the range [0, 1] was necessary. The dimensions
of the bounding boxes’ labels have also been adapted
accordingly to keep the ratio with the resized images. Af-
ter this, the network goes through the fine-tuning. This
process is performed on 80% of the dataset, leaving the
remaining 20% for evaluating it. The model uses stochas-
tic gradient descent (SGD) as optimizer, with a starting
learning rate of 0.001, a momentum of 0.9, and weight
decay of 0.0005. The fine-tuning lasts 10 epochs. The
learning rate first goes through a warm-up period of 1000
iterations in order to get to the starting learning rate in
a gradual way. Then, it is adjusted over the fine-tuning
period following a learning rate scheduler, with step size
4 and gamma 0.1, which are the values that best opti-
mized the performances while also avoiding overfitting.
We first created a variety of subsets of the initial Pascal
VOC dataset through Neural Style Transfer. Specifically,
12 different artistic styles of different time periods were
selected (e.g. Cubism or Puntinism), and the NST was
applied in two versions, one with a lighter stylization
and another with a stronger one. The intuition is that
by performing the NST, one is able to produce a dataset
of a desired style which is already labelled, since the
position and the dimension of the bounding boxes of
the objects remain unchanged. The parameters used to
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Figure 2: Examples of images from the Pascal VOC dataset
with NST applied on them. The images on the left are the
style images and the images on top are the images from the
Pascal VOC dataset. The combinations are the results of NST
application.

obtain the enhanced datasets are total_ steps = 35 and
learning_rate = 0.02 for the lighter stylization one and
total_steps = 55 and learning_rate = 0.05 for the stronger
stylization one, with alpha = 0.8 and beta = 0.3 in both
versions. These values have been chosen as a compro-
mise between a recognizable adaptation of the applied
style and the preservation of the objects in the image,
although in the stronger version objects of smaller di-
mensions are often distorted and unrecognizable. Some
examples of results of NST application to the Pascal VOC
dataset are shown in Figure 2. Afterwards, we performed
several experiments to verify how our model acts when
lighter or stronger stylized images are fed to it. We also
study how it performs when trained in different ways on
the previously produced subsets of stylized images, eval-
uating it both on the light and the strong stylization, and
both on seen and unseen styles. To evaluate the results
of the experiments, we used a group of average precision
and recall measurements that can estimate the perfor-
mance of the object detection at various levels of overlap
between the predicted bounding boxes and ground truth
ones. The standard metric is the mean average preci-
sion (mAP) with a 50% bounding box overlap with the
labelled box [26]. The performance has been evaluated
with average precision AP, AP50 and AP75 as they are
defined in the COCO detection evaluation metrics. AP
is the average precision value at different thresholds of
intersection over union (IoU), respectively 0.50 for AP50,
0.75 for AP75 and 0.50 to 0.95 for AP, evaluated for maxi-
mum detection of 100% for all areas. Separate AP scores
are also available for different area sizes, divided into
small, medium, and large objects, to measure the model’s

ability to detect objects of different sizes. The model
pre-trained and fine-tuned only on the original Pascal
VOC performs very poorly, with an AP50 of 0.318 on the
light stylization and with an AP50 0.147 on the strong
one. With just 10 epochs of training on the stylized im-
ages, however, the evaluation gets to AP50 0.549 on the
light stylization and 0.356 on the strong one, which is
already a good result compared to similar experiments
[29]. We found that the best way to train the model is to
conduct the training with a group of subsets of stylized
images and a group of normal photographs at the same
time. This keeps the object recognition grounded to a
certain degree of reality, reducing weight assignment to
some features and maintaining a slightly better ability of
generalization. The AP50 score with the mixed training
set is 0.553, with respect to the 0.530 of the model trained
only on the stylized images, and a better score over the
original test set was also maintained. It is possible to
achieve even better results by training for more epochs,
but to avoid overfitting on the training images we will
use the fine-tuned model weights with 10 epochs as a
starting point. The next experiments aimed at evaluat-
ing the performances of the aforementioned models over
other images of different styles. We trained the model
on eight of the subsets, leaving the remaining four styles
for the test, with subsets composed of images unseen
during the training. The final results evaluated in AP50
are 0.525 as the average of the scores obtained with light
NST, and 0.247 with strong NST. In both cases the model
fine-tuned on the light stylization has been used. For
the model fine-tuned on a training set of strong styl-
ization, instead, we got an AP50 of 0.519 and 0.316 on
light and strong NST respectively. These results show
that correspondence between the fine-tuned models and
the training set positively reflects on the performance
of the object detection. In Table 1 we show an overview
of the results for each subset obtained from the model
fine-tuned on the strong stylization and tested on light
stylization comparing the different metrics (AP, AP50
and AP75). It is possible to observe that after this type
of fine-tuning the model obtains a certain degree of gen-
eralization, showing detection performances on the last
four unknown styles which are in line with the results
obtained for the other classes.

4. Conclusion
The analyzed results confirm the concrete possibility to
achieve data augmentation on images with varied artistic
styles for any given dataset. We also demonstrate that
a CNN is able to generalize under the presence of dif-
ferent features derived from different styles, therefore
confirming the effectiveness of this method. This opens
up to several possible applications, such as performing
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Table 1
Average precision of Faster R-CNN fine-tuned on strong NST
applied on subsets of PascalVOC with light stylization.

Dataset Subset AP AP50 AP75

Cubism 0.383 0.690 0.380
Puntinism 0.262 0.527 0.218
Pop Art 1 0.332 0.621 0.304
Van Gogh 0.300 0.599 0.241
Yukhnovich 0.249 0.514 0.220

William Turner 0.164 0.383 0.122
Jackson Pollock 0.289 0.570 0.263

Futurism 0.291 0.564 0.286

Monet 0.267 0.581 0.185
Surrealism 0.207 0.415 0.172
Kandinski 0.346 0.607 0.342
Pop Art 2 0.238 0.509 0.169

mass object detection in large datasets such as museum
collections or online databases of artworks (both amateur
and professional), resulting in an automatic extraction
of metadata related to the identification and localization
of objects. This could also be extended to the automatic
creation of new datasets of non-photographic images for
object detection. In such a process, the analyzed tech-
nique can be employed as a starting point to outline the
bounding boxes of the objects in the scene, which can
be then verified and adjusted. Many fields of possible
applications can derive from the ability of neural net-
work models to accurately perform object detection in
whatever form of non-realistic representation. By provid-
ing a model the possibility to track objects and monitor
their behaviours in different environments with a coher-
ent artistic style, one could apply it also to animation,
videogames, etc. Another interesting application com-
ing from the achievement of higher levels of abstraction
in object detection is the capacity of future AI agents,
like generative agents, to behave socially and simulate
human patterns [30, 31, 32, 33],. This approach, if ex-
tended to textual tasks, can also allow agents to perform
tasks which require the understanding of unlabelled and
unseen representations of various types, for example to
navigate online forums or any kind of website to perform
data scraping in a more comprehensive way. With re-
gards to possible future works, our biggest limitation was
the lack of big annotated datasets of artwork images for
object detection, and it would be likewise insightful to
see the results of tests of a model trained on such images
as well. Finally, it would be also useful to extend the style
transfer method illustrated here to other computer vision
tasks, such as image segmentation or pose estimation,
and see how much of what has been commented also
applies to these problems.
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