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Abstract

This paper addresses the challenge of differentiable rendering, focusing on a novel implementation designed to integrate
3D objects seamlessly into reconstructed 3D environments, thereby creating entirely new perspectives of the scene. Our
methodology leverages Neural Radiance Field (NeRF) models to reconstruct the 3D environments with high fidelity, alongside
monocular depth estimation algorithms for deriving the 3D characteristics of objects from single images. The main goal of
our approach lies in harmonizing the depth map output from the NeRF model with the depth data of the inserted object. This
synergy enables the accurate and space-coherent placement of the object within the scene, ensuring a natural integration
that enhances the overall realism of the virtual environment.
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Introduction

This work bridges two pivotal areas of computer vision:
view synthesis and 3D reconstruction, each targeting dis-
tinct goals yet sharing a fundamental connection. View
synthesis, an image-based rendering technique, creates
new scenes from various images and perspectives. Con-
versely, 3D reconstruction aspires to model real-world
scenes in three dimensions, crafting geometric represen-
tations from visual data.

In our approach, we amalgamate elements from both
view synthesis and 3D reconstruction to fabricate entirely
new visual perspectives of environments, incorporating
3D objects previously absent from these scenes. Achiev-
ing this level of realism and visual coherence necessitates
the use of 3D reconstruction methods to ascertain spatial
details such as the distance and depth of scene elements.
This integration allows for synthesized images that au-
thentically mirror the spatial dynamics and geometry of
the newly added objects within their respective environ-
ments.

Recent years have underscored the significance of 3D
reconstruction from 2D imagery within computer vision,
propelled by its vast application potential and founda-
tional ties to 3D perception—endeavoring to endow sys-
tems with a nuanced understanding of scene composi-
tions. Amidst various methodologies aimed at enhancing
efficiency, structure-from-motion and multi-view stereo
techniques have gained prominence. These methods ex-
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cel in spatial object organization and camera positioning
through the exploitation of visual and motion cues, offer-
ing a cost-effective yet accurate 3D modeling approach
by producing sparse point clouds from image correspon-
dences.

Despite these advantages, the advent of deep learn-
ing has pivoted the focus towards neural network-based
solutions for 3D reconstruction, exemplified by the appli-
cation of convolutional neural networks (CNNs) in stereo
reconstruction. These learning-based strategies integrate
global semantic insights for improved matching accuracy
[1,2,3,4,5,6,7].

View synthesis techniques, ranging from depth-based
rendering to texture mapping, utilize existing data like
depth or disparity maps to forge new visual perspectives
through pixel reconfiguration and amalgamation.

This paper specifically delves into a cutting-edge
view synthesis method—Neural Radiance Fields
(NeRFs)—building on prior advancements to train a
neural network in mapping a 5D vector (comprising
position and orientation) to the emitted radiance at that
location. This technique eschews convolutions for a
deep, fully-connected network learning a regression
from the 5D input to RGB color and volume density,
facilitating rendering via traditional volume rendering
techniques.

A notable aspect of NeRFs is their ability to deduce
3D geometric details, such as depth, from the model’s
learned representation, positioning NeRF at the core of
our proposed solution that adeptly leverages both view
synthesis and 3D reconstruction.

However, the NeRF model’s tendency to simply memo-
rize scene radiance poses challenges for scene editing or
manipulation—core objectives of this paper. We propose
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tion to render a 3D object representation from a single
image, enabling precise object integration into the NeRF-
derived 3D scene map. This synthesis not only enhances
the model’s editing capabilities but also marks a signifi-
cant advancement in combining view synthesis with 3D
reconstruction for dynamic scene generation.

2. Related work

The convergence of view synthesis and 3D reconstruction
in computer vision has been the subject of extensive
research, driven by their potential to revolutionize how
machines perceive and interact with their environments.
This section reviews the foundational works and recent
advancements in these fields, setting the stage for our
proposed methodology.

Differentiable rendering has emerged as a critical
bridge between 3D models and their 2D projections, al-
lowing gradients of the image loss to be backpropagated
through the rendering process to the model parameters.
[8] and [9] have laid the groundwork in this domain,
proposing frameworks that enable optimization over
mesh vertices and textures. However, the combinatorial
nature of meshes makes it difficult to directly optimize
the geometry from multi-view images.

Neural Radiance Fields (NeRFs), introduced in [10],
have significantly advanced view synthesis by learning a
continuous volumetric scene function from a sparse set
of images. Subsequent research has expanded on NeRFs
to improve training efficiency [11], inference speed [12]
[13] and reducing constrains [14]. We extend the NeRF
methodology to incorporate 3D objects into the scenes,
leveraging its depth inference capabilities for realistic
scene reconstruction.

The field of 3D reconstruction has evolved from
geometry-based techniques to deep learning approaches.
Early works on structure-from-motion [15] and Multi-
View Stereo [16] laid the foundation for understanding
scene geometry from image sequences. More recently,
CNN-based methods have demonstrated superior per-
formance in extracting 3D information from 2D images,
with notable contributions from [17] and [18] in apply-
ing deep learning for spatial understanding. Our ap-
proach synergizes with these advancements, utilizing
deep learning for enhanced depth estimation and scene
reconstruction. Monocular depth estimation has seen
rapid progress, transitioning from traditional methods
reliant on hand-crafted features to learning-based ap-
proaches that utilize neural networks for depth prediction
from a single image. The authors of [19] initially explored
the potential of using supervised learning for this task,
while more recent efforts by [20] and [21] have intro-
duced self-supervised and semi-supervised techniques,
achieving remarkable accuracy. Our model integrates
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the more advanced monocular depth estimation method
introduced in [22] to facilitate the seamless embedding
of 3D objects into NeRF-generated scenes.

Combining View Synthesis and 3D Reconstruction:
While several studies have independently explored view
synthesis and 3D reconstruction, few have investigated
their integration for enhanced scene rendering and object
insertion. Our work is inspired by the pioneering efforts
in both fields, aiming to create a cohesive framework that
leverages the strengths of each to produce photorealistic
and spatially coherent scene augmentations.

In summary, our proposed method stands at the in-
tersection of multiple research domains, drawing from
and contributing to a rich body of knowledge on differen-
tiable rendering, NeRFs, 3D reconstruction, and monocu-
lar depth estimation. By synthesizing these technologies,
we aspire to advance the capabilities of computer vision
systems in understanding and manipulating complex 3D
environments.

3. Implementation

The proposed approach was tested with two scenarios
with different levels of illumination, to study how this
aspect affects the final representation of the environment.
The pictures for the first scenario were taken manually
with a cellphone camera. In total, we collected 40 pictures
with size 652x367 following the protocol described in
[23], where the maximum disparity between views was
no more than about 64 pixels. The images for the second
scenario instead are taken from [24], which provides 41
images with size 504x378 pixels showcasing an office. A
sample from both scenarios is illustrated in Figure 1.

While NeRF can be initialized with the poses extracted
from COLMAP [15] we opted for a fully data-driven
pipeline, removing the requirement of both poses and
camera parameters as shown in [25]. The images of the
object to embed in the two scenarios are taken from [24],
which provided multiples views of the object as well as
segmentation masks. However the monocular depth es-
timation model [26] inputs a single image and returns
the estimated depth map, hence the multi-view dataset
is used only to choose among different poses of the em-
bedding object. Figure 2 shows one of the views of the
object.

3.1. Model Pipeline

The model pipeline for this task is divided into two main
components: NeRF model training for scenario represen-
tation and image embedding for adding 3D objects into
these scenarios. Initially, depth maps are generated to
describe the scenes in 3D, a crucial step for seamlessly
integrating new objects in a spatially coherent manner.
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Figure 1: The two test scenarios. Scenario A (on top): a room
with low illumination (pictures taken by author), and Scenario
B (bottom): an office with better light (pictures taken from

[24]).

Detailed explanations of each component in the pipeline
follow, covering the specifics of both the NeRF training
process and the methodology for embedding objects into
the scenes.

3.1.1. NeRF model and training

The model basically optimizes a NeRF architecture net-
work, and the camera parameters (intrinsic and extrinsic)
of the images of a scenario, by minimizing photometric
reconstruction errors [25].

In general terms, a 3D sampling process is done for
each pixel, where camera rays are traced through the
scene to collect a set of samples at (x, d) locations (posi-
tion and view direction). These tuples are then used at
each sample as input to the NeRF model to generate a
continuous function that outputs an RGB color and its
corresponding density.

During the training process, a random selection of pix-
els is rendered per input image. The purpose is to mini-
mize the reconstruction loss by comparing the rendered
colors of these pixels with the corresponding ground-
truth colors. It is important to note that the complete
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Figure 2: Object to embed in the two scenarios.

pipeline is fully differentiable, allowing for the simulta-
neous optimization of NeRF and camera parameters.

In order to obtain fast training and comply with compu-
tational power limitations, it was decided to implement
a tinyNeRF model which simplifies the original NeRF
structure presented in [24], using just 4 layers within the
multi-layer perceptron (MLP) architecture (instead of 8),
also discarding the skip recurrent connection, due to the
shallowness of the structure. The input and output of
the model remained the same, a single continuous 5D
coordinate (the spatial location (x, y, z) and viewing di-
rection (theta, phi) as inputs, and the volume density and
view-dependent emitted radiance at that spatial location
as outputs.

The hyper-parameters used in the training process are
presented in the table 1.

Table 1
NeRF parameters
Parameter Value  Comments
# epochs 5000
Optimizer Adam
Learning rate  0.001 with scheduler
Loss MSE

Initially, the number of epochs was set to a few hun-
dred, but the synthesized results indicated the need for a
larger number of epochs. This was necessary to achieve
not only improved output image quality, avoiding blur-
riness, but also a more accurate and well-defined depth
map. Consequently, the final number of epochs used for
the training process reached approximately 5k.



Giorgio De Magistris et al. CEUR Workshop Proceedings

70-76

3.1.2. Image embedding

The embedding process started with the characteriza-
tion of the object to integrate into the scenario. For this
purpose, the image of the object (with no background)
was used as input to the monocular depth estimation
algorithm [22]. This technique estimated the distance
to the camera for each pixel in the RGB image, giving
as a result a depth map represented as a matrix. On the
other hand the NeRF model does not provide directly a
depth map, but a density field, i.e. a scalar density for
each point in space. This information however can be
used to approximate depth as follows: 1) First the surface
is extracted as a level set of the density function for a
fixed threshold, i.e. the surface is represented implicitly
as o(z) = 7 where 7 is found empirically. 2) Then the
Depth Map is computed through Ray Casting. For the
given camera pose a ray r(t) = o + td is shot from each
pixel and sampled. The first value ¢ such that r(¢) > 7
is considered the depth value for the current pixel.

Once we have the two images with the corresponding
depth maps we simply fuse the images according to the
depth values, such that each pixel in the final image
takes the value of the image with the smallest depth. To
adjust the scale of the embedding object relative to the
scene we can simply scale the width and height of the
corresponding image and depth map. Moreover we can
place the object at different distances simply scaling the
depth map.

4. Results

The results of the NeRF training are shown in Figure 3
while the depth maps extracted with different values for
the threshold 7 are shown in Figure 4.

1b.

Figure 3: Novel views obtained after a few hundred epochs
(left column) and after 5k epochs (right column).

The results show that with just 40 front-faced pic-
tures of the selected scenarios, the reconstruction and

1b.

Figure 4: Depth maps obtained using different thresholds =

the depth map achieve a realistic outcome for each of the
novel view.

Figure 5 shows the 3D depth map of the embedding
object, obtained from the monocular depth estimation
algorithm.

Figure 5: Object depth map.

As described in Section 3, a crucial step in the image
embedding process was the normalization procedure. Its
purpose was to establish consistency between the depth
measurements of the object and the surrounding envi-
ronment. In particular, the depth values of the object
were scaled in the interval [0, 20]. This adjustment en-
sures that the embedding object is ten times smaller than
the maximum length of the rooms (whose depth values
range from 0 to 200), aligning appropriately with the
nature of the item selected. This choice maintains coher-
ence within the scenarios and ensures space-consistent
proportions.

The result of the merging is shown in figures 6 and 9.

Some statistics of the images of the scene and the em-
bedding object are shown in Table 2.

Upon initial observation, it became evident that the
monocular depth estimation model faced challenges in
generating high-quality predictions near the edges of the
object image showing some noise around the edges of the
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the 3D object. In particular, our approaches correctly
represent occlusion.

Scenario B - View 1

Figure 8: Some details of the synthetic image

Scenario B - View 2

Figure 6: Scenario B novel views examples, with 3D object Table 2 shows the parameters use to generate the final

embedded. .
merged novel image.
Table 2
Parameters in novel views scenario B figure 6.
Parameter Value
View 1
Room img size 504x378 px
Object img size 225x225 px
Object x shift 50 px
Object y shift 120 px
Object closer depth 100
View 2
Room img size 504x378 px
Object img size 300x300 px
Object x shift 0 px
Object y shift 100 px
Object closer depth 0.3

Scenario A - View 2

Figure 9: Scenario B novel views examples, with 3D object
embedding object(see Figure 7 A). However, to mitigate ~embedded.
this phenomenon, a simple Nearest Neighbour filter was
applied to the final image (see Figure 7B).

5. Conclusions

. This study presents a novel approach to scene manipula-
tion using neural radiance fields, demonstrating promis-
ing results in integrating objects into scenes with realis-
tic depth and color. Key to success is the precise depth
B. characterization by the NeRF model and the streamlined
optimization of camera parameters within the NeRF ar-

Figure 7: Resulting image before (A) and after (B) filtering chitecture, eliminating the need for external processing
and enhancing novel view rendering. However, achieving

Figure 8 shows in more detail the positive result of the truly realistic embeddings demands careful adjustment
merging process between the reconstructed space and of object positioning and meticulous pre-processing to
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Table 3
Parameters in novel views scenario A figure 9.

Parameter Value
View 1
Room img size 652x367 px
Image size 220x220 px
Image size 220x220 px
Object x shift 240 px
Object y shift 120 px
Object closer depth 100
View 2
Room img size 652x367 px
Object img size 300x300 px
Object x shift 10 px
Object y shift 110 px
Object closer depth 920

ensure seamless integration, highlighting the importance
of coherent spatial logic and image adjustments for au-
thentic synthesis.
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