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Abstract
Forecasting changes in solar wind properties accurately is crucial for predicting space weather, as it significantly impacts the
majority of space operations and the telecommunication system. To meet this challenge, we introduce an architecture that
combines U-Net’s capabilities for segmenting coronal holes from high-resolution sun images with the predictive abilities of
Long Short-Term Memory (LSTM) and ConvLSTM models. This architecture predicts solar wind density using sun surface
images obtained from the AIA 193 Å dataset (provided by NASA) and historical electron and proton density data from the
OMNI and ELM2 datasets (also provided by NASA), covering the entire year 2012. Our findings demonstrate the system’s
ability to generate reliable coronal hole segmentation maps and achieve good accuracy in forecasting solar wind density.
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1. Introduction
The solar wind is a dynamic flow of charged particles in
a plasma state, originating from the Sun’s corona. This
stream of particles emanated from expansive luminous
areas known as coronal holes, overcomes the Sun’s grav-
itational force thanks to its elevated thermal energy and
spreads all over the universe[1]. Composed primarily of
electrons and protons, this solar wind significantly influ-
ences the conditions of the entire solar system. While
the Earth’s magnetic field shields the majority of this
wind, excessive strength can lead to geomagnetic storms
that are particularly dangerous, especially for astronauts
and spacecraft, and can cause disruptions in power grids,
interfere with satellite communications, and even lead
to notable incidents such as the 1989 blackout in Quebec
caused by a high-velocity solar wind. Other historical
events, like the solar storm 1859 and the Miyake event
around 774-775 AD, underscore the immense impact of
solar wind variations. The former disrupted telegraph
communications, while the latter, studied through the
analysis of Carbon 14 in the polar ice, highly surpassed
the intensity of the 1859 storm. We can only imagine the
consequences of such magnetic storms in today’s world
and the mobility of citizens [2]. In a society heavily re-
liant on electricity, this could significantly disrupt our
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daily lives. Therefore, predicting the solar wind behavior
is crucial for safeguarding both our technological infras-
tructure and the safety of space missions, reinforcing the
need for ongoing research and forecasting capabilities.
For this reason, in this study, we employed a customized
U-Net architecture [3, 4, 5] to segment coronal holes
from high-resolution images of the sun in the AIA 193 Å
dataset captured by NASA’s Solar Dynamics Observatory
(SDO) space telescope. Subsequently, we leveraged these
segmented images along with historical solar wind prop-
erties extracted from the OMNI and ELM2 datasets to
train a system, composed of LSTM-based [6, 7, 8] archi-
tectures and a feed-forward neural network, for forecast-
ing solar wind density in terms of proton and electron
densities. The decision to use binary coronal hole seg-
mentation maps derives from our desire to evaluate the
models’ predictive capability for solar wind density even
in the absence of detailed solar surface features.

1.1. Roadmap
This paper is organized as follows: first of all, a summary
of the different types of techniques developed to predict
solar wind properties is presented in Section 2. Then,
the description of the dataset employed in this experi-
ment is proposed in Section 3. Following this, a detailed
explanation of the system we developed is illustrated in
Section 4. Subsequently, the evaluation of our architec-
ture is presented in Section 5. Finally, we summarized
the content of the article and we outlined the possible
viable improvements that can be made in Section 6.
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2. Related Works
In the realm of works focusing on segmenting coro-
nal holes, the field of image segmentation has experi-
enced significant advancements in recent years, with
the U-Net model emerging as a powerful, versatile, and
widely adopted architecture used across various domains
such as medical imaging, remote sensing, and astron-
omy. Originally developed for tasks like biomedical im-
age segmentation (e.g., cell and tissue segmentation from
microscopy images), the U-Net architecture features a
classic encoder-decoder structure characterized by its
symmetric U-shape. The encoder component typically
follows a traditional CNN architecture, incorporating suc-
cessive convolutional layers and pooling layers to reduce
spatial dimensions while capturing high-level hierarchi-
cal features from input images. On the other hand, the
decoder utilizes upsampling layers to restore the spatial
resolution of feature maps. This restoration is achieved
through skip connections directly linked to the encoder,
enabling precise localization by providing detailed infor-
mation from the original input images. In the realm of
solar physics, researchers have explored adaptations of
the U-Net model for segmenting solar features such as
sunspots or coronal holes from high-resolution imagery.
These adaptations often involve fine-tuning the network
to address specific challenges presented by solar images,
such as the varying intensity and appearance of sunspots
against a dynamic background.

In [9, 10], the authors trained a U-Net neural network
using daily SDO/AIA 193 Å solar disc images and corre-
sponding coronal hole segmentation maps from 2010 to
2017 provided by the Kislovodsk Mountain Astronomi-
cal Station. They evaluated this model using data from
2017 to 2018 and compared it with other semi-automatic
segmentation procedures. The authors found that U-
Net outperformed the other algorithms used for coronal
hole segmentation, demonstrating higher generalization
power and accuracy.
A similar approach is presented in [11], where a cus-

tomized U-Net architecture named SCSS-NET was devel-
oped to segment solar corona structures from Sun im-
ages. This system was benchmarked against established
algorithms such as the Spatial Possibilistic Clustering
Algorithm (SPoCA) [12], the Coronal Hole Identifica-
tion via Multi-thermal Emission Recognition Algorithm
(CHIMERA) [13], and the Region Growth algorithm [14].
The SCSS-NET model demonstrated promising segmen-
tation results comparable to these methods. However, its
performance is contingent upon the accuracy of reference
annotations.
Regarding the different architectures introduced to

solve the solar wind properties forecasting, most of them
are focused on predicting the solar wind speed. For in-
stance, in [15], a straightforward Convolutional Neural

Network (CNN) architecture is employed to solve a sim-
ple regression problem that given as input a single RGB
image of the Sun, predicts the corresponding solar wind
speed that will be registered at the L1 point. Briefly,
a CNN [16] is a network consisting of layers applying
convolutional operations to detect patterns, features, or
objects within images.

Another notable work was proposed by the authors of
[17] that presented WindNet, a CNN-LSTM framework
that uses a pre-trained GoogleNet architecture [18] as a
feature extractor. In specifics, a Long Short-TemMemory
(LSTM) is an extension of a Recurrent Neural Network
(RNN) [19] intended to capture and combine long- and
short-term dependencies in data sequences. WindNet
was created to look into the optimal combination of delay
𝐷 and history 𝐻 values to predict the solar wind speed.
In [20], to predict the solar wind propagation delay

between the Lagrangian point L1 and the Earth, some
classic machine learningmethods are employed (e.g., Ran-
dom Forest Regression (RF) [21], Gradient Boosting (GB)
[22], and Linear Regression (as ordinary least square
regression presented in [23]) and their performance is
compared to classic physics models such as the flat or
vector delay methods. The GB turned out to be the best
model. Despite its high accuracy, the evident limitation
of solving this particular problem lies in the small time
interval to be predicted, a few seconds, which is the time
necessary for the Solar Wind to travel from the L1 point
and the Earth.
In ref. [24], linear prediction functions were used to

forecast the solar wind speed at 1 AU up to four days
in advance by using solar images with a 1-hour time
resolution. In detail, through a thresholding process,
the active areas in the central meridional slice of the Sun
were extracted, as it is part of the sun that is most directly
facing the Earth, and used as input to the empirical model-
based.

In [25], the authors compared the performance of em-
pirical, hybrid empirical-physics-based, and fully physics-
based coupled corona-heliosphere models over 8 years
of solar wind observations. They found that the empir-
ical baseline schemes produce the “best” predictions of
solar wind parameters in near-Earth space, at least in
terms of the Mean Squared Error (MSE). However, even
if the physics-based approaches still require some further
parameterization, with continued refinement, they can
potentially outperform empirical schemes in terms of
prediction. This is especially true when it comes to the
integration of transient structures, the drivers of major
space weather disturbances.
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Figure 1: These images illustrate the steps of the algorithm we utilized to generate a binary coronal hole segmentation map for
training our customized U-Net. Initially, we downscaled the original sun images to 256 × 256 and converted them to grayscale.
Next, we manually selected a threshold to segment the coronal holes. Finally, we inverted the resulting images to highlight
the segmented coronal holes and applied a circular mask to isolate them.

3. Dataset
We employed the AIA 193 Å dataset from NASA’s Solar
Dynamics Observatory (SDO) space telescope to train
the U-Net architecture for coronal hole segmentation.
The SDO’s Atmospheric Imaging Assembly (AIA) instru-
ment captures solar images across various ultraviolet
and extreme ultraviolet wavelengths, including the 193
Ångström (Å) wavelength, crucial for studying coronal
structures like coronal holes, coronal loops, and active
regions.
To generate the ground truth coronal hole segmen-

tation maps, we performed manual thresholding on all
images from 2011 to 2012, with a temporal resolution of
6 hours, using the following algorithm: first, we down-
scaled the original high-resolution images to 256 × 256
pixels to balance feature detail and computational load.
Next, we converted them to grayscale and manually se-
lected a threshold to enhance coronal hole visibility. Sub-
sequently, we inverted the binary images obtained to
highlight segmented coronal holes and applied a circular
mask representing the sun’s shape to isolate the seg-
mented coronal holes. The complete procedure for ex-
tracting coronal hole segmentation maps is illustrated in
Fig. 1.
To train the LSTM-based models responsible for fore-

casting solar wind density, we created an additional
dataset by combining the coronal hole segmentation
maps obtained by our customized U-Net architecture
with two tabular datasets. The first one is the OMNI
dataset, which is an hourly resolution multi-source
dataset of near-Earth solar wind’s magnetic field and
plasma parameters, such as the IMF (magnitude and vec-
tor), flow velocity (magnitude and vector), flow pressure,
proton density, alpha particle to proton density ratio,
and more. The second one is the ELM2 (EESA Low Elec-
tron Moments) dataset, which comes from the WIND
3-D Plasma experiment that makes measurements of the
full 3-D distribution of suprathermal electrons and ions.
Since all these datasets have coinciding timestamps, we
merged the information available for the year 2012 with
a time interval of 6 hours into a single dataset. It is im-
portant to highlight that while generating this dataset
we make a strong approximation. Even if the solar wind
speed is extremely variable, we associated the coronal
hole segmentation maps with the tabular data acquired
two days later.
The pre-processing of this latter dataset involved dif-

ferent operations. First of all, we removed the constant
values from the two tabular datasets, since they do not
give valuable information to the training process. Subse-
quently, we removed the outliers by eliminating values

34



Emanuele Iacobelli et al. CEUR Workshop Proceedings 32–38

Figure 2: This image illustrates the complete pipeline of our system. The historical solar images serve as input to the
Segmentation Module, generating corresponding coronal hole segmentation maps. These maps, along with the historical
electron and proton density data, are then fed into the Prediction Module. Specifically, the segmentation maps go to the
ConvLSTM, while the solar wind density history is given as input into the standard LSTM. Then, the ConvLSTM’s output is
flattened, combined with the LSTM’s output, and subsequently inputted into a feed-forward neural network responsible for
predicting solar wind density.

exceeding 5 times the standard deviation for each respec-
tive feature. Finally, since we had to deal with different
physical quantities having different orders of magnitude,
we normalized the data in the range [0,1] based on the
maximum and minimum values present in the dataset
for each feature.

4. Methodology
The full pipeline of our system, illustrated in Fig. 2, con-
sists of two main modules. The segmentation module
extracts the binary coronal hole segmentation maps from
the history of high-resolution images of the sun. Sub-
sequently, the prediction module forecasts solar wind
density by integrating the historical coronal hole seg-
mentation maps with the historical solar density data.

4.1. Segmentation Module
The segmentation module comprises our customized U-
Net architecture. The implementation details are de-
picted in Fig. 3. Unlike the traditional implementation,
we have incorporated residual blocks instead of convolu-
tional blocks in the encoder. A residual block includes
skip connections that enable the network to learn residual
mappings. These skip connections also facilitate gradi-
ent flow, addressing the vanishing gradient problem and
supporting the training of deeper models. Moreover, fol-
lowing each convolutional layer, we have incorporated
batch normalization and dropout layers (with a dropout
rate of 0.3). Finally, we have opted to use the Leaky ReLU

Figure 3: This image showcases our customized U-Net ar-
chitecture. We replaced Convolutional Layers with Residual
Blocks and included Batch Normalization and Dropout Layers
after each Convolutional Layer. Moreover, we chose to use
Leaky ReLU instead of the standard ReLU activation function
to improve the network’s training.

activation function instead of the traditional ReLU to bet-
ter handle the vanishing gradient problem and enhance
training stability.
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Figure 4: The top two images represent the ground truth (left) and predictions (right) of our system for electron density
over a 225-day time interval, with measurements taken every 6 hours. The images below display the ground truth (left) and
predictions of the proton density during the same period.

4.2. Prediction Module
The LSTMs and their variants stand out as the most
widely utilized architectures for learning from sequen-
tial data and forecasting future states. LSTMs excel in
analyzing the evolution of coronal holes over time, effec-
tively handling the nonlinear and unpredictable aspects
of their movement and morphological changes. Con-
sequently, the prediction module incorporates two net-
works: a ConvLSTM architecture for analyzing historical
binary coronal hole segmentation maps and a standard
LSTM architecture for processing historical solar wind
density data. We have stacked five layers for both of these
networks and included dropout layers (with a dropout
rate of 0.1) after each LSTM layer except the last one. To
predict electron and proton densities, we flattened the
output of the ConvLSTM and concatenated it with the
output of the standard LSTM. This combined output is
then passed through a linear feed-forward neural net-
work, composed of three linear layers, responsible for
the outcome of our system.

5. Results
For validating our segmentation module, we employed
two types of error functions: the Intersection over Union
(IoU) and the Dice coefficient. The IoUmeasures the over-
lap between the predicted segmentation and the ground
truth divided by the union:

𝐼 𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(1)

The Dice coefficient, also known as F1 score, is a statis-
tical tool that measures the similarity between two sets
of data:

𝐷𝑖𝑐𝑒 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2)

Here, TP (true positive) represents correctly segmented
pixels, FP (false positive) denotes predicted object mask
pixels not matching the ground truth, and FN (false neg-
ative) indicates ground truth object mask pixels not asso-
ciated with predicted pixels.

Based on these error metrics, our segmentation model
has demonstrated excellent performance, achieving an
IoU of 0.93 and a Dice score of 0.95.
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Regarding the prediction module instead, we leveraged
the Mean Squared Error (MSE) function and we achieved
a value of 15.29.

An example of the prediction capabilities of our system
is shown in Fig. 4.

6. Conclusion
In this study, we have developed and evaluated a com-
prehensive approach for forecasting solar wind density,
addressing the critical need for accurate space weather
predictions. Our system distinguishes itself for the bal-
ance between computation load and the very high preci-
sion in accurately segmenting coronal holes from high-
resolution sun images and the good forecasting capabili-
ties of the prediction module that effectively combines
the LSTM and ConvLSTM networks. Moving forward,
we propose future improvements by substituting the con-
volutional layers with Vision Transformers [26, 27, 28].
This enhancement strategy aims to further elevate the
accuracy and robustness of our system, paving the way
for more precise solar wind density forecasts and im-
proved space weather predictions. Furthermore, another
improvement to enhance the performance of our sys-
tem involves expanding the dataset used to train our
customized U-Net architecture. Specifically, we aim to
increase the volume of manually generated coronal hole
segmentation maps within the dataset. By incorporat-
ing a more extensive and diverse dataset, we anticipate
boosting the generability power of the network. This
expansion strategy is expected to enable the neural net-
work to generalize better to unseen data and variations
in coronal hole structures. Improved generalization can
also benefit the prediction module by achieving better
results and reducing forecasting errors.
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