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Abstract  
Effectiveness of adaptive extragradient algorithms for network economics problems is 

demonstrated with the modified model of blood supply chain network. Informational system 

for comparing behavior of algorithms for solving variational inequalities is described. 

Described algorithms include adaptive modifications of extrapolation from the past, forward-

backward-forward and Tseng method. The blood supply chain model is a prominent example 

of more general perishable products delivery chain optimization problem. The provided 

software system enables users to edit model parameters, visualize networks, and solve path-

based cost minimization problems using a selected subset of these algorithms. 
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1. Introduction 

Variational inequality (VI) is a powerful approach to modelling diverse set of problems, including, 

but not limited to, optimization and equilibrium problems [1-4]. Between other applications, last years 

they show promising results in some machine learning areas – especially for GANs and other 
adversarial techniques [5,6]. And, finally, a family of network economics problems could be naturally 

formulated as a VI. Such formulation was obtained for different kind of network economics problems 

in the series of papers by Anna Nagurney [7,8]. 
Problem of special interest is modelling a delivery chain of perishable products [9], where it’s 

unfeasible to store the product for a long time, and, as a result, product surplus in a demand point incurs 

serious discard charges. Moreover, every step of operation and transport of such kind of a product 
usually leads to some loss, also with corresponding discard charges. The similar model arises if we 

consider blood delivery supply chain, organized as sequential interaction of blood collection, processing 

and consuming facilities – from collection points to hospitals. Modelling of this problem for the 

structure of American Red Cross (ARC) was investigated in [10], with proposal of the VI formulation. 
Another VI model is used as part of blood supply chain optimization as bi-objective model in [11]. 

Intensive development of numerical algorithms for solving VI started from extragradient algorithm 

[12] and alternative algorithm [13] (now widely known as “extrapolation from the past”, or EFP, in 
machine learning area). As operator calculation and projection to feasible set can be really 

computationally expensive operations for medium to large sized problems, efforts have been made to 

build algorithms that require minimum necessary amount of such operations. 

Also, VI solving algorithms often require a priory knowledge of the Lipschitz constant for the 
operator to determine algorithm step size – and that becomes a serious problem for applying them to 

real world problems, as calculating it could be complicated or almost impossible. To tackle this 

difficulty, adaptive versions of VI algorithms were proposed, that allow to modify step size dynamically 
during algorithm execution while preserving theoretical guarantee of the convergency. 
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2.  Mathematical model for optimization of blood supply chain 

Let’s us formulate the mathematical model of blood supply chain optimization, following [10].  

2.1. Blood supply process and facilities 

Structure of the facilities and corresponding logistic can be schematically represented as the 

following graph: 

 
Figure 1: Blood supply network – testing, processing and storage layers merged 

 

In the graph above, edges represent different operations in the blood supply process – and 

corresponding model parameters, such as collection risks or operational and waste discard costs, are 

bound to the edges. Nodes represent facilities taking part in the supply chain. The first node is added 
for the model to be concise, and has no specific meaning – but can be considered as a top-level 

organization structure unit, e.g., Red Cross regional division, as in [10]. 

The process starts with blood collection. Specifics of the collection layer is that edges have risk 
parameter and corresponding costs associated with it, as the process itself is risky – donors can miss 

appointments because of many reasons – for example, heavy rain greatly decreases visits number. The 

next stages are testing for infection and contamination, separation of components (plasma and red cells), 
and storing components in special facilities. In the graph above, blood centers, component labs, and 

storage facilities are shown as a single layer to make drawing and model description clearer. Actually, 

it’s often the real case – and even if they are really separated, it does not incur significant model changes, 

as all edges have the same type of associated parameters. 
Mathematical properties of the shipment stage edges also coincide with parameters from the testing, 

processing, and storage stage – but physical facilities are different, so we put them in a separate layer 

in the graph.  
And the last, distribution, layer, corresponds to the last-mile delivery of the blood to demand points, 

which usually are hospitals. These nodes have a specific role in the model – a stochastic demand and 

corresponding surplus and shortage penalties are associated with them. 
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2.2. Mathematical model notation 

Let’s denote 𝑛c, 𝑛𝑝, 𝑛𝑠, 𝑛ℎ  – number of each type of nodes: collection, testing/processing/storage, 

shipment and demand (hospitals). And let’s denote set of all edges as {𝑒𝑗}, 𝑗 = 1. . 𝑛𝑒, where 𝑛𝑒 is the 

total number of edges (links) in our supply chain network. And let’s denote in-flow on the edge 𝑒𝑗 as 

𝑦𝑗 (we will describe loss and out-flow later). Edge flows together form a vector 𝑦 = (𝑦1, … , 𝑦𝑛𝑒). 

The operations with the blood itself have costs, which also can be associated with the edges. Let’s 

denote 𝑐𝑗(𝑦𝑗) – unit operational cost on edge 𝑒𝑗 (it’s dependent on the flow). Then the total operational 

cost on the edge is 𝑦𝑗 ⋅ 𝑐𝑗(𝑦𝑗). 

Let’s denote 𝑃 = {𝑝𝑖}, 𝑖 = 1. .𝑚 – set of all simple paths from dummy source node to every demand 

point, where 𝑚 is a total number of such paths. Initial flow on path 𝑝𝑖 = {𝑒𝑖1, 𝑒𝑖2,… , 𝑒𝑖𝑘𝑖
} is denoted 

as 𝑥𝑖 ≥ 0, and it is the initial flow of the first edge of the path, which is always edge between the source 

node and a blood collection node. Our goal is to find optimal path flows vector 𝑥 = (𝑥1, … , 𝑥𝑚). The 

first obvious property of the feasible set 𝐶 is 

xi ≥ 0, 𝑖 = 1. .𝑚 (1) 

Each stage of blood processing could incur some losses – for example, small part of blood is taken 

to test facility and discarded afterward. Let’s associate loss multiplier 𝛼𝑗 ∈ (0,1] with every edge 𝑒𝑗, 𝑗 =

1. . 𝑛𝑒 . We interpret it the next way: if an edge incoming flow (in-flow) is 𝑦𝑗, then it’s outcome (out-

flow) is 𝛼𝑗𝑦𝑗. In this paper we assume, that multipliers are independent of link flow (thou it will be 

interesting to consider depending case in the future).  

Losses during blood processing incur waste disposal cost. It can be significant for such kind 

products, as blood – so it needs to be included into the model. Waste amount for the edge 𝑒𝑗 depends 

only on the edge flow and is equal to (1 − 𝛼𝑗)𝑦𝑗 , so waste discard function is also flow dependent – 

let’s denote unit discard cost as 𝑤𝑗(𝑦𝑗), and the total one will be 𝑦𝑗 ⋅ 𝑤𝑗(𝑦𝑗). 

In terms of path flows, total loss on the path 𝑝𝑖 can be calculated as 𝛽𝑖 = ∏ 𝛼𝑗𝑗:𝑒𝑗∈𝑝𝑖 , 𝑖 = 1. .𝑚. As 

a result, if initial flow on the path 𝑝𝑖 is 𝑥𝑖, corresponding final path flow is 𝛽𝑖𝑥𝑖, ∀ 𝑖 = 1. .𝑚. And for 

each destination node 𝐻𝑘 , 𝑘 = 1. . 𝑛ℎ , let’s denote the supply amount as 𝑠𝑘. Obviously, we have  

 𝑠𝑘 = ∑ 𝛽
𝑖
𝑥𝑖

 
𝑝𝑖∈𝑃𝑘

, (2) 

where 𝑃𝑘 is a set of all paths from source node to demand node 𝐻𝑘 . At the same time, real demand 𝑑𝑘 

is stochastic – we cannot know exact blood demand in a hospital for every moment in future. But we 

assume we know it’s probability density function 𝐹𝑘(𝑡) and probability distribution 

𝑃𝑘(𝑧) = 𝑝(𝑑𝑘 < 𝑧) = ∫ 𝐹𝑘(𝑡)𝑑𝑡
𝑧

0
. 

We are interested in minimizing expected difference between 𝑠𝑘 and 𝑑𝑘 – so, it’s tempting to use 

something like 𝐸(∑ (𝑠𝑘 − 𝑑𝑘)
2𝑛ℎ

𝑘=1 ) as the loss function. But consequences of blood shortage and 

surplus are essentially different, and it makes sense to consider them separately in the model. 

Let’s denote blood shortage (undersupply) at the demand node 𝐻𝑘  as 

 𝑈𝑘 = {
𝑑𝑘 − 𝑠𝑘, 𝑑𝑘 > 𝑠𝑘
0, 𝑑𝑘 ≤ 𝑠𝑘

= max{0, 𝑑𝑘 − 𝑠𝑘}, 
 

and blood surplus (oversupply) at the same node as 

𝑉𝑘 = {
𝑠𝑘 − 𝑑𝑘, 𝑑𝑘 < 𝑠𝑘
0,𝑑𝑘 ≥ 𝑠𝑘

= max{0, 𝑠𝑘 −𝑑𝑘}. 
 

Now corresponding part of the cost function for the model can be formulated the next way: 

 ∑ (𝛾𝑢𝑘𝐸(𝑈𝑘) + 𝛾𝑣𝑘𝐸
(𝑉𝑘))

𝑛ℎ
𝑘=1  

 

where 𝛾𝑢𝑘, 𝛾𝑣𝑘 are the penalties (costs), and 𝐸(𝑈𝑘), 𝐸(𝑉𝑘) – mathematical expectations of blood 

shortage and surplus correspondingly. 
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And, finally, it’s preferrable for the model to count for the blood collection risks. These risks are 
associated with the first layer edges only, and let’s assume they are also functions of the flow. Let’s 

denote risks as 𝑟𝑖(𝑦𝑖), 𝑖 = 1. . 𝑛𝑐. Risk minimization and cost minimization are different criteria, so in 

the cost function they can be weighted differently – let 𝜃 be the weight for risk part, and let cost part 

have weight of one. 
It is worth making remarks about edge indices. 

Remark 1: As the blood collection process has sequential stages, it’s always possible to enumerate 

edges in such a way, that any edge from a later stage has an index greater than the index of any other 
edge from an earlier stage. E.g., an index of a distribution edge is always greater than an index of a 

collection edge. We assume such kind of numeration in all following reasoning to simplify the model 

formulation. As a result, edge indices in any path 𝑝𝑖 ∈ 𝑃 make an increasing sequence. 

Taking into account the remark above, each edge flow can be calculated by path flows: 

 𝑦
𝑗
= ∑ 𝑥𝑖𝛼𝑖𝑗

 
𝑖:𝑒𝑗∈𝑝𝑖

, (3) 

where 𝛼𝑖𝑗 = ∏ 𝛼𝑘
 
𝑘:𝑒𝑘∈𝑝𝑖,𝑘<𝑗

 – product of all loss multipliers of edges, which are preceding edge 𝑒𝑗 

in the path 𝑝𝑖. 
Remark 2: We have exactly 𝑛𝑐 collection edges on the first layer, so all edges 𝑒𝑗, 𝑗 = 1. . 𝑛𝑐 are 

collection edges (it gives us a simple way to write risk component of the cost function below). 

2.3. Optimization problem and variational inequality 

Now we can formulate the supply chain network optimization problem as minimization of the 

combined cost function 

 Φ(𝑦̅) = ∑ (𝑦𝑗 (𝑐𝑗(𝑦𝑗) + 𝑤𝑗(𝑦𝑗))) +
𝑛𝑒
𝑗=1

∑ (𝛾𝑢𝑘𝐸(𝑈𝑘) + 𝛾𝑣𝑘𝐸(𝑉𝑘)) +
𝑛ℎ
𝑘=1

𝜃 ∑ 𝑟𝑗(𝑦𝑗)
𝑛𝑐
𝑗=1  

(4) 

with regards to (1) – (3). And using (3), we can reformulate (4) in terms of path flows: 

Φ(𝑥̅) =∑𝑥𝑖(𝐶𝑖(𝑥) +𝑊𝑖(𝑥) + 𝜃𝑅𝑖(𝑥))

𝑚

𝑖=1

+∑(𝛾𝑢𝑘𝐸(𝑈𝑘) + 𝛾𝑣𝑘𝐸(𝑉𝑘))

𝑛ℎ

𝑘=1

 (5) 

where 𝐶𝑖 and 𝑊𝑖 are unit operation and waste discard unit cost functions for path 𝑝𝑖, and 𝑅𝑖 is the risk 

cost function for the same path. These functions have the next form: 

𝐶𝑖(𝑥) = ∑ 𝑐𝑗(𝑦𝑗)
𝑗:𝑒𝑗∈𝑝𝑖

;  𝑊𝑖(𝑥) = ∑ 𝑤𝑗(𝑦𝑗)
𝑗:𝑒𝑗∈𝑝𝑖

; 𝑅𝑖(𝑥) = ∑ 𝑟𝑗 (𝑦𝑗)
𝑗:𝑒𝑗∈𝑝𝑖,𝑗=1..𝑛𝑐

  

where 𝑦𝑗 is expressed in terms of path flows with (3). Notation is a bit different from [10] to make 

algorithm implementation more straightforward, as a path edges sequence will be used in calculations. 

The problem can be formulated as a classic variational inequality. We need to find 𝑥∗ ∈ 𝐶 such, that 

(𝑥 − 𝑥∗,  
𝑑Φ

𝑑𝑥
(𝑥∗)) ≥ 0 ∀x ∈ 𝐶 (6) 

where 𝐶 = 𝑅+
𝑚 and 

𝑑Φ

𝑑𝑥𝑖
= ∑ 𝛼𝑖𝑗 [𝑐𝑗 (𝑦𝑗)+𝑤𝑗 (𝑦𝑗)+ 𝑦𝑗 (𝑐𝑗

′ (𝑦
𝑗
)+𝑤𝑗

′ (𝑦
𝑗
))]+

𝑗:𝑒𝑗∈𝑝𝑖

+𝛽
𝑖
(𝜆𝑢𝑡𝑖(𝑃𝑡𝑖(𝑣𝑡𝑖)−1)+ 𝜆𝑣𝑡𝑖 (𝑃𝑡𝑖(𝑣𝑡𝑖)))

+𝜃 (𝑟𝑠𝑖 (𝑦𝑠𝑖
)+ 𝑟𝑠𝑖

′ (𝑦
𝑠𝑖
) ⋅ 𝑦

𝑠𝑖
) 

 

where 𝑠𝑖 and 𝑡𝑖 are indices of the first and the last edge in the path 𝑝𝑖. Again, here 𝑦𝑗 is expressed in 

terms of path flows, using equality (3). 
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3. Extragradient algorithms for variational inequalities 

Variational inequality (6) is a good example of a real-world problem, where effectiveness of 

algorithms could be tested, and the behavior could be compared. Let as provide necessary information 

about the algorithms used for the numerical experiments. 

3.1. Preliminaries 

At first, we need to introduce some notation. Let 𝐻 be real Hilbert space with dot product ( , ) and 

induced norm || ⋅ ||, 𝐶 be a non-empty convex closed subset of 𝐻, and let’s 𝐴 ∶ 𝐻 → 𝐻 be a mapping. 

Definition 1: Mapping 𝐴 ∶ 𝐻 → 𝐻 is called monotone, if  

(𝐴𝑥− 𝐴𝑦,𝑥 − 𝑦) ≥ 0 ∀x, y ∈ H  

Definition 2: The following problem is called variational inequality (VI): 

find 𝑥 ∈ 𝐶 : (𝐴𝑥,𝑦 − 𝑥) ≥ 0 ∀y ∈ 𝐶 (7) 

Further algorithm formulations will be done for problem (7) with assumption that operator 𝐴 is 
monotone and uniformly continuous on any bounded set, and solutions set of the VI (7) is not empty. 

Actually, for finite-dimensional space 𝐻 it’s enough for operator to be monotone and continuous. Also, 

formulations will use projection mapping with the next notation: 

Definition 3: The mapping 𝑃𝐶:𝐻 → 𝐻 is called metric projection to closed convex subset 𝐶 ⊂ 𝐻, if 

∀𝑥 ∈ 𝐻 𝑃𝐶𝑥 is the only element of C, for which  

‖PCx − x‖ = min
z∈C

 ‖𝑧 − 𝑥‖.  

The main idea behind the big family of projection methods for solving (7) is the result, that 𝑥 ∈ 𝐻 

is the solution of (7) if and only if 𝑥 is a fixed point of 𝑃𝐶(𝐼 − 𝛾𝐴). So, gradient projection method with 

the next computational procedure could be used for solving a VI: 

𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛 − 𝛾𝐴𝑥𝑛), where step size 𝛾 > 0.  

But monotonicity of 𝐴 is not enough for the procedure above to converge to the solution of the VI. It 
needs strong monotonicity or inversely strong monotonicity (co-coercivity). So, more advanced 

algorithms were proposed, which do not require extra assumptions on 𝐴 – especially the extragradient 

kind of algorithms. 
Historically the first extragradient algorithm, proposed in [12], has the next computational 

procedure: 

{
𝑦
𝑛
= 𝑃𝐶(𝑥𝑛 − 𝛾𝐴𝑥𝑛)    

𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛− 𝛾𝐴𝑦𝑛)
 , 

(8) 

It was proved, that for monotone and continuous 𝐴 ∶ 𝑅𝑚 → 𝑅𝑚 the sequence {𝑥𝑛}, generated by 

procedure above, converges to the solution of (7), if step size 𝛾 ∈ (0,
1

𝐿
), where 𝐿 is a Lipschitz constant 

of the mapping 𝐴. This algorithm requires two mapping calculations and two metric projections on 

every step, and also initially convergence was proven only for finite dimensional Euclidean space – but 

it provides strong baseline to compare with. 
Later a lot of improvements and modifications were done by different authors – to avoid extra 

calculations, prove convergence under weaker assumptions, drop the requirement to know the Lipschitz 

constant in advance, or use Bregman divergence instead of Euclidean distance to speed up projection – 
see [14-20]. Part of such results were obtained by the research group from Taras Shevchenko National 

University of Kyiv, to which the current paper's authors belong. One more important direction is 

development of parallelized versions of VI algorithms, as in [21].  

3.2. Adaptive modification of extragradient algorithms 

Let us describe other selected algorithms, which are implemented as part of the system. 
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The first method was proposed in [13] in 1980, and gained popularity nowadays under the name 
extrapolation from the past. It has the next step calculation procedure: 

{
𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛 − 𝛾𝐴𝑦𝑛),    

𝑦
𝑛+1

= 𝑃𝐶(𝑥𝑛+1 − 𝛾𝐴𝑦𝑛),
 

(9) 

where convergence is proved with 𝛾 ∈ (0,
1

3𝐿
) for finite dimensional space. This procedure uses only 

one mapping calculation on the step, but with two projections. The weak convergence in infinite-

dimensional space was proved in [20], where also modification with single projection and auxiliary 

hyperplane projection was proposed. 
Another interesting method was proposed in [14] by P. Tseng in year 2000. The step formula has 

the next form: 

{
𝑦
𝑛
= 𝑃𝐶(𝑥𝑛 − 𝛾𝐴𝑥𝑛),            

𝑥𝑛+1 = 𝑦𝑛 − 𝛾(𝐴𝑦𝑛− 𝐴𝑥𝑛),
 (10) 

where weak convergency is proved for 𝛾 ∈ (0,
1

𝐿
). Here we have one projection and two mapping 

calculation on every step. 

And, finally, algorithm with an elegant computational procedure was proposed by Malitsky and Tam 

in [15]. The step calculation is: 

𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛 − 𝛾𝐴(2𝑥𝑛 − 𝑥𝑛−1 ))  

in case of linear mapping 𝐴, and 

𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛 − 𝛾𝐴𝑥𝑛 − 𝛾(𝐴𝑥𝑛 −𝐴𝑥𝑛−1 )) (11) 

in generic case. The algorithm converges with 𝛾 ∈ (0,
1

2𝐿
). Here we need only one mapping calculation 

and one projection on step. 

All methods above in their original form require knowledge of Lipschitz constant of the mapping 𝐴. 

Let’s describe the adaptive modifications, where step size 𝛾 will be modified during algorithm run to 

achieve convergency without using a priori known 𝐿, which can be hard to calculate. 
Here is the adaptive version of extrapolation from the past algorithm [17]. At first, we select  

𝑥0, 𝑦0 ∈ 𝐶, 𝜏 ∈ (0,
1

3
), 𝛾0 > 0. And starting from 𝑛 = 0 we use the next iteration procedure: 

{
  
 

  
 
𝑥𝑛+1 = 𝑃𝐶(𝑥𝑛− 𝛾𝑛𝐴𝑦𝑛),                                                         

𝑦
𝑛+1

= 𝑃𝐶(𝑥𝑛+1 − 𝛾𝑛𝐴𝑦𝑛),                                                      

𝛾𝑛+1 = {
𝑚𝑖𝑛 {𝛾𝑛, 𝜏

‖𝑦
𝑛+1

− 𝑦
𝑛
‖

‖𝐴𝑦
𝑛+1

− 𝐴𝑦
𝑛
‖
}

𝛾𝑛 ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

, 𝑖𝑓 𝐴𝑦
𝑛+1

≠ 𝐴𝑦
𝑛

 

 

with a stop condition 𝑥𝑛+1 = 𝑥𝑛 = 𝑦𝑛. 

Tseng algorithm can also be modified for adaptive step size calculation [18]. Let 𝑥1 ∈ 𝐶, 𝜏 ∈ (0,1),  
𝛾1 > 0. And starting from 𝑛 = 1 we have: 

{
  
 

  
 
𝑦
𝑛
= 𝑃𝐶(𝑥𝑛− 𝛾𝑛𝐴𝑥𝑛),                                                                  

𝑥𝑛+1 = 𝑦𝑛 − 𝛾𝑛(𝐴𝑦𝑛 −𝐴𝑥𝑛),                                                      

𝛾𝑛+1 = {
𝑚𝑖𝑛 {𝛾𝑛, 𝜏

‖𝑥𝑛 −𝑦𝑛‖

‖𝐴𝑥𝑛 −𝐴𝑦𝑛‖
}

𝛾𝑛 ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

, 𝑖𝑓 𝐴𝑥𝑛 ≠ 𝐴𝑦𝑛,        

 

 

with the stop condition 𝑥𝑛 = 𝑦𝑛. 

And here is an adaptive modification of Malitsky and Tam algorithm [17]. Let 𝑥0, 𝑥1 ∈ 𝐻, 𝛾0, 𝛾1 >

0, 𝜏 ∈ (0,
1

2
). Step is the next (again, starting from 𝑛 = 1): 
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{
 
 

 
 𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛− 𝛾𝑛𝐴𝑥𝑛 − 𝛾𝑛−1(𝐴𝑥𝑛 −𝐴𝑥𝑛−1)),                                                   

𝛾𝑛+1 = {
𝑚𝑖𝑛 {𝛾𝑛, 𝜏

‖𝑥𝑛+1 − 𝑥𝑛‖

‖𝐴𝑥𝑛+1 −𝐴𝑥𝑛‖
}

𝛾𝑛 ,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  
, 𝑖𝑓 𝐴𝑥𝑛+1 ≠ 𝐴𝑥𝑛,                                    

 

 

Remark 3: For all adaptive versions above, 𝛾 update procedure does not incur extra mapping 

calculation – all values will be cached and reused in algorithms implementation, so number of mapping 
calculations and projections is the same for both adaptive and stationary variants. 

4. Software for solving blood supply chain optimization problem 

To allow solving blood supply chain optimization problem (5), formulated as VI (6), it was added 

to our numerical experiments software suite for VI algorithms. The system allows to plug subset of 
implemented algorithms to solve one of implemented problems and analyze algorithms behavior. 

4.1. Brief software description 

Basically, all VI based problems have common parts, which are used by algorithms – and the same 

is true for extragradient algorithms family. A problem should have constraints with projecting 
operation, and provide the mapping calculation routine. On the other side, big part of an algorithms’ 

parameters is common for all algorithms – e.g., starting point or initial step size. And some parameters 

are more specific – like the second starting point or the adaptive step size calculation multiplier. That 
is reflected inside the system with two class hierarchies – for algorithms and problems correspondingly. 

The simplified schema is shown on the Figure 2. Test suite is responsible for running selected set of 

algorithms for the problem and saving run history (time and all problem and algorithm parameters on 
every iteration). It also interacts with graphing component (now shown on the figure), to draw 

convergency rate graphs according to different metrics. 

 

Figure 2: simplified class diagram 

The system2 contains Python 3 implementation of algorithms mentioned above, both adaptive and 

static modifications. Also, more than ten test problems implemented withing the architecture above, 
from simple test problems to more real problems, such as PageRank calculation or traffic network 

equilibrium search.  

The functionality can be used from code and a command line (selecting problem, algorithms set and 

run parameters), which is convenient enough for researchers with python programming skills. For blood 
supply chain problem, we added visual interface for problem editing, running the algorithms and 

obtaining the results. The problems selector and editor UI (Figure 3 below) is implemented as a web 

application using Plotly Dash framework [22]. 

                                                   
2 Source code repository: https://github.com/compmath-sdeni/vi-alg-suite  



8 

 

 

 
 

 

Figure 3: Screenshots of the problem editor and solver selection 

4.2. Numerical experiments 

Figure 4 shows, how calculation results are presented in web version of UI. For now, output includes 

convergence rate graph (iteration number vs. distance between approximate solutions) and textual 

information with final results, timing and run parameters. For problems with known solution graph can 
be switched to iteration vs. distance to real solution, and horizontal axis can be switched to calculation 

time instead of iteration number. Within textual information we also have specific characteristic of the 

problem, which are defined withing the problem class – for example, here we have supply amounts for 

each hospital. Under the hood, the system also saves detailed run history for every algorithm (in tabular 
format), so a researcher can monitor state and behavior on every iteration. 

It can be seen, that in terms of precision after 1000 iterations adaptive algorithm of Tseng slightly 

outperforms EFP and Malitsky-Tam (MT) on this test problem. At the same time, from numbers we 
see, that time for 1000 iterations of Tseng is two times bigger (0.64 sec. vs 0.32 sec.) compared to both 

EFP and MT – which is expected, as in this problem projection is very cheap (𝐶 = 𝑅+), but the mapping 

computation is very expensive (because of complicated derivative in (6)). Also, it worth noting, that 
despite much smaller distance between step iterations (0.001 for Tseng vs. 0.002 and 0.003 for MT and 

EFP), goal function value is not so different (80493 vs. 80499). 
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Figure 4: Screenshots of the solver results UI – graph and brief text data 

 
It should be noted, that timing from the single run is not a stable measure of performance – but 

similar relative timings were obtained when running many experiments repeatedly and averaging the 

results. Calculations were done on Ubuntu Linux machine with Intel Core i7-1065G7 1.3 – 3.9GHz and 
16GB RAM with python 3.10, numpy 1.24.3. 

5. Conclusion 

Considered adaptive versions of extragradient algorithms allow effectively solving blood supply 

chain optimization problem, without need of complicated handcrafting of step size and starting 
parameters. Implementation-friendly model formulation allows achieving reasonable performance and 

can be used for other problems of network economics family. And developed software system for 

applying VI algorithms to a different kind of problems considerably decreases time needed to both to 

get a solution for suitable problem and to conduct numerical experiments and compare behavior of 
algorithms from extragradient family. As further development directions, it is worth adding other types 

of algorithms, which are suitable for some subset of problems, and add a possibility for researchers to 

more easily plug in own algorithms and problems to the system. 
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