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Abstract
This paper presents a solution to this challenge by introducing interactive feedback derived from brain signals to train robots
using deep reinforcement learning, particularly in the context of indoor maze navigation. Our objective is to enhance the
learning process in a human-robot interaction scenario by incorporating human emotion or attention feedback. To accomplish
this, we empowered the robot to learn new tasks through a dynamic policy network based on human feedback, and we
augmented this input with other sensor data, including LIDAR. Various experiments are conducted to compare the efficacy of
manual feedback, brain signal feedback, and no brain signal feedback, employing diverse Reinforcement Learning models.
Additionally, we explore different models for emotion classification, employing Graph Neural Network models and traditional
deep learning models, and subsequently compare the outcomes.
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1. Introduction
Robotic applications have become indispensable across
diverse fields such as rescue operations, medical assis-
tance, and autonomous driving. Within the realm of
mobile robotics, autonomous navigation stands out as
a crucial research focus [1, 2], traditionally relying on
map-building techniques like SLAM [3]. Nevertheless,
there is a growing interest in mapless navigation, which
establishes a direct link between sensory inputs and robot
actions. While deep reinforcement learning (DRL) has
made noteworthy advancements in autonomous naviga-
tion, the challenges of real-world training persist [4, 5].

In the presented paper [6], the authors introduce a
novel model named the Correlated Attention Network
(CAN) for multimodal emotion recognition[7, 8]. This
model extends the attention-based recurrent neural net-
work by integrating correlation calculations of differ-
ent gated recurrent units, specifically targeting the cor-
relation between EEG and eye movement signals[9].
Through the utilization of coordinated representation
incorporating complementary features, the CAN model
aims to achieve enhanced emotion classification accu-
racy. The experimental outcomes on three real-world
datasets reveal that the proposed model outperforms ex-
isting state-of-the-art methods, achieving mean accura-
cies of 94.03% on the SEED dataset, 87.71% on the SEED
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IV dataset, and 88.51% and 85.62% for four classifications
and two dichotomies on the DEAP dataset, respectively.
The key contributions of the paper encompass the intro-
duction of the CAN model, which combines deep-gated
recurrent neural networks [10] with canonical correla-
tion and an attention mechanism [11], and the explo-
ration of coordinated representation in tasks related to
multimodal emotion recognition[12].

The literature reviewed diverse approaches
to autonomous robot navigation in unfamiliar
environments[13, 14, 15]. Simultaneous Localization
and Mapping (SLAM) algorithms, such as the one
proposed in [16] and the lightweight OrthoSLAM
algorithm [17], emphasize the simultaneous mapping
and localization process. In [18], an innovative method
is introduced, combining Hector SLAM with an Artificial
Potential Field (APF) controller, specifically designed
for indoor navigation in GPS-denied environments.
The proposal in [19] advocates for a semantically rich
graph representation in the context of indoor navigation.
Additionally, research in [20, 21] explores end-to-end
approaches utilizing Convolutional Neural Networks
(CNNs) for autonomous robot navigation, particularly
with RGB-D cameras[22].

Methods based on Deep Reinforcement Learning (DRL)
are also explored, such as the fusion of deep rein-
forcement learning with Recurrent Neural Networks
(RNNs)[23, 24? ] for path selection discussed in [25]. In
[26], an approach utilizing Deep Q-Network (DQN) for
autonomous robot navigation with visual observations is
presented, albeit relying on RGB-D cameras. Addressing
collision avoidance and navigation, [27, 28] employ a
Double Deep Q-Network (DDQN) approach. Lastly, [29]
introduces an Asynchronous Advantage Actor-Critic net-
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Figure 1: Global system design

work to enhance generalization and reduce learning time
for indoor robot navigation.

These studies offer valuable insights into various tech-
niques and algorithms employed in autonomous robot
navigation, contributing to the comprehension of Simul-
taneous Localization and Mapping (SLAM), end-to-end
strategies, Deep Reinforcement Learning (DRL), and col-
lision avoidance methodologies.

2. Proposed model

2.1. Global System Design
The overarching design of this global system [Fig.1]
adopts an AI perspective and consists of two principal
components: the Brain Signal segment utilizing EEG and
the DRL (Deep Reinforcement Learning) segment. The
system architecture is defined by an environment featur-
ing a maze with static obstacles representing maze walls
and dynamic obstacles. A robot, guided by a DRL agent,
endeavors to navigate through the maze with the goal of
reaching a randomly generated red circular spot.

The DRL agent is reliant on two primary feedback
signals for observations. The first is the EEG signal, por-
traying emotions like sadness, happiness, and neutrality.
The second feedback is derived from a 2D LIDAR sensor,

furnishing environmental information to the agent. Hu-
man interaction with the system is facilitated through
a Brain-Computer Interface (BCI) setup. Users observe
the simulation and gather EEG recordings. The collected
EEG data undergoes preprocessing, feature extraction,
and model prediction to categorize emotional states into
three classes: sad, happy, and neutral.

Concurrently, the 2D LIDAR sensor data is amalga-
mated with the EEG data and serves as observations for
the DRL agent. The agent acquires the ability to make
optimal decisions and execute actions by assimilating
the combined feedback, facilitating effective navigation
through the maze. Various iterations of the system have
been created, incorporating versions that exclusively rely
on the 2D LIDAR sensor or concentrate solely on emotion
feedback. Additionally, diverse noise types and persistent
feedback mechanisms have been investigated to improve
the overall performance of the system.

In the upcoming sections, specific Deep Reinforcement
Learning (DRL) algorithms and their intricate functional-
ities will be elucidated, offering deeper insights into the
operational and learning processes of the system.
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3. EEG DATASET

3.1. Dataset Overview
The EEG dataset comprises recordings from 15 partici-
pants involved in the experiment. Each participant un-
derwent three sessions on distinct days, and each session
encompassed 24 trials. The film clips displayed during
these trials were meticulously selected to elicit emotions
such as happiness, sadness, fear, or a neutral emotional
state. Consequently, the dataset encompasses four emo-
tional classes: happiness, sadness, fear, and neutrality.
The SEED IV dataset [30] offers an extensive compila-
tion of EEG signals, with a specific emphasis on emotion
recognition utilizing both EEG and eye movement data.
This section provides an outline of the EEG segment
within the SEED IV dataset utilized in this thesis. It en-
compasses details regarding the number of subjects, the
film clips utilized, and the classes available. Additionally,
information about the preprocessing of the EEG signals
and the process of feature extraction is presented.

3.2. Brain Signal Feedback Part
This is a sub-system design from the global system which
has 2 phases:

3.2.1. Phase 1

During this stage, the model, specifically the CNN model,
is trained utilizing the SEED-IV dataset. We implemented
the preprocessing and feature extraction methods out-
lined in the dataset section. For our model, predictions
were made for four distinct classes. However, within
our overarching system design, the classes of sadness
and fear were amalgamated into a single class. Subse-
quently, the batches were converted into 2D images to
be inputted into the CNN model. Alongside the CNN
model trained in the train data loader, we also conducted
experiments with alternative models, including advanced
CNN architecture, LSTM, and ViT.

3.2.2. Phase 2

Upon completing the initial phase, we employ the trained
weights and integrate them into our system as an offline
model. This offline model encompasses a predetermined
function that receives input from the BCI API, initially
transforming the features to predict real-time human
emotions. The predicted emotions are then stored in the
EEG buffer. Subsequently, the EEG buffer is combined
with the 2D lidar buffer, creating the sensor buffer and
constituting the resultant batch.

3.2.3. Replacmnet of Emotion feedback

Concerning the brain signal feedback, it can be sub-
stituted with keyboard input involving humans as the
source of feedback. In this scenario, users can input
their emotional state, specifying whether they feel happy,
sad, or neutral. Alternatively, the brain signal feedback
system can be replaced with generated samples of emo-
tional states adhering to a uniform distribution. In this
approach, three variables govern the probability of each
emotional event: happiness, sadness, and neutrality.

3.2.4. Classification Models Used For Emotion
Dataset

We employed emotion classification as both a feedback
system and an observation for deep reinforcement learn-
ing. This feedback offers insights into the individual’s
emotional state within the simulation. To accomplish this,
we utilized diverse models for classifying brain signals
into four categories: angry, sad, happy, or neutral.

3.2.5. Reward Function

The reward function comprises five versions denoted as
A, B, C, D, and E. In Version A, lidar serves as the obser-
vation, while Version B utilizes a uniform distribution of
emotion. Version C combines the uniform distribution of
emotion with lidar, Version D relies solely on emotion,
and Version E combines emotion with lidar. Our focus
will be on the two principal reward functions, with the
other three representing variations of these main ones.

The first reward function is a hybrid model that incor-
porates lidar and emotion as observations. The second
reward function relies on a uniform distribution of emo-
tion based on a specified probability. Additionally, there
is a variable named ’constant’ that is added to the reward
when the robot successfully avoids collisions with ob-
stacles. This constant value varies based on four types:
Step-1, Step-2, Episode, and time, each defined in sec-
onds. The constant is added according to one of these
four types.

4. EXPERIMENTAL SETUP

4.1. Preprocessing and Feature Extraction
During the EEG preprocessing phase, several procedures
were implemented to ready the data for subsequent anal-
ysis. These steps encompass downsampling the raw EEG
data to a sampling rate of 200 Hz and applying a band-
pass filter ranging from 1 Hz to 75 Hz to eliminate noise.
Subsequent to the preprocessing stage, EEG feature ex-
traction was conducted to capture pertinent information
from the data. Extracted features include Power Spec-
tral Density (PSD) and Differential Entropy (DE). PSD
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quantifies the power distribution across five frequency
bands, specifically Delta (1 Hz - 4 Hz), Theta (4 Hz - 8
Hz), Alpha (8 Hz - 14 Hz), Beta (14 Hz - 31 Hz), and
Gamma (31 Hz - 50 Hz). Conversely, DE computes the
differential entropy within each segment and across the
aforementioned frequency bands.

4.1.1. Utilization of EEG Feature Data

The 𝑒𝑒𝑔𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑚𝑜𝑜𝑡ℎ directory within the SEED IV
dataset served as the source for feature extraction, specif-
ically employing the PSD and DE features. Data from
each .mat file was loaded and transformed into a format
suitable for model training. To optimize the training pro-
cess, samples from each .mat file were concatenated into
batches of size 128, where each batch contained EEG
segments from different trials of the same subject. Fur-
thermore, one label from the four emotional classes was
assigned to each batch. These batches were then used to
construct a dataloader, which was subsequently divided
into training, validation, and testing sets with ratios of
0.8, 0.1, and 0.1, respectively. To introduce randomness
into the training process, the dataset was shuffled.

By employing this methodology, our objective is to
train a model capable of recognizing emotions based on
EEG features extracted from the SEED IV dataset.

4.1.2. Simulation Feedback Data

The dataset utilized in this case study comprises environ-
mental data acquired from a LIDAR sensor and feedback
from an EEG (electroencephalogram) device. The LIDAR
sensor supplies information about the surroundings, in-
cluding distances to obstacles and the robot’s orientation.
Concurrently, the EEG device gauges the brain activity of
the operator, offering feedback on their cognitive state.

5. Dynamical Graph Convolutional
Neural Networks (DGCNN)

The DGCNN (Dynamical Graph Convolutional Neural
Networks) model [? ] is designed for EEG emotion recog-
nition tasks. It leverages graph convolutional operations
to capture spatial dependencies between different elec-
trodes in EEG signals. Graph Neural Networks, such
as the DGCNN model, are essential for capturing and
modeling relationships between graph-structured data,
where nodes represent entities and edges represent con-
nections. In the con- text of EEG emotion recognition,
GNNs enable the DGCNN model to effectively learn and
exploit the spatial dependencies between different elec-
trodes. By leveraging graph convolutional operations,
the DGCNN model can capture complex patterns and
representations from EEG signals, leading to improved
emotion recognition performance.

6. Results

6.1. Simulation Challenges in Maze
Environment

In this section, we delve into the diverse simulation chal-
lenges encountered within the maze environment. These
challenges are intentionally designed to assess the robot’s
capabilities and performance across various scenarios.
An illustration showcasing the nine distinct challenges
can be found in Figure.2.

6.2. Challenge 1: Square Maze
The first challenge introduces a straightforward square
maze with the robot positioned at the center. This chal-
lenge serves as the baseline for assessing the robot’s
navigation capabilities.

6.3. Challenge 2: Square Maze with
Dynamic Obstacles

Challenge 2 expands on the preceding challenge by in-
corporating four dynamic obstacles into the square maze.
The introduction of these obstacles enhances the com-
plexity of the robot’s path planning and obstacle avoid-
ance strategies.

6.4. Challenge 3: Varied Speed and
Movement of Dynamic Obstacles

In this particular challenge, the dynamic obstacles show-
case varying speeds and movement patterns in contrast
to Challenge 2. The robot is required to adjust its naviga-
tion strategy accordingly to evade collisions.

6.5. Challenge 4: Maze with Inner Walls
and Two Dynamic Obstacles

Challenge 4 integrates inner walls into the maze structure
and introduces two dynamic obstacles. The inclusion of
inner walls adds an additional layer of complexity to the
robot’s path planning process.

6.6. Challenge 5: Maze with Inner Walls
and Six Dynamic Obstacles

This particular challenge incorporates inner walls; how-
ever, it introduces a higher number of dynamic obstacles,
totaling six. This challenge is designed to assess the
robot’s capability to navigate through an environment
with an increased density of obstacles.
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Figure 2: Challenges in Maze environment.

6.7. Challenge 6: Maze with Dynamic
Obstacles (No Inner Walls)

Challenge 6 eliminates the inner walls present in Chal-
lenge 5 but retains the identical setup of six dynamic ob-
stacles. This challenge assesses the robot’s performance
in navigating through an open maze environment.

6.8. Challenge 7: Larger Maze with More
Inner Walls

Challenge 7 introduces a larger maze with a heightened
count of inner walls. The robot is tasked with navigat-
ing through narrower passages and surmounting more
intricate maze structures.

6.9. Challenge 8: Larger Maze with Inner
Walls and Two Dynamic Obstacles

Expanding on the foundation set by Challenge 7, Chal-
lenge 8 introduces two dynamic obstacles to the maze.
This challenge amalgamates the complexities of navigat-
ing in a larger maze with the additional challenge posed
by moving obstacles.

6.10. Challenge 9: Larger Maze with Inner
Walls and Six Dynamic Obstacles

Finally, Challenge 9 preserves the larger maze and inner
walls featured in Challenge 8 but augments the number
of dynamic obstacles to six. This challenge poses an
exceptionally demanding scenario, evaluating the robot’s
capacity to navigate through intricate maze structures
and contend with a high density of dynamic obstacles.

In summary, these nine challenges comprise a variety
of maze configurations and obstacle arrangements, grad-
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Model Train Loss Train Accuracy(%) Validation Accuracy(%) Test Accuracy(%)
CNN 0.0108 x 10^{-8} 27.54 26.87 28.32
LSTM 0.0062 x 10^{-8} 68.02 65.33 68.2
GRU 0.0063 x 10^{-8} 67.15 65.15 65.9
ViT 0.0003 x 10^{-8} 99.67 98.60 99.02
DQCNN 0.0001 x 10^{-8} 99.52 99.03 99.19

Table 1
Model performance

ually escalating in difficulty. Together, they facilitate a
thorough assessment of the robot’s navigation and ob-
stacle avoidance capabilities. Figure.2 provides a visual
representation of the different challenges discussed.

6.11. EEG Results
According to the provided table (Tab.6.11) displaying the
outcomes of models trained on the SEED IV dataset, each
model underwent training three times, and the average,
as well as the variance of the scores, were computed.
The DGCNN (Dynamic Graph Convolutional Neural Net-
work) emerged as the top-performing model in terms of
accuracy, delivering the most favorable results.

Specifically, DGCNN attained an average training ac-
curacy of 99.52% and an average validation accuracy
of 99.03%. In comparison, ViT (Vision Transformer)
achieved an average training accuracy of 99.67% and an
average validation accuracy of 98.60%.

The outstanding performance of DGCNN can be
ascribed to its architectural features and capabilities.
DGCNN employs graph convolutional layers, which
adeptly capture and model intricate relationships and
dependencies within the data. This renders it particu-
larly suitable for tasks involving graph-structured data,
such as the SEED IV dataset. Furthermore, the high accu-
racy demonstrated by DGCNN suggests its proficiency
in generalizing effectively to unseen data.

In conclusion, the DGCNN model surpasses the other
models in accuracy on the SEED IV dataset. The triumph
of this model can be attributed to its architectural design
and its capability to effectively capture complex relation-
ships and dependencies within the data.

6.11.1. Analysis of DGCNN Training and
Validation Results

Based on the training accuracy and validation accuracy
plots of DGCNN [Fig.3], it is observed that the plots ex-
hibit a synchronous pattern, with the training accuracy
marginally surpassing the validation accuracy. Never-
theless, the validation plot does not deviate significantly
from the training plot. This suggests that our model
learns effectively, demonstrates good generalization, and

exhibits stable learning in the initial epochs. The conver-
gence of the plots becomes evident from epoch 80.

Additionally, the diminishing loss value as the model
progresses through epochs indicates that the model is
learning and refining its predictions. The training accu-
racy shows a consistent increase with each epoch, signi-
fying an improvement in the model’s ability to predict
the training data. It commences at 48.08% and gradually
advances to 99.26%.

Similarly, the validation accuracy follows a comparable
trajectory to the training accuracy, initiating at 46.58%
and progressing to 98.67%. This progression implies that
the model effectively generalizes and maintains consis-
tent performance on unseen data.

The final test accuracy also exhibits improvement over
the epochs, commencing at 47.63% and culminating at
98.64%. This metric serves as a comprehensive gauge of
the model’s performance on the test set.

In summary, the training and validation accuracies
of the DGCNN model exhibit a correlated movement,
with the training accuracy marginally outperforming.
The model showcases stable learning, begins conver-
gence from epoch 80, and manifests enhancements in
loss, training accuracy, validation accuracy, and final test
accuracy over the epochs. These outcomes signify that
the model learns effectively, generalizes proficiently, and
attains high accuracy on both the training and validation
datasets.

6.11.2. Analysis of Loss Curves and Convergence

Throughout the 100 epochs, both the loss curves of
DGCNN exhibit minimal variance observed across mul-
tiple trials. This suggests that the model consistently
converges towards similar local minima, yielding highly
accurate predictions.

Furthermore, the loss curve illustrates a gradual de-
scent, initiating from an initial high value and steadily de-
creasing throughout the training process. This indicates
the model’s effective learning and adjustment of its pa-
rameters to better fit the training data. After 100 epochs,
DGCNN attains an impressive loss value of 0.0005, in-
dicating a high level of accuracy and robust predictive
capability.
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Figure 3: Train and Validation accuracy plots for 3 DGCNN model representing the average with variance.

This consistency underscores the stability and relia-
bility of the solutions derived by DGCNN. In summary,
the analysis of the loss curves of DGCNN unveils its
remarkable capacity to minimize disparities between pre-
dictions and ground truth values, resulting in highly ac-
curate models. DGCNN exhibits a robust ability to learn
and converge towards dependable solutions, making it a
valuable tool for various applications.

6.11.3. Analysis of Confusion Matrix

The confusion matrix provides valuable insights into the
performance of classification models.

• Class 0 (Happiness):The DGCNN model achieves
perfect accuracy (1.00) in classifying happiness,
indicating no misclassifications in this category.

• Class 1 (Sadness): Similarly, the DGCNN model
demonstrates flawless performance in identifying
sadness, with a precision of 1.00.

• Class 2 (Fear): The DGCNN model performs well
in detecting fear, with an accuracy of 0.98. How-
ever, it misclassifies a small portion (0.01) of the
samples in this class as other emotions.

• Class 3 (Neutral): The DGCNN model achieves
perfect accuracy (1.00) in recognizing neutral
emotions, implying no misclassifications in this
category.

The DGCNN model demonstrates outstanding classifi-
cation outcomes, achieving perfect accuracies in recog-

nizing happiness, sadness, and neutral emotions. It also
performs commendably in detecting fear, with only a
slight misclassification rate.

In conclusion, the DGCNN model showcases ro-
bust classification capabilities across all emotion classes.
DGCNN delivers reliable predictions, establishing itself
as a valuable tool for emotion classification tasks.

7. Conclusion
In this study, we conducted a thorough examination of
the integration of deep reinforcement learning (DRL)
with emotion feedback. Through a series of experiments,
we identified optimal parameters to enhance learning
outcomes by incorporating both lidar and emotion feed-
back. Our investigations yielded improved overall perfor-
mance and a notable reduction in the number of episodes
required for successful maze navigation. By incorpo-
rating natural sensor feedback, particularly human vi-
sual perception and brain signals, we gained valuable
insights into the potential of utilizing such feedback in
reinforcement learning tasks. Our findings highlight the
effectiveness of combining deep reinforcement learning
with emotion feedback, opening up new possibilities for
leveraging natural sensor feedback and presenting op-
portunities for future work in multi-robot scenarios and
transfer learning using brain signals beyond emotions.
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