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Abstract
Motion planning in dynamic environments is a challenging robotic task, requiring collision avoidance
and real-time computation. State-of-the-art online methods as Velocity Obstacles (VO) guarantee safe
local planning, while global planning methods based on reinforcement learning or graph discretization
are either computationally inefficient or not provably collision-safe. In this paper, we combine Monte
Carlo Tree Search (MCTS) with VO to prune unsafe actions (i.e., colliding velocities). In this way, we can
plan with very few MCTS simulations even in very large action spaces (60 actions), achieving higher
cumulative reward and lower computational time per step than pure MCTS with many simulations.
Moreover, our methodology guarantees collision avoidance thanks to action pruning with VO, while
pure MCTS does not. Results in this paper pave the way towards deployment of MCTS planning on real
robots and multi-agent decentralized motion planning.
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1. Introduction

Motion planning is a wide research area in robotics, especially mobile robotics. Autonomous
navigation in dynamic, possibly uncertain, environments is a non-trivial task, which requires
the computation of a safe trajectory towards a predefined goal, while avoiding obstacles and
preserving computational efficiency for fast reaction to changes in the environment [1]. State-
of-the-art approaches can be mainly categorized into reactive, look-ahead and learning-based
planners. Reactive planners include the Velocity Obstacle (VO) paradigm [2, 3] and artificial
potential fields [4, 5]. They compute the motion command at run time, evaluating the current
configuration of the environment, e.g., obstacles, hence guaranteeing good performance even
in dynamic scenarios. However, they present several limitations, e.g., they may get stuck in
local minima in narrow or cluttered maps. On the contrary, look-ahead planners compute
trajectories over a finite time horizon, hence evaluating a larger part of the environmental map
and achieving higher convergence to the goal, even in complex maps. Exploring actions over a
horizon, they can often generate optimal plans, according to user-defined criteria. State-of-the-
art examples include graph-based planners as rapidly-exploring random trees [6] and Model
Predictive Control (MPC) [7]. However, graph-based planners are typically computationally
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Figure 1: On the left, a sketch of the VO paradigm with one static obstacle. 𝑣𝑝𝑟𝑒𝑓 ∈ 𝐶𝐶𝑖, thus a new
velocity 𝑣 ∈ V𝑐 must be selected. On the right, the map of the environment used in this work, the agent
has to move from the start point (blue cross) to the goal point (red cross), avoiding static obstacles (black
circles).

inefficient in dynamic scenarios where replanning is needed. Moreover, MPC performs explicit
optimization of a cost function, thus requiring an analytical definition which is not always
easily available in complex scenarios [8]. Recently, learning-based planners adopting neural
networks and reinforcement learning have been proposed [9], which are excellent solutions for
optimal trajectory planning and are robust to uncertainty in the scenario. However, they require
intense training resources (both data and time) and do not guarantee generalization to unseen
scenarios. Finally, most optimal planners perform cost minimization, hence not guaranteeing
safe navigation [10].

In this paper, we approximate the navigation problem as a Markov Decision Process (MDP),
and solve it with Monte Carlo Tree Search (MCTS), an online optimal look-ahead planner
which performs online simulations to compute the best trajectory. However, MCTS requires
task-specific heuristics for computational efficiency [11, 12, 13, 14] and typically does not scale
to large action spaces. We then combine it with the VO paradigm for collision avoidance. In
particular, we guarantee safe (i.e., obstacle-free) trajectory generation by pruning colliding actions
(i.e., velocities) in Monte Carlo tree and in the rollout phase. In this way, we are able to improve
the performance of pure MCTS even with very few simulations, maintaining a large action
space (60 actions) which allows a finer approximation of the environment. This is a preliminary
but fundamental step towards deployment of Monte Carlo planning to real robots.

2. Background

We now introduce the fundamentals of the VO paradigm and Monte Carlo planning for MDPs,
which are the base of the methodology described in this paper.



2.1. Velocity Obstacles (VO)

Consider a robot 𝑅which must reach a target 𝐺 in an environment with 𝑁 obstacles (an example
with one obstacle is shown in Figure 1a). For simplicity, we assume that the robot and the
obstacles are spherical, with radii 𝑟𝑅 and 𝑟𝑖, 𝑖 = 1, … , 𝑁. At a given time step 𝑡, the robot is at
(vector) location 𝑝𝑅, while the obstacles have positions 𝑝𝑖 and velocity (vector) 𝑣𝑖. Given the set
V of admissible velocities for robot 𝑅, this would move with velocity 𝑣𝑝𝑟𝑒𝑓 ∈ V towards the goal,
but this may cause collisions with obstacles. The VO paradigm is then used to compute the set
of collision-free velocities V𝑐 ⊆ V . Specifically, for each 𝑖-th obstacle, we define a collision cone
𝐶𝐶𝑖 as:

𝐶𝐶𝑖 = { 𝑣 ∈ V | ∃𝑡 > 𝑡 s.t. 𝑝𝑅(𝑡) + (𝑣 − 𝑣𝑖)(𝑡 − 𝑡) ∩ B(𝑝𝑖, 𝑟𝑅 + 𝑟𝑖) ≠ ∅} (1)

where B(𝑝𝑖, 𝑟𝑅+𝑟𝑖) is the ball centered at 𝑝𝑖 with radius 𝑟𝑅+𝑟𝑖. We then define V𝑐 = V ⧵⋃𝑁
𝑖=1 𝐶𝐶𝑖,

namely, the union of cones for every obstacle.

2.2. Markov Decision Processes

A Markov Decision Process (MDP) [15, 16] is a tuple 𝑀 = ⟨𝑆, 𝐴, 𝑇 , 𝑅, 𝛾 ⟩, where 𝑆 is a finite set
of states (e.g., robot and obstacle positions in the VO setting), 𝐴 is a finite set of actions - we
represent each action with its index, i.e., 𝐴 = {1, … , |𝐴|} (e.g., linear velocity and movement
direction in the VO setting), 𝑇 ∶ 𝑆 ×𝐴 → P(𝑆) is a stochastic or deterministic transition function
(e.g., the deterministic dynamics of the robot in the VO setting), where P(𝐸) denotes the space
of probability distributions over the finite set 𝐸, therefore 𝑇 (𝑠, 𝑎, 𝑠′) indicates the probability of
reaching the state 𝑠′ ∈ 𝑆 after executing 𝑎 ∈ 𝐴 in 𝑠 ∈ 𝑆, 𝑅 ∶ 𝑆 × 𝐴 → [−𝑅𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥] is a bounded
stochastic reward function (e.g., a function that rewards the robot if it gets close to or reaches
the goal avoiding the obstacles, in the VO setting), and 𝛾 ∈ [0, 1) is a discount factor. The set
of stochastic policies for 𝑀 is Π = {𝜋 ∶ 𝑆 → P(𝐴)}. In the VO setting used in this paper a
policy is a function that suggests the linear velocity and direction of the movement given the
current position of the robot and the obstacles. Given an MDP𝑀 and a policy 𝜋 we can compute
state values 𝑉 𝜋

𝑀(𝑠), 𝑠 ∈ 𝑆, namely, the expected value acquired by 𝜋 from 𝑠; and action values
𝑄𝑀(𝑠, 𝑎), 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, namely, the expected value acquired by 𝜋 when action 𝑎 is performed
from state 𝑠. To evaluate the performance of a policy 𝜋 in an MDP 𝑀, i.e., 𝜌(𝜋,𝑀), we compute
its expected return (i.e., its value) in the initial state 𝑠0, namely, 𝜌(𝜋,𝑀) = 𝑉 𝜋

𝑀(𝑠0). The goal of
MDP solvers [17, 18] is to compute optimal policies, namely, policies having maximal values
(i.e., expected return) in all their states.

2.3. Monte Carlo Tree Search

MCTS [19, 20] is an online solver, namely, it computes the optimal policy only for the current
state of the agent. This feature of MCTS allows it to scale to large state spaces, which are typical
of real-world domains. Given the current state of the agent, MCTS first generates a Monte
Carlo tree rooted in the state to estimate in a sample-efficient way the Q-values (i.e., action
values) for that state. Then, it uses these estimates to select the best action. A certain number
𝑚 ∈ N of simulations is performed using, at each step, Upper Confidence Bound applied to Trees
[21, 22] (inside the tree) or a rollout policy (from a leaf to the end of the simulation) to select the



action, and the transition model (or an equivalent simulator) to perform the step from one state
to the next. Simulations allow to update two node statistics, namely, the average discounted
return 𝑄(𝑠, 𝑎) obtained selecting action 𝑎, and the number of times 𝑁(𝑠, 𝑎) action 𝑎 was selected
from node (state) 𝑠. UCT extends UCB1 [21] to sequential decisions and allows to balance
exploration and exploitation in the simulation steps performed inside the tree, and to find the
optimal action as 𝑚 tends to infinity. Given the average return ̄𝑋𝑎,𝑇𝑎(𝑡) of each action 𝑎 ∈ 𝐴 of a
node, where 𝑇𝑎(𝑡) is the number of times action 𝑎 has been selected up to simulation 𝑡 from that
node, UCT selects the action with the best upper confidence bound. In other words, the index

of the action selected at the 𝑡-th visit of a node is 𝐼𝑡 = argmax𝑎∈1,…,|𝐴| ̄𝑋𝑎,𝑇𝑎(𝑡) + 2𝐶𝑝√
ln(𝑡−1)
𝑇𝑎(𝑡−1)

,

with appropriate constant 𝐶𝑝 > 0. When all 𝑚 simulations are performed, the action 𝑎 with
maximum average return ̄𝑋𝑎,𝑇𝑎(𝑡) (i.e., Q-value) in the root is executed in the real environment.

3. Methodology

We define the motion planning problem with 𝑁 obstacles as a MDP with 𝑆 = {⟨𝑝𝑅, 𝑣𝑅, 𝑝𝑖 ∀𝑖 =
1, … , 𝑁 ⟩} and 𝐴 = V . Notice that the state space is continuous because the robot can reach all
possible positions in the environment. For simplicity, we assume static obstacles (𝑣𝑖 = 0) in
this paper. The main idea of the proposed methodology is to introduce the VO constraint in
the simulation process performed by MCTS to estimate action values. This can improve the
efficiency of the simulation process, allowing only exploration of V𝑐 ⊆ V .

In order to solve the MDP problem with MCTS, we first discretize the continuous action space
𝑉. Specifically, we express each 𝑣 ∈ V as a tuple 𝑣 = ⟨𝑣 , 𝛼⟩, where 𝑣 is the module of the velocity
and 𝛼 is the heading angle in radians. We assume that the physical constraints of the robot impose
a minimum and maximum velocity module, respectively 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, and a maximum angular
velocity 𝜔𝑚𝑎𝑥. Thus, at each time step 𝑡𝑠, where the robot has heading angle 𝛼0, the discrete
action space can be expressed as 𝐴 = {⟨𝑣 , 𝛼⟩ | 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥, 𝛼0 − 𝜔𝑚𝑎𝑥𝑡𝑠 ≤ 𝛼 ≤ 𝛼0 + 𝜔𝑚𝑎𝑥𝑡𝑠}.
We then obtain the action space for MCTS by discretizing 𝑣 and 𝛼 and considering all possible
combinations of them. We also force actions in the form ⟨0, 𝛼⟩, in order to allow the robot to
only rotate without moving.
We introduce VO in two phases of MCTS, namely, in the steps performed inside the Monte

Carlo tree (where UCT is used to select the action) and in the steps performed outside the
Monte Carlo tree (where the rollout policy is used to select the action). The first phase concerns
simulation steps taken near the robot’s current position, while the second phase concerns
simulation steps performed also far from the robot’s current position. In this way, not only
we guarantee reactive collision avoidance within few steps of execution, but we also exploit
VO when planning on a longer time horizon, improving the quality and safety of the overall
trajectory to the goal. We build collision cones as in Eq. (1), but considering only collisions
happening within 𝑡𝑠 [23]. For computational simplicity, we consider the worst-case scenario
where the module of the robot’s velocity is 𝑣𝑚𝑎𝑥. We can then prune away all discrete angles in
the action space which would lead to a collision with any obstacle, reducing the action space
considered at each simulation step. If no angle is safe, we compute the cone for 𝑣𝑚𝑖𝑛. Since
actions with null velocity are forced in 𝐴, at least one action will always be feasible.
As a rollout policy we use an heuristic to encourage the robot to move in the direction of



(a) (b)

Figure 2: On the left, mean and standard deviation of the discounted return for different number of
simulations. On the right, mean and standard deviation of the computational time required by MCTS
to compute an action for the next step.

the goal. Specifically, if the direction between the robot and the goal corresponds to angle 𝛼𝐺,
we sample safe angles within V𝑐 with uniform distribution in [𝛼𝐺 − 1, 𝛼𝐺 + 1]. Since the robot
may be stuck in maps with large obstacles on the way to the goal, we implement an 𝜖-greedy
algorithm, selecting a random angle in V𝑐 with probability 𝜖 ∈ [0, 1], and following the heuristic
with probability 1 − 𝜖.

4. Results

Experimental setting. We test our planner in the map shown in Figure 1b. Our goal is to eval-
uate the advantage of introducing VO-constraints in MCTS. Videos with 2 and 4 moving agents
(from which we can draw similar conclusions) are available at http://tinyurl.com/airo23bonanni

Algorithms evaluated. We compare the performance of standard MCTS (VANILLA) with
that of MCTS with VO constraints. In particular, we make an ablation study of our method-
ology, considering MCTS with VO only in UCT (VO_TREE), MCTS with VO only in rollout
(VO_ROLLOUT) and MCTS with VO both in UCT and rollout (VO2). We evaluate each algorithm
with a number of simulations ranging in [10, 1000] to understand if VO-constraints improve
simulation efficiency and, consequently, allow to reduce the number of simulations and the
related simulation time. To account for the stochasticity of MCTS, we run 10 tests for each
configuration.
Results and discussion. In Fig. 2a, we show the return achieved by the 4 algorithms

considered in the analysis. The use of VO in rollout significantly improves the performance on
average, in fact VO2 (orange line) and VO_rollout (green line) achieve similar results and both
outperform MCTS (blue line) and MCTS_VO_TREE (red line). Also the standard deviation is
lower, thus the behavior is more stable. Importantly, with less than 200 simulations there is a
significant drop in the performance of MCTS and MCTS_VO_TREE, while with MCTS_VO2 and
MCTS_VO_ROLLOUT the return remains high even with only 10 simulations. In Fig. 2b, we
show the computational time per step required each algorithm. Computing collision cones in the
rollout significantly increases the required time but the effect of this constraint on performance
is also very strong, namely, VO2 and VO_ROLLOUT with only 10 simulations reach the same
performance of VANILLA with 200 simulations. In this way, the time per step required by MCTS

http://tinyurl.com/airo23bonanni


with VO in the rollout is lower than that of VANILLA with equal performance (VO2 takes ≈ 0.1 s
and has an average return of -30, while VANILLA requires ≈ 0.8 s and has an average return of
-43). Moreover, we remark that VO2 guarantees safe collision avoidance, since VO prunes away
unsafe actions, while such guarantee does not come with MCTS.

5. Conclusion

We presented a method for safe motion planning in dynamic environments, based on MCTS
and the VO paradigm. MCTS computes a global trajectory towards the goal, limiting the risk of
getting stuck in local minima with purely reactive planning algorithms. VO prunes colliding
actions, guaranteeing safe obstacle avoidance, differently from common approaches based
on reward shaping, and scaling to large action spaces (60 actions). Preliminary results in a
simulated environment with static obstacles show that VO allows to significantly improve the
performance of MCTS given the same time budget, or, equivalently, it allows to reach similar
performance of standard MCTS with much less simulations (and related time per step). Our
ablation study evidences the key role of VO in the rollout phase of MCTS. The very low number
of required simulations allows to mitigate the complexity of computing collision cones at run
time, achieving an average time per step of 0.1 s vs. 0.8 s required by pure MCTS. In the future,
we will assess the performance of our algorithm in multi-agent settings with moving obstacles
and more complex maps. Moreover, we plan to implement it on a real robot, further improving
the computational time per step using C instead of Python.
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