
Scaling up parallel robot plans to improve plan
execution time: an industrial use-case
Edoardo Giordani

1
, Sofia Santilli

1
, Luca Iocchi

1
, Fabio Patrizi

1
and Fabio Zonfrilli

2

1DIAG, Sapienza University of Rome, Italy
2P&G, Belgium

Abstract
We present a greedy approach to generate parallel plans for domains featuring a large number of

objects which need to undergo the same operational procedure. The number of objects is such that not

even a total-order (linear) plan can be obtained, thus calling for an alternative method. We propose a

compositional approach based on obtaining template solutions for the same problem but over small

batches of objects and then combining them into a parallel, sub-optimal solution for the original problem.

The approach is showcased on a real-world industrial use-case provided by the Procter&Gamble company

in the context of the EU project AIPlan4EU.

Keywords
Plan execution, Robot planning, Parallel plans

1. Introduction

In this work we deal with an industrial use-case provided by the Procter&Gamble company

(P&G) in the context of the EU project AIPlan4EU (www.aiplan4eu-project.eu). This is a real-

world industrial use-case from the field of R&D consumer product testing.

In order to guide the scientists towards the evolution and patent of new superior products

to be launched on the market, thousands of samples of the new proposals have to undergo a

large number of different tests, so as to generate data to be subsequently examined. Typically,

tests are performed manually in labs, resulting in a very slow and time-consuming activity for

human operators. Since the activities to be carried out are rather repetitive, the use of a robotic

system equipped with online sensors represents an attractive opportunity to standardize the

testing process while dramatically improving its speed, as well as quality and reliability of the

generated data. In this work we address the problem of automatically defining the behavior of

such a system.

In the considered use-case, a robotic arm equipped with a gripper is employed to support

quality control tests for laundry detergent soluble capsules, or pouches. Every test consists in

measuring and recording weight, size, elasticity, strength and tightness of a pouch and, in order

to guarantee statistical significance, a large number of tests must be performed on as many

pouches. For simplicity, we only deal with weight, strength and tightness but the approach

can be easily applied to the entire pool of features. The test unit consists of a robotic arm

10th Italian Workshop on Artificial Intelligence and Robotics (AIRO 2023)
$ giordani.2020434@studenti.uniroma1.it (E. Giordani); santilli@diag.uniroma1.it (S. Santilli);

iocchi@diag.uniroma1.it (L. Iocchi); patrizi@diag.uniroma1.it (F. Patrizi); zonfrilli.f@pg.com (F. Zonfrilli)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

www.aiplan4eu-project.eu
mailto:giordani.2020434@studenti.uniroma1.it
mailto:santilli@diag.uniroma1.it
mailto:iocchi@diag.uniroma1.it
mailto:patrizi@diag.uniroma1.it
mailto:zonfrilli.f@pg.com
https://creativecommons.org/licenses/by/4.0


(Universal Robot UR5e with Robotiq 2-Finger 85 adaptive gripper), a scale, a press for measuring

the strength, a device for measuring the tightness, some drawers containing the pouches (to

simplify the description here we assume only one drawer), and a bin to dispose of the tested

pouches. The arm interacts with the various devices and the queue of incoming pouches.

Our work aims at automatizing the testing procedure. We want to automatically generate a

plan that can be executed by all the involved devices (robotic arm, scale, press, etc.). Observe that

each device acts independently of each other and actions have a (non-negligible) duration. For

instance, moving a pouch from the drawer to the scale is not instantaneous and takes longer than

weighing the pouch. Thus, in addition to constructing a plan that allows for successfully testing

all the pouches, we desire the plan to be efficient, meaning that it can reduce the execution time

by executing actions in parallel.

The problem is thus a multi-agent planning problem with durative actions, with the optimiza-

tion goal of minimizing the total plan execution time. To the best of our knowledge, there is no

available tool that solves the problem directly in a multi-agent setting, thus some approach is

needed, which possibly takes advantage of existing technology. One of these consists in first

finding a linear plan by suitably encoding the multi-agent problem as a single-agent one (this is

possible as in our setting there are no privacy requirements) and then finding a possibly parallel

rearrangement of the obtained plan to minimize the total duration, taking into account the

capability of each device (which affects action parallelization) and the actions’ duration.

The idea of rearranging a plan to relax the causal relationships among actions and facilitate

parallelization has been deeply investigated in related literature, with notable examples includ-

ing [1] where the NoLimit approach is described, which generates a partial-order solution

from a total-order one, and [2], which introduces the notions of plan deordering and reordering,

provides algorithms for rearranging a linear plan, and analyzes the problem in depth from the

computational viewpoint. In the present setting, only the latter approach represents a viable

alternative, as [1] does not deal with action duration, which are instead used here.

While theoretically sound, the approach of [2] turns out not to be effective, as it assumes a

linear plan to be available. Yet, in the case at hand, the high number of pouches involved, close

to 500, makes it impossible to even obtain the initial solution to be subsequently de/re-ordered.

Not only. Even if the plan were available, computing the optimal parallel de/re-ordering of the

initial plan would be extremely time-consuming, indeed the decision version of the optimization

problem is NP-hard [2], thus making the approach not practical in our case.

In this work, we overcome the above problems by proposing a greedy sub-optimal approach

to construct a parallel plan for the P&G task, which, while sub-optimal, allows for successfully

producing a parallel plan for a number of pouches close to 500. The approach is based on the

assumption that a repetitive task must be executed on a set of similar objects (pouches); it works

by first constructing a set of parallel-plan templates for small batches of objects (as many as

possible in a reasonable time) and then arranging the so-obtained templates into a larger plan

that can process the entire set of objects. The reported experiments show that, besides being

actually able to construct the plan, our approach yields a significant saving in execution time.



2. Problem description and solution algorithm

We address the problem of generating a parallel robot plan to process a large number of objects

belonging to a (small) number of classes, while exhibiting an execution time as short as possible.

Objects belonging to a same class must undergo the same operational procedure. Ideally, we

would like to minimize (not just reduce) the execution time, yet the large number of objects

that have to be processed makes finding optimal solutions infeasible in practice.

Specifically, in the P&G use-case described earlier, there are hundreds of pouches of two or

three types that have to be manipulated by a robot arm, in order to perform several measure-

ments. Pouches of the same type have to be processed in the same way to complete a set of

measurements, which require interacting with specific instruments. During a measurement

operation, the robot can manipulate other pouches (e.g., put another pouch on another device).

The overall goal of the system is to minimize the plan execution time.

Addressing this problem requires facing the central issue of computing a plan, even non-

parallel, over a domain featuring hundreds of objects, which proved impractical even for less

than ten objects, due to the PSPACE-completeness of the problem, which essentially yields an

exponential solution time. To overcome this, we propose the following alternative approach.

Firstly, we define a set of batch planning problems, each modelling a prototypical task over

a batch, i.e., a suitably defined set containing only a small number of pouches (less than the

original problem) that have to undergo the same process. Then, we solve all the batch problems.

To this end, for each batch problem, we compute a linear plan and then, using the method

described in [3], make it parallel. We call the so-obtained plans batch parallel plans. Observe

that while we have used the (greedy and sub-optimal) approach of [3], any other method for

computing a parallel solution to the batch problems can be used (as long as practical), e.g., [2].

Finally, we generate the actual parallel plan by instantiating and suitably composing the batch

parallel plans into a larger parallel plan which fulfills the overall goal.

We stress that this solution does not guarantee optimality in terms of minimal execution

time, but allows for obtaining a suitable trade-off between planning and execution time. Indeed,

in the worst case, computing an optimal solution requires the planner to solve the problem on

all the 𝑛 objects, yielding an extremely large planning time (if solvable at all), while with our

approach the (exponential) planning time depends only on the batch size 𝑘, with 𝑘 << 𝑛, while

the generation of the actual parallel plan is linear in 𝑛, thus extremely faster than the general

case.

In the experiments reported below, we show examples of plan execution with a total number

of 𝑛 = 480 pouches, using a batch size 𝑘 = 4 to generate the batch parallel plans. That is,

the proposed method generates a final plan for 𝑛 = 480 objects, by solving several smaller

problems with 𝑘 = 4 prototypical objects.

Notice that with a batch size 𝑘 = 1, the proposed method amounts to solving one problem

for each (unique) object of every class and then replicating the plan for all the objects. Such a

setting, though, produces no parallel actions, as parallelization is possible only when several

objects can be processed at the same time. This is the baseline we used for our experiments.



Batch size 2 3 4
Avg. time saved 14m 38s 20m 21s 22m 55s

Avg. % time saved 4.32 % 5.86 % 6.70 %
Max time saved 43m 41s 1h 1m 56s 1h 11m 15s

Max % time saved 5.83 % 7.47 % 7.99 %

Table 1
Average and maximum reduction of execution time for different batch sizes.

3. Modelling and implementation

The problem is modelled using the Unified Planning (UP) framework (github.com/aiplan4eu/

unified-planning), a Python framework devised within the AIPlan4EU Project, aimed at making

the planning technology available and readily usable to the broad public. The specification of

predicates and actions have been tuned with a bottom-up approach in order to guarantee a

semantic alignment between symbols in the planning domain and the actual execution of the

actions in the real setting. The modelling of the problem as a planning domain enforced the

development of modular software components for the implementation of the basic actions.

The programming interface of the UP framework has been fundamental to properly integrate

AI planning engines and other components in the overall solution, thus bringing the required

modularity and flexibility that was a primary objective for the considered use-case.

As already mentioned, the main experimental objective has been to measure the improved

performance (in terms of minimizing the execution time) when using the proposed approach to

generate parallel plans for many objects, with respect to a sequential plan execution.

4. Results in the real setup

Results obtained in comparison of the different formalizations are summarised below. More

specifically, we measured the reduction of plan execution time when using the parallelized plan

with respect to the sequential one. We focused on the analysis of plan execution time, since

plan generation time is negligible with respect to plan execution.

Details of the experimental results conducted on the real setup (real robot operations) are

shown in Table 1, considering different batch sizes. The Table shows significant performance

improvements increasing with the batch size. The percentage improvements correspond to an

actual production improvement for the P&G use-case. For example, a typical daily operation to

process 480 pouches enables a performance gain of 1h 11m (i.e., 16h 15m using a parallel plan

vs. 17h 26m using a sequential plan).

As shown in Figure 1, the plan size (i.e., number of total actions executed by the robot)

increases linearly with the number of pouches, reaching a size of over 5,000 actions to process

480 pouches. Plan execution and the difference between parallel and sequential execution also

increases lineraly with the number of pouches.

github.com/aiplan4eu/unified-planning
github.com/aiplan4eu/unified-planning


Figure 1: Execution time and plan size increase over the number of pouches.

5. Discussion and lessons learned

The developed solution satisfies all the requirements of the use-case and has great potential to

actually increase the overall productivity of the system, in particular a more efficient use of the

robotic platform. The use of the UP framework was fundamental to obtain this result, since no

single planning engine would have been sufficient to solve the problem. In fact, the solution

effectively integrates several UP components: Oneshot planners, compilers, and sequential

simulators.

Lessons learned include an approach to apply AI planning techniques to industrial scenarios

in which an operational solution is already existing, but it is not flexible and easily extensible.

For example, it cannot be easily adapted to new situations or to achieve new goals. In this

context, we applied a methodology based on modularizing the existing solution and building

(through an iterative process) an AI planning domain to describe the modules (in terms of

actions) and their properties (as predicates and fluents). Such a planning domain can then be

used to solve different problems varying initial states and goals, thus overcoming the difficulties

arising from a non-flexible and non-modular solution. Modularity is a fundamental prerequisite

to apply AI planning technology and, in turn, applying AI planning forces the development of

modular domain-specific components.

Acknowledgments

The work of Fabio Patrizi was partially supported by projects EU ICT-49 2021 AIPlan4EU (No.

101016442), ERC Advanced Grant WhiteMech (No. 834228), and PNRR MUR PE0000013-FAIR.

The work of Luca Iocchi was partially supported by projects EU ICT-49 2021 AIPlan4EU (No.

101016442) and the PNRR MUR PE0000013-FAIR. The work of Sofia Santilli was partially

supported by projects EU ICT-49 2021 AIPlan4EU (No. 101016442) and the Sapienza Project

MARLeN.

We thank Andrea Micheli and Erez Karpas for their useful comments about nonlinear plans

and plan re/de-ordering.



References

[1] M. M. Veloso, M. A. Pérez, J. G. Carbonell, Nonlinear planning with parallel resource

allocation, in: Proceedings of the DARPA Workshop on Innovative Approaches to Planning,

Scheduling, and Control, Morgan Kaufmann, San Diego, CA, 1990, pp. 207–212.

[2] C. Bäckström, Computational aspects of reordering plans, J. Artif. Intell. Res. 9 (1998)

99–137. URL: https://doi.org/10.1613/jair.477. doi:10.1613/jair.477.

[3] S. Santilli, A. Trapasso, L. Iocchi, F. Patrizi, A novel algorithm for parallelizing actions of a

sequential plan, in: Proc. of PlanRob Workshop (ICAPS), 2023.

https://doi.org/10.1613/jair.477
http://dx.doi.org/10.1613/jair.477

	1 Introduction
	2 Problem description and solution algorithm
	3 Modelling and implementation
	4 Results in the real setup
	5 Discussion and lessons learned

