
11

Simulated Datasets Generator for Testing Data Analytics
Methods

Serhii Toliupa, Anna Pylypenko, Oleh Tymchuk and Oleksii Kohut

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St, Kyiv, 01601, Ukraine

Abstract
This article explores the role of benchmark datasets in testing data analysis tools. The use of

synthetic data generators is motivated by the need for scaling the size of training datasets,

filling data gaps, and safeguarding data confidentiality. Existing research in this field

emphasizes the importance of applications in various domains, such as fraud detection,

healthcare, and computer graphics. The efficacy of constructing Gaussian distributions using

the Box-Muller transform is investigated, while limitations in generating extreme values are

highlighted. The integration of specialized distributions is proposed to address this gap and

enhance dataset variability for improved performance in data analytics methods. The article

presents a synthetic data generator capable of producing datasets for effective evaluation of

machine learning methods. Practical tests demonstrate the software's effectiveness in creating

test datasets with controlled variations. Four different tests were conducted, each with three

different variants: 1) normal distribution parameters, namely standard deviation, 2) class

imbalance, 3) missing values, and 4) outliers. The generated datasets were used to conduct

controlled tests of logistic regression. Performance evaluation of the logistic regression model

employed metrics such as Precision, Accuracy, Type 1 Error, Type 2 Error, and F1-Score.

Keywords 1
Benchmark datasets creation, synthetic dataset generator, analysis methods, extreme values.

1. Introduction

The modern world generates an enormous volume of data every day, ranging from sensor data to

textual information. Data analytics tools require the availability of realistic and representative datasets

for testing that would reflect contemporary challenges in data processing. The relevance of this topic is

also driven by the development of artificial intelligence and machine learning: the high demand for the

development of machine learning and artificial intelligence algorithms necessitates data for training and

evaluating these algorithms. Creating realistic datasets becomes critically important for precise

assessment and comparison of various methods. The complexity of this problem is associated with its

interdisciplinary nature. Analytical tools and methods are used across various domains, including

medicine, finance, biology, ecology, and others. The creation of benchmark datasets can also contribute

to addressing ethical concerns related to data privacy and security by developing anonymized or

synthetic data. So, the creation of benchmark datasets for testing data analytics tools is essential for

advancing science and technology in this field and ensuring their practical utility across diverse

domains.

There are a lot of published research results that provides comprehensive insights into the process

of creating benchmark datasets and its significance. In [1], the authors introduce the concept of

benchmark metrics in machine learning for scientific purposes and review existing approaches. They

underscore that the selection of the most appropriate machine learning algorithm for scientific data

analysis remains a significant challenge due to the potential applicability of machine learning

frameworks and models, computer architectures. The results of the research by authors Krizhevsky,

Sutskever, and Hinton [2] were the first to demonstrate the profound influence of datasets on the

Dynamical System Modeling and Stability Investigation (DSMSI-2023), December 19-21, 2023, Kyiv, Ukraine

EMAIL: tolupa@i.ua (A. 1); anna.pylypenko@knu.ua (A. 2); oleh.tymchuk@knu.ua (A. 3); oleksii_kohut@knu.ua (A. 4)
ORCID: 0000-0002-1919-9174 (A. 1); 0000-0002-6343-4469 (A. 2); 0000-0002-9046-8015 (A. 3); 0009-0004-2203-3927 (A. 4)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:anna.pylypenko@knu.ua
mailto:oleh.tymchuk@knu.ua
mailto:oleksii_kohut@knu.ua

12

learning outcomes of deep neural networks. It can be instrumental in comprehending the significance

of benchmarking. The article [3] by M. Fernandez-Delgado, E. Cernadas, S. Barro and D. Amorim is a

significant contribution to the field of machine learning and data classification, providing practical

insights into the use of classifiers in real-world scenarios. The article explores various classification

algorithms and compares their performance across different benchmark datasets, which can serve as a

valuable resource for discussing the effectiveness of various analytical tools.

Each data generator program uses a unique approach to data creation. The article [5] presents a data

generator designed to fill in gaps that may exist in other programs. The developed system allows users

to customize and create known statistical distributions to achieve the desired outcome. Additionally, it

offers real-time data behavior visualization to analyze whether they possess the characteristics

necessary for effective testing. In the articles [6, 7], the authors provide an overview of the design and

architecture of the Information Discovery and Analysis Systems (IDAS) Data Set Generator (IDSG),

which enables a fast and comprehensive evaluation of IDAS. IDSG generates data using statistical

algorithms, rule-based algorithms, and semantic graphs that represent interdependencies between

attributes. To illustrate this approach, an application for credit card transactions is used. Sran Popić et

al. [8] provided a brief overview of various types of generators in terms of their architecture and

anticipated usage, as well as listed their advantages and disadvantages. They also presented a review of

the data generation algorithms used and best practices in various domains.

Researchers in this field has attempted to assess the utility of synthetic data generators using various

evaluation metrics. However, it has been found that these metrics lead to conflicting conclusions,

complicating the direct comparison of synthetic data generators. In their study, Fida Kamal Dankar and

colleagues [9, 10] identified four criteria for evaluating masked data by categorizing available utility

metrics into different categories based on the information they seek to preserve: attribute fidelity, two-

dimensional parameter fidelity, population fidelity, and application fidelity. In the article [11], the

authors have introduced several novel and efficient methods and multidimensional data structures that

can enhance the decision-making process in various domains. They have examined online range

aggregation, range selection, and weighted range median queries; for most of these, data structures and

techniques are presented that can provide answers in near-polynomial time.

In practice, obtaining real data can be challenging due to confidentiality issues. Additionally, real

data may not conform to specific characteristics required for evaluating new approaches under certain

conditions. Given these constraints, the use of synthetic data becomes a viable alternative to supplement

real data in various domains. For example, in the article [12], the authors described the process of

generating synthetic data using the publicly available tool Benerator to mimic the distribution of

aggregated statistical data obtained from the national population census. The generated datasets

successfully replicated microdata containing records with social, economic, and demographic

information. Forensics also requires testing digital information tools. Thomas Göbel et al. [13]

introduced the concept of a structure called hystck for creating synthetic datasets based on the ground

truth. This framework supports automated generation of synthetic network traffic and artifacts of

operating systems and software by simulating human-computer interactions. To preserve

confidentiality, banks are unwilling to share fraud statistics and datasets with the public. To overcome

these limitations, Ikram Ul Haq et al. [14] introduced an innovative technique for generating uniformly

distributed synthetic data (HCRUD) based on highly correlated rules. This technique allows the

generation of synthetic datasets of any size, replicating the characteristics of restricted actual fraud data,

thus supporting further research in fraud detection. Access to medical datasets is also complicated due

to concerns about patient confidentiality. The development of synthetic datasets that are realistic enough

for testing digital applications is considered as a potential alternative that allows their deployment.

Theodoros Arvanitis et al. [15] have devised a method for generating synthetic data statistically

equivalent to real clinical datasets and have demonstrated that the approach based on Generative

Adversarial Networks aligns with this goal. Thus, the concept of creating realistic medical synthetic

datasets has been successfully validated. However, data quality issues exist both in real and synthetic

data, with the latter reflecting real-world problems and artifacts created by synthetic datasets. The

intellectual analysis of synthetic healthcare data represents a novel field with its unique challenges.

According to Alistair Bullward et al. [16], researchers should be aware of the risks associated with

extrapolating results from synthetic data studies to real-world scenarios and should evaluate outcomes

using analysts who can review the underlying data. Synthetic data is frequently utilized in computer

13

graphics, which is used for training computer vision models, as mentioned in [17, 18]. In many

industrial computer vision tasks, deep learning methods such as convolutional neural networks have

been successfully employed, as indicated by the works [19, 20]. In recent years, generative adversarial

networks (GANs) have been effectively utilized for generating new realistic images and manipulating

them, as noted in the research by I. H. Rather and S. Kumar [21].

Therefore, the increasing availability and utilization of data analytics tools make the standardization

of benchmark datasets an essential task for their further adoption across various fields. The challenge

of developing more objective metrics and methods for assessing the utility of synthetic data remains

unresolved. One of these problems is adequate tail-end modeling of probability density functions.

Extreme values can significantly impact risks and outcomes in several sectors such as finance,

insurance, climatology, engineering, among others. This article presents research in the field of creating

synthetic data that aligns with real-world requirements and enables their effective use for testing various

analytical tools. The primary focus is on comprehending and analyzing characteristics of this generator,

especially in the tail areas of the Gaussian probability density function.

2. Mathematical methods

The generation of Gaussian distributions is foundational in various scientific and computational

fields, playing a pivotal role in modeling natural phenomena and simulating random variables. To create

a Gaussian distribution, it is suggested to use the Box-Muller transform [22]. It produces a pair of

Gaussian random numbers using a pair of uniform numbers. The fundamental principle of the Box-

Muller algorithm lies in its ability to generate pairs of independent standard Gaussian random variables

from uniformly distributed random numbers. This method leverages the polar coordinate representation

in a two-dimensional space to transform pairs of independent uniformly distributed variables into sets

of normally distributed variables. By employing trigonometric functions and geometric interpretations,

this algorithm constructs Gaussian values by utilizing the magnitude and angle derived from uniformly

generated random variables. The algorithm to generate the Gaussian samples:

1. Generate sample using two distinct uniform random number generators, 𝑢₁ and 𝑢₂.
2. Apply the inverse cumulative distribution function (CDF) of the exponential distribution to 𝑢₁

(𝜆 = 1):

𝑟 = √−2𝑙𝑛(1 − 𝑢1) = √−2𝑙𝑛(𝑢1), (1)

where 𝑟 is the distance from origin for each sample.

For simplicity, 𝑢₁ is replaced by 1 − 𝑢₁ since they are both uniform samples on (0, 1).
3. Apply the inverse CDF of the uniform distribution on (0, 2𝜋) to 𝑢₂:

𝜃 = 2𝜋𝑢₂, (2)

where 𝜃 is the angle of the sample.

4. Finally, determine the x and y using basic trigonometric calculations:

𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 𝑦 = 𝑟 𝑠𝑖𝑛(𝜃). (3)
The Box-Muller algorithm generates two independent random numbers upon each execution. Each

pair of generated numbers represents two independent random variables following a standard normal

distribution. These variables possess a mean of 0 and a standard deviation of 1. The produced values

can be utilized as required for various statistical or computational purposes. For instance, both numbers

from each pair can be employed to generate pairs of normally distributed random variables.

Alternatively, a single number from each pair might suffice if the need is for a singular normally

distributed value. By combining both sets of generated values into a single dataset, a larger and

potentially more diverse sample can be constructed, enriching the dataset used for testing machine

learning models. This integration allows for a broader spectrum of data points, enhancing the robustness

of the evaluation process and potentially fortifying the model's generalization capabilities.

The Box-Muller algorithm, while efficient in generating core values from the standard normal

distribution, may necessitate additional methods to generate values from the tails of the distribution

[23]. Extreme or outlier values that reside in the tails of the distribution are often critical for assessing

rare events or evaluating the performance of algorithms. The generation of extreme values in random

numbers can be achieved using specialized distributions. Some distributions, such as the exponential,

14

Weibull, Fréchet extreme value distribution, among others, directly model extreme values. The

proposed algorithm incorporates the following steps to generate such values.

Continuation of the algorithm to generate the Gaussian samples:

5. Set the parameter 𝑐 represents the shape parameter governing the tail behavior. It determines

the shape and heaviness of the distribution's tails.

с > 0: indicates a distribution with bounded tails. It implies that the distribution's tails are bounded,

and the probability of encountering extreme values decreases more rapidly than in a normal distribution.

с = 0: corresponds to the exponential distribution, where the tails are light, and the probability of

extreme values decreases exponentially.

с < 0: indicates a distribution with heavier tails than the exponential distribution. This suggests

that the probability of encountering extreme values decreases slower than in an exponential distribution.

6. Establish the probability density function of the distribution is given by the formula:

𝑓(𝑡; 𝑐) = {
𝑒−[1+𝑐𝑡]−1/𝑐

⋅ (1 + 𝑐𝑡)−1/𝑐−1 for 𝑐 ≠ 0,

𝑒−𝑒−𝑡
⋅ 𝑒 −𝑡 for 𝑐 = 0,

 (4)

use the inverse transform method to generate extreme values:

𝑡 = {

1

𝑐
(−𝑙𝑛(1 − 𝑢)−𝑐 − 1) for 𝑐 ≠ 0,

−𝑙𝑛(−𝑙𝑛(1 − 𝑢) for 𝑐 = 0,
 (5)

where 𝑢 is a random variable from a uniform distribution on the interval (0, 1) and can be obtained

as a fraction of random variables generated in step 1. Validate the generated extreme values to ensure

they align with the expected tail behavior.

7. After obtaining the standard normal random variables and extreme values 𝑧 ∶=
𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥, 𝑦, 𝑡), can move on to a normally distributed value with mathematical expectation 𝜇

and standard deviation 𝜎:

𝜉 = 𝜇 + 𝜎𝑧. (6)

Depending on the practical task there might be a need to shift the distribution along the axis of values

or change its scale. In such cases, it would be advantageous to employ the Generalized Extreme Value

(GEV) distributions, which combine the Gumbel, Fréchet, and Weibull families, also known as type I,

II, and III extreme value distributions [24]. These distributions offer flexibility in adjusting the

positioning and scaling of the distribution to accommodate various scenarios and analyses.

3. Development of synthetic dataset generator

In the domain of data generation for machine learning research, a spectrum of tools and libraries,

including MOSTLY.AI (https://mostly.ai/), Mockaroo (https://www.mockaroo.com/), and Scikit-learn

(https://scikit-learn.org/stable/datasets/sample_generators.html), among others, is at researchers'

disposal. These tools furnish a fundamental framework for the generation of synthetic datasets, enabling

users to craft data with predetermined statistical distributions. Nevertheless, they exhibit inherent

limitations. For instance, scikit-learn is primarily constrained by its capacity to generate synthetic

datasets featuring a limited array of distributions and parameters, rendering it less suitable for the

creation of intricate or verisimilar data representations. These tools primarily target numerical data and

lack the specialized capabilities required for the synthesis of structured data types, such as textual

information, categorical attributes, or time series. In the subsequent sections of this article, the

utilization of synthetic data will be examined primarily in the context of testing machine learning

methods, considering the noted shortcomings of existing tools.

3.1. Data model

The specific capabilities of a synthetic data generator may vary from implementation. However,

such software should have the following main features:

 defining the name, description, and additional information associated with the model;

https://mostly.ai/
https://www.mockaroo.com/
https://scikit-learn.org/stable/datasets/sample_generators.html

15

 describing all dimensions of the model, including their data type, name, description, and most

importantly, the algorithm for generating the value;

 export synthetic data rows to a file or database based on the created model.

Each data model must have at least one dimension. Each dimension should be defined by the

following characteristics: dimension name; data type (integer or real number, category, string);

expression/formula that defines how the data will be filled in; additional options (presence of blank

values/outliers). Values in columns can be either independent expressions or calculated based on values

in other columns (while avoiding cyclic dependencies, where, for instance, expression A relies on the

value from column B, and expression B relies on the value from column A). The data model serves as

an abstraction of a dataset, comprising specifications that characterize the behavior of the data [5].

Figure 1 depicts an example of rudimentary data model illustrating the characterization of specific

individuals for the purpose of analyzing patient ages. There are three dimensions:

1) Name: an informative dimension, intended more for identifying the string than for analyzing

the data. Such strings are not useful in machine learning, but if it were real data, there would be a

privacy issue. Given that this string is generated in a random manner, there is no need for concern

regarding the utilization of personal data belonging to individuals. Since this dimension is defined

without modifiers, the data in this row will always be present.

2) Age: dimension determines the patient's age. Its expression defines a random value in a normal

distribution with a mean of 14.0 and a variance of 3.0. There are no blank fields.

3) IsAdult: dimension determines whether the patient is an adult. This is the only dimension that

uses another dimension in its calculations. If the patient is over 18, this field is set to 1, otherwise 0.

There are no blank fields.

Figure 1: Example of data model

3.2. Modelling of the generator

Editing a data model includes editing general information about the model, such as the name,

description, and availability to other users. Most importantly, in this mode, you can edit each dimension

separately, with a real-time check for the correctness of the entered data. Dimensions can be added or

deleted, but each model will always have at least 1 dimension with a line number. Each dimension must

be given a unique name that will not match other dimensions within the model. All dimensions must be

one of the defined data types (see Table1).

Table 1
Supported data types

Data type Description Examples

String A sequence of symbols with variable length "Oleksii", "Kohut", "test123"
Integer 𝑥 ∈ ℤ -2, -1, 0, 1, 2...
Real 𝑥 ∈ ℝ 0.5, 1.3e22, 3.14, -0.001
Category Custom data type, choose one item from given

list
(1, 2, 3),
("apple", "banana", "orange")

Boolean Logical data type (example usage of category
type)

(0, 1), ("true", "false")

16

The lists of operands and functions available for generation is described in Tables 2-4.

Table 2
The list of operand generators

Operand Description Usage example

+ Addition x + y
- Substraction x – y
* Multiplication x * y
/ Division x / y
^ Exponentiation x ^ y
? Conditional operator (a = 0) ? x : y

Table 3
The list of random generators

Distribution Arguments Usage example

Uniform 𝑎, 𝑏 ∈ ℝ Uniform (a, b)
Normal (Gaussian) 𝜇, 𝜎 ∈ ℝ Gauss (mu, sigma)
Cauchy 𝑥0, 𝛾 ∈ ℝ Cauchy (x0, gamma)
Poisson 𝜆 ∈ ℝ Poisson (lambda)
Bernoulli 𝑝 ∈ ℝ Bernoulli (p)
Categorical 𝑎0, 𝑎1 … 𝑎𝑧 ∈ 𝐶 Category ("a", "b", "c")

Weighted categorical
𝑎0, 𝑎1 … 𝑎𝑧 ∈ 𝐶,
𝑝0, 𝑝1 … 𝑝𝑧 ∈ ℝ

Weighted_category (("a", 1.0),
("b", 2.0), ("c", 3.0))

Table 4
The list of function generators

Function Arguments Usage example

Modulo x – value, 𝑥 ∈ ℝ abs(x); |x|
Sign x – value, 𝑥 ∈ ℝ sign(x)
Sine x – value, 𝑥 ∈ ℝ sin(x)
Cosine x – value, 𝑥 ∈ ℝ cos(x)
Tangent x – value, 𝑥 ∈ ℝ tan(x)
Exponent x – value, 𝑥 ∈ ℝ exp(x)
Logarithm x – value, p - base, 𝑥, 𝑝 ∈ ℝ log(x, p)
Natural logarithm x – value, 𝑥 ∈ ℝ ln(x)
Square root x – value, 𝑥 ∈ ℝ sqrt(x)
Cube root x – value, 𝑥 ∈ ℝ cbrt(x)
Root of arbitrary base x – value, p – base, 𝑥, 𝑝 ∈ ℝ nroot(x, p)

3.3. Usage scenarios: generating test datasets

To verify usefulness of such a software, practical tests were performed with the help of the program.

A data model was specified in the generator and multiple tweaks were applied to it. The data set was

created using the proposed algorithm to generate the Gaussian samples (1) – (6). The default model is

described as follows:

 two classes;

 two dimensions: one dimension for the class, another for the value;

 value is generated depending on class with the help of ternary operator and normal distribution;

 no outliers, no blank values.

17

The dataset was specified on the data model tab. For each test a CSV file with 1000 entries was

generated. Then, with the help of Python, graphs for this data were drawn. This provides a visual clue

about how the change affects the data. A total of four different tests were performed, each with three

different variations.

3.3.1. Changing parameters of normal distribution

In this test, the standard deviation of normal distribution for both classes were changed. The values

chosen are 5.0, 3.0, 1.0. The expected result of such change is that values would become less dispersed

across the axis. The result of the software for this case is presented in Figures 2-3.

Figure 2: Data model options with standard deviation changes

Figure 3: Resulting data graphs with standard deviation changes (original.csv, std3.csv, std1.csv)

For the current test, a swarm plot was used. The color represents the class of the item, and its position

on the Y axis represents the value. With each next plot the values are getting more packed around central

value, confirming that standard deviation is indeed changing.

3.3.2. Changing class distribution

Here, a weighted category was introduced in place of default category. For class 1, the probability

of appearance will decrease each time, and for class 2 it will increase. The rate of change is 10%. So,

the first distribution of classes will be 50-50%, then 40-60%, then 30-70% (Figures 4-5).

 As can be seen on the Figure 5, the amount of class2 entries in getting higher with each next picture,

confirming that this feature works.

18

Figure 4: Data model options with class distribution changes

Figure 5: Resulting data graphs with class distribution changes (original.csv, 40-60.csv, 30-70.csv)

3.3.3. Adding outliers

To use outliers, an additional dimension was added. A random value is calculated with the help of

uniform distribution, and if it’s less than certain threshold (which equals probability of such event), then

the value would be multiplied by 5 (Figures 6-7). Otherwise, the expected value will be placed.

Figure 6: Data model options with added outliers

It’s clear that with the increasing probability of outliers appearing, number of outliers will be bigger.

Also, it’s worth noting that class2 outliers reach higher values than class1 because of bigger base value.

This creates additional separation between class1 and class2 in the higher values.

19

Figure 7: Resulting data graphs with outliers (outliers5.csv, outliers10.csv, outliers20.csv)

3.3.4. Setting up missing values

It’s possible to make missing values in the dataset in a similar manner to outliers, with the help of

an additional dimension. The only change is that missing() function is used instead of multiplication

(Figures 8-9).

Figure 8: Data model options with blank values

For this test, an event plot was used instead of swarm plot. Colored lines represent objects generated

(from 1 to 1000) with corresponding class. Each black line represents a missing value.

3.4. Software description
3.4.1. Module description

Software implementation of this synthetic dataset generator (lexData) consists of the three main

parts: tokenizer, parser, and calculator. The input of this system is text expression describing formula

for the dimension value. Figure 10 depicts how the text input can be processed into result:

In this simple example, there are multiple steps. In the first step, the input string is parsed into

multiple tokens. A token is an atomic part of the mathematical formula. A single plus sign is a token,

but a whole number or variable name is also a token, since we can’t just divide the number into digits.

After that, the sequence of tokens is handled by the parser, which builds a complete function. After

passing concrete values for parameters (which may be other dimensions) specified in the function, the

final value can be calculated and returned as the result. However, there are many more details such as

verifying if referenced function exists or if there is no circular dependency. The output of calculation is

just a single number or category, depending on the expression specified.

20

Figure 9: Resulting data graphs with blank values (original.csv, blank10.csv, blank20.csv)

Figure 10: Module Interactions: Inputs and Output

3.4.2. Constraints and decisions

The .NET Framework and programming language C# were used by the designer of generator

software. The generator core is implemented on top of custom-created library for parsing and evaluating

math expressions, called lexCalculator. To integrate it with this software, it was modified to support

such functions:

 generating random distributions;

 string data types;

 logical expressions;

 complex data types and lists.

21

With the help of NUnit, a unit testing was performed on this software. Most of the possible test cases

were checked and tests provided more than 90% of code coverage.

The system was tested on the following system specifications:

 Windows 10 Pro;

 Intel(R) Core(TM) i5-8350U CPU;

 16GB RAM;

 NVMe SK hynix 256GB SSD.

With such specifications, it was found out how the generator performed on the different datasets.

The following table describes how many rows were generated per second on average for the specified

dataset. Each dimension is just a simple switch between classes with normal distribution calculation:

As can be seen in Table 5, the number of classes doesn’t affect performance of generation too much,

except for the parsing stage, where more classes mean there are more possibilities to handle. As for the

dimensions, these directly affect the performance, but that also depends on the expressions specified

for these dimensions.

Table 2
Performance testing of the software

Dataset description Rows/s

2 classes, 2 dimensions 16534 rows
2 classes, 4 dimensions 10233 rows
2 classes, 8 dimensions 7610 rows
3 classes, 2 dimensions 15669 rows

4. Discussion

Generators of synthetic datasets represent a potent tool for conducting controlled experiments and

investigating the performance of machine learning methods in various scenarios. They facilitate an

enhanced understanding of the capabilities and limitations of these methods. For instance, in this study,

the discussed synthetic datasets with known characteristics and distributions were utilized for the

purpose of conducting controlled tests of logistic regression, as illustrated in Table 6. These benchmark

datasets can encompass diverse data complexities, such as class imbalance, missing values, and outliers,

thereby aiding in assessing how effectively logistic regression operates under different conditions and

whether additional tuning is necessary. To assess the effectiveness of the logistic regression model, the

following metrics were employed:

1. Precision is the ability of the classifier not to label as positive a sample that is negative. In table 6

this metric provides an assessment of the model's overall precision, considering the weights of each

class based on their distribution in the dataset. This allows for accounting for class imbalance, where

one class may have significantly more instances than others.

2. Accuracy. This metric indicates the accuracy of a classification model, measuring the overall

percentage of correct predictions (both positive and negative) out of the total number of examples in

dataset:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) =
1

𝑛samples
∑ 1(�̂�𝑖 = 𝑦𝑖)

𝑛samples−1

𝑖=0

, (7)

where �̂�𝑖 is the predicted value of the 𝑖-th sample, 𝑦𝑖 is the corresponding true value, 1(𝑥) is the

indicator function.

3. Type 1 Error. This metric indicates the precision of the model for the class denoted as "class1"

or the positive class. Type 1 Error measures the percentage of correct positive predictions made by the

model among all positive predictions:

𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (8)

where 𝑡𝑝 (true positive) is correct result, 𝑓𝑝 (false positive) is unexpected result.

22

4. Type 2 Error. This metric typically represents the proportion of false negative predictions made

by a classification model, specifically in the context of binary classification tasks. Type 2 Error

quantifies the rate at which the model incorrectly predicts negative outcomes, providing insights into

its ability to avoid missing positive cases:

𝑇𝑦𝑝𝑒 2 𝐸𝑟𝑟𝑜𝑟 = 1 −
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (9)

where 𝑡𝑝 (true positive) is correct result, 𝑓𝑛 (false negative) is missing result.

5. F1-Score. This metric is a combination of Precision and Recall and is used to assess the balance

between these two metrics. It is particularly useful in situations where there is class imbalance (different

numbers of instances for different classes) because it considers both Precision and Recall for each class

and calculates their weighted harmonic mean:

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃(𝑦, �̂�) × 𝑅(𝑦, �̂�)

𝑃(𝑦, �̂�) + 𝑅(𝑦, �̂�)
, (10)

where 𝑃(𝑦, �̂�) is precision, 𝑅(𝑦, �̂�) is recall.

Leveraging synthetic dataset generators enables rapid iteration and testing of various hypotheses and

model parameters without the need to wait for real data.

Table 6
Classification comparison

Dataset Precision Accuracy Type 1 Error Type 2 Error F1-Score

original.csv 0.860633 0.860000 0.844660 0.876289 0.859972
std1.csv 1.000000 1.000000 1.000000 1.000000 1.000000
std3.csv 0.955073 0.955000 0.961905 0.947368 0.955012
40-60.csv 0.865830 0.865000 0.876712 0.858268 0.863560
30-70.csv 0.864803 0.865000 0.862745 0.865772 0.860449
blank10.csv 0.856354 0.856354 0.858696 0.853933 0.856354
blank20.csv 0.885321 0.885350 0.884058 0.886364 0.885190
outliers5.csv 0.865167 0.865000 0.870968 0.859813 0.864888
outliers10.csv 0.860000 0.860000 0.871560 0.846154 0.860000
outliers20.csv 0.868215 0.865000 0.831776 0.903226 0.864848

5. Conclusion

The article explores the construction of Gaussian distributions using the Box-Muller transform, a

method relying on uniform random numbers to generate pairs of independent Gaussian variables.

However, while efficient for core Gaussian values, the Box-Muller algorithm may fall short in

generating extreme or outlier values crucial for evaluating rare events. To address this limitation, the

article proposes incorporating specialized distributions to generate extreme values in tails. By

combining these extreme values with standard normal random variables, a broader dataset can be

formed, enriching evaluations and bolstering machine learning models.

This study also introduces a synthetic data generator designed for evaluating data visualization

methods and machine learning systems. The application is highly adaptable, providing users with the

capability to create and store models, generate artificial data, and even explore models created by other

users. This enhanced accessibility promotes collaborative learning and testing of machine learning

models on data. This article also demonstrates the practical utility of the application in the realm of

assessing machine learning algorithms. It illustrates the process of generating various datasets, enabling

precise control over typical challenges encountered in machine learning tasks. The visual

representations created for each scenario provide compelling evidence of the tool's reliability in

validating diverse situations.

In future research endeavors, the exploration of employing machine learning techniques to enhance

the realism of synthetic data by introducing common noise patterns observed in real-world data, while

23

preserving the fundamental distribution, can be considered. Additionally, another avenue of

investigation involves the generation of synthetic data encompassing categorical, time-series, or mixed

data types. This would enable the utilization of the generated synthetic data within the context of the

Computing with Words Model [25, 26] and other fuzzy set models.

In conclusion, the creation of benchmark datasets for testing data analytics tools represents a crucial

step in the advancement of data science and machine learning research, offering a standardized means

of evaluating and comparing the performance of various analytical methodologies. These benchmark

datasets not only facilitate fair and rigorous assessment of data analytics tools but also open avenues

for future research in the refinement of synthetic data generation techniques and the development of

more comprehensive and realistic benchmark datasets.

6. References

[1] J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, “Scientific machine learning benchmarks,”

Nature Reviews Physics, vol. 4, no. 6, pp. 413–420, Apr. 2022, doi:

https://doi.org/10.1038/s42254-022-00441-7.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, May 2012, doi:

https://doi.org/10.1145/3065386.

[3] Fernández-DelgadoManuel, CernadasEva, BarroSenén, and AmorimDinani, “Do we need

hundreds of classifiers to solve real world classification problems,” Journal of Machine Learning

Research, Jan. 2014, doi: https://doi.org/10.5555/2627435.2697065.

[4] A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha, “Secure and Robust Machine Learning for

Healthcare: A Survey,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 156–180, 2021,

doi: https://doi.org/10.1109/rbme.2020.3013489.

[5] P. Mendonca, S. Brito, C. Gustavo, R. Santos, and T. Araujo, “Synthetic Datasets Generator for

Testing Information Visualization and Machine Learning Techniques and Tools,” IEEE Access,

vol. 8, pp. 82917–82928, Jan. 2020, doi: https://doi.org/10.1109/access.2020.2991949.

[6] D. R. Jeske et al., “Generation of synthetic data sets for evaluating the accuracy of knowledge

discovery systems,” Knowledge Discovery and Data Mining, Aug. 2005, doi:

https://doi.org/10.1145/1081870.1081969.

[7] P. J. Lin et al., “Development of a Synthetic Data Set Generator for Building and Testing

Information Discovery Systems,” IEEE Xplore, Apr. 01, 2006.

https://ieeexplore.ieee.org/abstract/document/1611688.

[8] Popic, S., Pavkovic, B., Velikic, I., & Teslic, N. (2019). Data generators: a short survey of

techniques and use cases with focus on testing. 2019 IEEE 9th International Conference on

Consumer Electronics (ICCE-Berlin). https://doi.org/10.1109/ICCE-

BERLIN47944.2019.8966202 .

[9] F. K. Dankar and M. Ibrahim, “Fake It Till You Make It: Guidelines for Effective Synthetic Data

Generation,” Applied Sciences, vol. 11, no. 5, p. 2158, Feb. 2021, doi:

https://doi.org/10.3390/app11052158.

[10] F. K. Dankar, M. K. Ibrahim, and L. Ismail, “A Multi-Dimensional Evaluation of Synthetic Data

Generators,” IEEE Access, vol. 10, pp. 11147–11158, 2022, doi:

https://doi.org/10.1109/access.2022.3144765.

[11] Madalina Andreica, Mugurel Ionut Andreica, Nicolae Cataniciu. Multidimensional Data

Structures and Techniques for Efficient Decision Making. Proceedings of the 10th WSEAS

International Conference on Mathematics and Computers in Business and Economics (MCBE)

(ISBN: 978-960-474-063-5 / ISSN: 1790-5109), Mar 2009, Prague, Czech Republic. pp.249-254.

⟨hal-00467676⟩
[12] V. Ayala-Rivera, P. McDonagh, T. Cerqueus, and L. Murphy, “Synthetic Data Generation using

Benerator Tool,” arXiv (Cornell University), Oct. 2013. URL:

https://www.researchgate.net/publication/258125711_Synthetic_Data_Generation_using_Benera

tor_Tool

https://doi.org/10.1038/s42254-022-00441-7
https://doi.org/10.1145/3065386
https://doi.org/10.5555/2627435.2697065
https://doi.org/10.1109/rbme.2020.3013489
https://doi.org/10.1109/access.2020.2991949
https://doi.org/10.1145/1081870.1081969
https://ieeexplore.ieee.org/abstract/document/1611688
https://doi.org/10.1109/ICCE-BERLIN47944.2019.8966202
https://doi.org/10.1109/ICCE-BERLIN47944.2019.8966202
https://doi.org/10.3390/app11052158
https://doi.org/10.1109/access.2022.3144765
https://www.researchgate.net/publication/258125711_Synthetic_Data_Generation_using_Benerator_Tool
https://www.researchgate.net/publication/258125711_Synthetic_Data_Generation_using_Benerator_Tool

24

[13] T. W. Göbel, T. Schäfer, Julien Hachenberger, J. Türr, and H. Baier, “A Novel Approach for

Generating Synthetic Datasets for Digital Forensics,” pp. 73–93, Jan. 2020, doi:

https://doi.org/10.1007/978-3-030-56223-6_5.

[14] Ul Haq, Ikram & Gondal, Iqbal & Vamplew, Peter & Layton, Robert. (2016). Generating Synthetic

Datasets for Experimental Validation of Fraud Detection. Fourteenth Australasian Data Mining

Conference, Canberra, Australia. Conferences in Research and Practice in Information

Technology, Vol. 170. URL:

https://www.researchgate.net/publication/316878436_Generating_Synthetic_Datasets_for_Exper

imental_Validation_of_Fraud_Detection.

[15] T. N. Arvanitis, S. White, S. Harrison, R. Chaplin, and G. Despotou, “A method for machine

learning generation of realistic synthetic datasets for validating healthcare applications,” Health

Informatics Journal, vol. 28, no. 2, p. 146045822210770, Jan. 2022, doi:

https://doi.org/10.1177/14604582221077000.

[16] Bullward, A., Aljebreen, A., Coles, A., McInerney, C., Johnson, O. (2023). Research Paper:

Process Mining and Synthetic Health Data: Reflections and Lessons Learnt. In: Montali, M.,

Senderovich, A., Weidlich, M. (eds) Process Mining Workshops. ICPM 2022, vol 468. Springer,

Cham. https://doi.org/10.1007/978-3-031-27815-0_25.

[17] Gräßler, I., Hieb, M., Roesmann, D., Unverzagt, M. (2023). Creating Synthetic Training Data for

Machine Vision Quality Gates. In: Lohweg, V. (eds) Bildverarbeitung in der Automation.

Technologien für die intelligente Automation, vol 17. Springer Vieweg, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-66769-9_7.

[18] A. Y. Barrera-Animas and J. M. Davila Delgado, “Generating real-world-like labelled synthetic

datasets for construction site applications,” Automation in Construction, vol. 151, p. 104850, Jul.

2023, doi: https://doi.org/10.1016/j.autcon.2023.104850.

[19] C. Manettas, N. Nikolakis, and K. Alexopoulos, “Synthetic datasets for Deep Learning in

computer-vision assisted tasks in manufacturing,” Procedia CIRP, vol. 103, pp. 237–242, 2021,

doi: https://doi.org/10.1016/j.procir.2021.10.038.

[20] Holst, D., Schoepflin, D., Schüppstuhl, T. (2023). Generation of Synthetic AI Training Data for

Robotic Grasp-Candidate Identification and Evaluation in Intralogistics Bin-Picking Scenarios. In:

Kim, KY., Monplaisir, L., Rickli, J. (eds) Flexible Automation and Intelligent Manufacturing: The

Human-Data-Technology Nexus . FAIM 2022. Lecture Notes in Mechanical Engineering.

Springer, Cham. https://doi.org/10.1007/978-3-031-18326-3_28.

[21] Rather, I.H., Kumar, S. Generative adversarial network based synthetic data training model for

lightweight convolutional neural networks. Multimed Tools Appl (2023).

https://doi.org/10.1007/s11042-023-15747-6 .

[22] G.E.P. Box and M.E. Muller, “A Note on the Generation of Random Normal Deviates,” The

Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, Jun. 1958, doi:

https://doi.org/10.1214/aoms/1177706645.

[23] D.B. Thomas, W. Luk, P.H.W. Leong, and J.D. Villasenor, “Gaussian random number generators,”

ACM Computing Surveys, vol. 39, no. 4, p. 11, Nov. 2007, doi:

https://doi.org/10.1145/1287620.1287622.

[24] A. Albashir, Mohd, K. Ibrahim, and Noratiqah Mohd Ariff, “Extreme Value Distributions: An

Overview of Estimation and Simulation,” Journal of Probability and Statistics, vol. 2022, pp. 1–

17, Oct. 2022, doi: https://doi.org/10.1155/2022/5449751.

[25] O. Tymchuk, A. Pylypenko, and M. Iepik, ‘Forecasting of Categorical Time Series Using

Computing with Words Model’, in Selected Papers of the IX International Scientific Conference

‘Information Technology and Implementation’ (IT&I-2022), Workshop Proceedings, Kyiv,

Ukraine, November 30 - December 02, 2022, vol. 3384, pp. 151–159. URL: https://ceur-

ws.org/Vol-3384/Short_2.pdf.

[26] N. Kiktev, V. Osypenko, N. Shkurpela and A. Balaniuk, "Input Data Clustering for the Efficient

Operation of Renewable Energy Sources in a Distributed Information System," 2020 IEEE 15th

International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh,

Ukraine, 2020, pp. 9-12, doi: 10.1109/CSIT49958.2020.9321940

https://doi.org/10.1007/978-3-030-56223-6_5
https://www.researchgate.net/publication/316878436_Generating_Synthetic_Datasets_for_Experimental_Validation_of_Fraud_Detection
https://www.researchgate.net/publication/316878436_Generating_Synthetic_Datasets_for_Experimental_Validation_of_Fraud_Detection
https://doi.org/10.1177/14604582221077000
https://doi.org/10.1007/978-3-031-27815-0_25
https://doi.org/10.1007/978-3-662-66769-9_7
https://doi.org/10.1016/j.autcon.2023.104850
https://doi.org/10.1016/j.procir.2021.10.038
https://doi.org/10.1007/978-3-031-18326-3_28
https://doi.org/10.1007/s11042-023-15747-6
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1145/1287620.1287622
https://doi.org/10.1155/2022/5449751
https://ceur-ws.org/Vol-3384/Short_2.pdf
https://ceur-ws.org/Vol-3384/Short_2.pdf

	1. Introduction
	2. Mathematical methods
	3. Development of synthetic dataset generator
	3.1. Data model
	3.2. Modelling of the generator
	3.3. Usage scenarios: generating test datasets
	3.3.1. Changing parameters of normal distribution
	3.3.2. Changing class distribution
	3.3.3. Adding outliers
	3.3.4. Setting up missing values

	3.4. Software description
	3.4.1. Module description
	3.4.2. Constraints and decisions

	4. Discussion
	5. Conclusion
	6. References

