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Abstract
This work focuses on the problem of reconstructing the 3D distribution of radioactivity in
large water volumes based on measurements collected with underwater gliders. We present a
high-level simulation environment to study radioactivity reconstruction accuracy and efficiency
considering different reference radioactivity distributions and under different types of glider
trajectories, also taking into account the limitations of radioactivity detection in the water. A
neural-based sampling approach is adopted for reconstructing the radioactivity distribution
based on the highly sparse measurements.
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1. Introduction
Radioactivity, although present in the marine environment, is still significantly under-
sampled and understudied. Fortunately, water acts as a very effective protective shield
against radioactivity emitted from sources deep inside the water, either man-made or nat-
ural. Nevertheless, it is important to map radioactivity in underwater environments both
because natural radioactivity can be correlated with intense phenomena as earthquakes
and volcanic eruptions ([1, 2]), and because the presence of radioactivity in the water
(either natural or man-made) can affect the marine biome, with possible environmental
and human health risks. For this reason we consider here the possibility to map the
distribution of radiation in a large water volume via the detection of gamma radiation in
the water using gamma detectors mounted on underwater gliders.

Underwater gliders are underactuated autonomous underwater vehicles, which take
advantage of their buoyancy to move through the water [3]. Unlike underwater vehicles
that use an engine to create thrust for moving through the water, underwater gliders
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change their buoyancy and center of gravity, and use their wings to convert vertical
motion to horizontal. Different types of sensors can be installed on the gliders, covering
a wide range of applications including oceanic research, environmental monitoring, as
well as military ones. The most important advantage offered by gliders is their very
low energy consumption, as they only require energy to periodically shift slightly their
volume and center of gravity to move, allowing them to perform extensively long missions,
ranging from days to months, covering very large areas before requiring recharging. Due
to these characteristics, underwater gliders are suitable for long surveys, where the ability
to remain in the sea for longer periods is more important than the high speed or rapid
change of direction offered by other autonomous underwater vehicles. As mentioned
above, underwater gliders use the change of their buoyancy, the change of their rudder,
and at some cases a minimal thrust from an engine to achieve their motion [4, 5]. Based
on these movements, by altering their pitch angle gliders can follow saw-tooth like vertical
movements, typically called yo-yos, as well as helical movements with different radii by
actuating their ruder at the same time.

In this work, we present a novel high-level simulation environment, which allows to
simulate the data collected by gamma radiation detectors mounted on underwater gliders
under typical forms of glider trajectories that can be used to scan the volume of interest.
To reconstruct the radioactivity distribution in the reference volume based on the sparse
measurements, we present a novel interpolation method based on multi-layer perceptrons
(MLPs) that is several times more efficient than linear interpolation methods while
showing improved accuracy in most cases.

In the following, Section 2 presents a high-level simulation and a novel MLP-based
interpolation method developed for studying detection and mapping of radioactivity
using underwater gliders, Section 3 discusses the results obtained for a variety of reference
radioactivity distributions in the water considering different glider trajectories and
interpolation methods, and Section 3 provides concluding remarks.

2. Methodology
For the purposes of this work we consider that measurements from the gamma radiation
detectors are stored in tabular format along with the position of the gliders corresponding
at the measurement time. Radioactivity mapping considers these data in order to produce
a map of the radioactivity distribution in the underwater volume being surveyed. Even
without considering uncertainties in the estimated location of the gliders, the problem is
notoriously challenging, as measurements cover an infinitesimal portion of the scanned
volume. This is inherent to the problem having co-dimension 2, as measurements are
virtually 1-dimesional, due to the high locality of the measurements caused by water
shielding, and the scanned volume being 3-dimensional. The most obvious solution to
propagate measurements to the volume of interest in order to provide a radioactivity map
is through interpolation of the recorded values. The simulation environment described
next is used to assess the accuracy of the maps reconstructed through interpolation, as
well as the efficiency of their calculation. Performing the interpolation using classical



methods, as linear interpolation, leads to very demanding computation due to the very
high number of measurements involved and the large extent of the volume needed to be
filled. To address these challenges, a novel MLP-based sparse measurement interpolation
method is developed, described in the following.

2.1. Simulation environment
A high-level simulation environment has been developed to provide simulated radioactivity
measurements given an underlying radioactivity distribution in a reference volume and
considering typical trajectories that underwater gliders can execute based on their
kinematics. Simplified models are considered both for the radioactivity measurement
and the movement of the gliders, not taking into account the efficiency of the gamma
radiation detector and the presence of noise regarding the former and not accounting for
localization uncertainty regarding the latter. The goal is to provide an environment where
different radioactivity detection and mapping scenarios can be tried out, allowing to
choose suitable scanning patterns and better understanding limitations due to challenges
from radioactivity shielding of the water and the significantly small coverage of the area of
interest. The simulator has been developed in Python using the Plotly library, both for the
graphical representations, and for the numerical simulations of the measured radioactivity
values. A reference volume of interest has been defined in the form of a three-dimensional
cuboid with a size of 3000𝑚×3000𝑚×300𝑚 (x, y, z axes, respectively) and the simulation
is performed in a 1 : 1 scale. In this reference volume, two types of underwater glider
trajectories are considered. The first corresponds to yo-yo vertical motions, and the other
to helical movements, as shown in Figure 1. The simulation considers different spacing
between the trajectories. For the yo-yo movement, the horizontal distance between
two parallel trajectories is defined as trajectory spacing. For the helical movement, the
original volume is divided into smaller sub-volumes with square horizontal section with a
given spacing distance. The radius of the helical movement is defined as 1/4 of the size
of this horizontal spacing. The vertical movement of the underwater gliders is limited to
the range 25𝑚 − 285𝑚, considering suitable margins for safe operation of the vehicle.

The type of glider trajectory has an important impact on the time required to cover the
reference volume and to the total coverage. The simulation environment allows to estimate
the time needed to scan the entire volume. Given a specific type of movement, providing
the value of the trajectory spacing, the volume is filled with the planned trajectories,
allowing to compute the total length of the resulting scan-path. Dividing the scan-path
length by the speed of underwater gliders the duration of the scan can be estimated.
Additionally, considering a maximum detection range for the radioactivity detectors
mounted on the gliders , the volume of the space measured can be estimated in relation
to the total scan volume. Table 1 reports indicative scan times and volume coverage
estimations for different spacings of the two trajectory types, considering 𝑣 = 0.5𝑚/𝑠
which is a representative value for underwater glider speed and 𝑟𝑙𝑖𝑚 = 1𝑚 based on sea
water shielding effects affecting radiation detection limit.



Figure 1: Glider trajectories: vertical yo-yo movements (Left col.); helical movements (Right col.)

Table 1
Reference volume scan time and coverage for different trajectory spacings.

Yo-yo
Spacing (m) Distance (km) Scan Time Coverage (%)
100 x 100 221.2 5d 2h 53m 0.025
150 x 150 151.8 3d 12h 19m 0.017
200 x 200 117.1 2d 17h 2m 0.013
250 x 250 96.3 2d 5h 28m 0.011

Helical
Spacing (m) Distance (km) Scan Time Coverage (%)
200 x 200 362.2 8d 9h 13m 0.042
300 x 300 229.6 5d 7h 32m 0.026
400 x 400 146.7 3d 9h 30m 0.017
500 x 500 133.2 3d 2h 0m 0.015

2.2. Radioactivity Distributions
In order to assess the ability of underwater gliders to effectively map underwater radioac-
tivity we consider different radioactivity distributions and use the developed simulator
to examine how accurately these distributions can be reconstructed from radioactivity
measurements acquired from an underwater glider traversing through them based on
different scan trajectories, as described above. Figure 2 summarizes the main types
of radioactivity distribution considered. They comprise analytically, geometrically and
diffusion based distributions that show different characteristics in terms of shape and
spatial frequencies. The first reference distribution is a purely analytical one containing
a wide range of spatial frequencies and covering the entire area of interest, defined based
on the following relation:
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Figure 2: Reference radioactivity distribution. Top left: Analytical; Top right: Inverted truncated
cone representing underwater plume; Bottom: Temporal evolution of underwater plum based on Fick’s
diffusion law visualized at different timesteps

The second reference distribution is a geometrical one described by an inverted trun-
cated cone with a base of 80𝑚 radius and a top radius of 300𝑚, approximating the shape
of a hydrothermal plume emitted through the center of the volume of interest. The
measurements inside the cone are taken as equal to 10 and outside as equal to 1.

The last reference distribution is also approximating a hydrothermal plume, however,
considering the diffusion of radioactive material across the vertical column to the surround-
ing water. Letting 𝐽 be the diffusion rate, 𝐷 the diffusion coefficient, 𝐶 the concentration
of the substance and 𝑥 the distance along the diffusion axis, the radioactivity distribution
evolution through time is given based on Fick’s second law of diffusion, expressed by [6]:

𝑑𝐶

𝑑𝑡
= 𝐷 · 𝑑2𝐶

𝑑𝑥2 . (2)

In the simulations, the radioactivity diffusion that corresponds to 4000 timesteps
around a cylinder with constant concentration equal to 100 placed in the center of the
volume of interest is considered. This results to a radioactivity distribution with values
in the range 0 to 100, as can be seen in Figure 2.

2.3. Interpolation
The most straightforward way to reconstruct the radioactitvity distribution based on the
values measured along the trajectories is through linear interpolation. Specifically, one



can consider a discretized volumetric representation of the space, according to a spatial
sampling distance which defines the dimensions of the resulting voxels. Then, each voxel
is filled based on the average of the measurments along the trajectories weighed by the
inverse distance to the voxel. It should be noted that even for relatively low measurement
rate and spatial resolution(e.g. 1 measurement every 10𝑠𝑒𝑐 and voxels of ∼ 50𝑚 size) an
exact calculation is quite demanding on computational resources, especially in terms of
memory.

To better capture the characteristics of the underlying radioactive distribution a non-
linear interpolation scheme based on MLPs was considered. The idea of using an MLP
for interpolating values from a highly complex function builds on the work of NeRF [7].
In fact, a function of interest can be approximated in arbitrary precision by an MLP,
according to the universal approximation theorem [8]. In this context one can optimize
the weights of an MLP by providing the function argument as input and using the
measured (or computed) value of the function as supervision. In practice, [7] has found
that MLPs are not capable of learning high degree functions from low-dimensional inputs.
This difficulty can be overcome by applying positional encoding to the input, which
artificially increases the dimensionality of the input through the use of Fourier features [9].
In the context of radioactivity mapping, using an MLP as a function approximator and,
subsequently as an interpolator through querying values at specific locations, typically
leads to an improvement in the accuracy as well as a significant reduction of the required
execution time.

3. Results
To assess radioactivity mapping algorithms, the developed simulation environment
was used, considering different types of underwater glider trajectories and different
radioactivity distributions. A grid of query coordinates was considered consisting of
31 × 31 × 8 = 7688 regularly spaced points. The points are equally spaced in 31 intervals
along the 𝑥 and 𝑦 axes in the range [0, 3000] and in 8 equally spaced intervals along the
𝑧 axis in the range [0, 300]. The grid size was chosen with the rationale of having enough
points to produce a reconstruction accurate and detailed enough, but also with a number
of points as small as possible because, as described above, typical implementations (e.g.,
function ‘griddata’ of SciPy in Python) are very demanding computationally and an
excessive number of query points is prohibitive due to space and time constraints. Table 2
presents the root-mean square error (RMSE) and peak signal to noise ratio (PSNR)
metrics, typical metrics used for assessing signal reconstruction quality [10], for the
estimated radioactivity maps computed using linear interpolation for yo-yo and helical
glider trajectories, respectively.

We note that the radioactivity distribution based on diffusion is better approximated.
This can be attributed to the fact that changes in the radioactivity values are quite
small. Plume (conical) distribution gives the second-best results, while the analytical
distribution of relation (4) is the most challenging, mainly due to the large extent of
spatial frequencies that the distribution contains. In terms of the glider trajectories



Table 2
Reconstruction accuracy and computation time for different mapping scenarios considering the yo-yo
(left) and helical glider movements (right).

Yo-yo
Spacing RMSE PSNR Time (sec)

An
al

yt
ica

l 100x100 0.39 14.164 4782
150x150 0.45 12.87 3081
200x200 0.53 11.61 6601
250x250 0.53 11.61 2692
300x300 0.56 11.03 2432

Co
ni

ca
l

100x100 0.44 26.309 4518
150x150 0.45 26.06 3685
200x200 0.46 25.92 6209
250x250 0.49 25.37 2474
300x300 0.47 25.73 2490

D
iff

us
ed

100x100 1.25 37.946 4715
150x150 1.28 37.76 3189
200x200 1.99 33.92 6514
250x250 1.47 36.58 2365
300x300 1.76 35.02 2126

Helical
Spacing RMSE PSNR Time (sec)

An
al

yt
ica

l 200x200 0.20 19.996 9426
300x300 0.27 17.31 2059
400x400 0.35 15.07 1697
500x500 0.37 14.75 894
600x600 0.39 14.16 1309

Co
ni

ca
l

200x200 0.36 27.863 8904
300x300 0.45 26.03 2064
400x400 0.56 24.19 1567
500x500 0.58 23.76 901
600x600 0.62 23.27 1350

D
iff

us
ed

200x200 0.97 40.213 9748
300x300 1.93 34.21 1775
400x400 1.83 34.66 1692
500x500 2.90 30.66 863
600x600 2.73 31.18 1166

used for scanning the volume, the best results are obtained with the helical motion with
200𝑚 × 200𝑚 spacing, at the cost of excessively long time to complete the mapping.
Yoyo-type movement, on the other hand, provides slightly worse results but with the
important advantages in terms of reduced scan time. The last column of Table 2 reports
the time required to execute the linear interpolation on the 31 × 31 × 8 grid on a typical
workstation. This time ranges from 15 minutes to approximately 3 hours. The time
required to complete the interpolation task is directly related to the trajectory and the
number of query locations. These extended computation times are also one of the reasons
of proposing the MLP-based interpolation method.

Regarding MLP-based interpolation, a reference architecture composed of four hidden
layers was considered, of which the first three consist of 256 neurons, while the third one
consists of 128 neurons. The ReLU activation function was considered for all the hidden
layers. The MLP is optimized considering the 𝐿2 loss with respect to the measured values
in the corresponding spatial locations. Ten percent of the available data is considered
as validation data and an early stopping strategy is implemented, with patience equal
to 7 epochs. The early stopping helps to prevent the model from overfitting, thus
allowing better approximation of values far from the measured locations. To be able to
capture functions with spatial high-frequency components, the three-dimensional input
coordinates are transformed using Positional encoding based on Fourier Features [9].

Figure 3, shows the performance comparison of the MLP-based interpolation with
respect to the linear interpolation baseline using the PSNR metric, for the yo-yo and
helical trajectories. It can be seen that MLP gives comparable performance with the
linear based interpolation in the case of yo-yo trajectories, while they lead to significantly
better performance when helical trajectories are used. As expected, the smallest sub-



Figure 3: Comparison of radioactivity distribution reconstruction accuracy for linear and MLP-based
interpolation for yo-yo (top) and helical glider trajectories (bottom)

volume spacing, i.e., 200𝑚 × 200𝑚, leads to the best results. Importantly, the execution
time of MLP-based interpolation is sped-up multiple times with respect to linear-based
interpolation. In particular, the time required for MLP-based interpolation for the
scenarios we considered range from 18 to 369 seconds with an average of 101 seconds.
Compared to the corresponding linear interpolation times, this corresponds to a speedup
in the worst case of 8 and in the best case of 26 times.



4. Conclusion
A high-level simulation environment has been developed to study the performance of
radioactivity mapping based on sparse measurements based on different combinations of
glider trajectories, radioactivity distributions and interpolation algorithms. The results
are encouraging for the effective mapping of large areas/volumes using glider vehicles,
with the simulations suggesting that mapping accuracy depends on the characteristics of
the radioactivity distribution, the type and spacing of the scan trajectories, as well as the
method used to propagate the measurements to the entire scan volume. Regarding the
latter, a novel MLP-based interpolation method has been developed that achieves higher
accuracy in most cases with notable speedup with respect to typical linear interpolation
implementations. An important outcome of the simulations is that they allow to better
understand the trade-off between mapping accuracy and time required to execute the
selected scan paths. Finally, although the analysis presented above is based on the
characteristics of radioactivity sampling, the developed methodology can be also applied
to the 3D mapping of other highly localized physical or chemical quantities of interest in
large volumes.
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