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Abstract  
This article explores the role of benchmark datasets in testing data analysis tools. The use of 

synthetic data generators is motivated by the need for scaling the size of training datasets, 

filling data gaps, and safeguarding data confidentiality. Existing research in this field 

emphasizes the importance of applications in various domains, such as fraud detection, 

healthcare, and computer graphics. The efficacy of constructing Gaussian distributions using 

the Box-Muller transform is investigated, while limitations in generating extreme values are 

highlighted. The integration of specialized distributions is proposed to address this gap and 

enhance dataset variability for improved performance in data analytics methods. The article 

presents a synthetic data generator capable of producing datasets for effective evaluation of 

machine learning methods. Practical tests demonstrate the software's effectiveness in creating 

test datasets with controlled variations. Four different tests were conducted, each with three 

different variants: 1) normal distribution parameters, namely standard deviation, 2) class 

imbalance, 3) missing values, and 4) outliers. The generated datasets were used to conduct 

controlled tests of logistic regression. Performance evaluation of the logistic regression model 

employed metrics such as Precision, Accuracy, Type 1 Error, Type 2 Error, and F1-Score. 
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1. Introduction 

The modern world generates an enormous volume of data every day, ranging from sensor data to 

textual information. Data analytics tools require the availability of realistic and representative datasets 

for testing that would reflect contemporary challenges in data processing. The relevance of this topic is 

also driven by the development of artificial intelligence and machine learning: the high demand for the 

development of machine learning and artificial intelligence algorithms necessitates data for training and 

evaluating these algorithms. Creating realistic datasets becomes critically important for precise 

assessment and comparison of various methods. The complexity of this problem is associated with its 

interdisciplinary nature. Analytical tools and methods are used across various domains, including 

medicine, finance, biology, ecology, and others. The creation of benchmark datasets can also contribute 

to addressing ethical concerns related to data privacy and security by developing anonymized or 

synthetic data. So, the creation of benchmark datasets for testing data analytics tools is essential for 

advancing science and technology in this field and ensuring their practical utility across diverse 

domains. 

There are a lot of published research results that provides comprehensive insights into the process 

of creating benchmark datasets and its significance. In [1], the authors introduce the concept of 

benchmark metrics in machine learning for scientific purposes and review existing approaches. They 

underscore that the selection of the most appropriate machine learning algorithm for scientific data 

analysis remains a significant challenge due to the potential applicability of machine learning 

frameworks and models, computer architectures. The results of the research by authors Krizhevsky, 

Sutskever, and Hinton [2] were the first to demonstrate the profound influence of datasets on the 
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learning outcomes of deep neural networks. It can be instrumental in comprehending the significance 

of benchmarking. The article [3] by M. Fernandez-Delgado, E. Cernadas, S. Barro and D. Amorim is a 

significant contribution to the field of machine learning and data classification, providing practical 

insights into the use of classifiers in real-world scenarios. The article explores various classification 

algorithms and compares their performance across different benchmark datasets, which can serve as a 

valuable resource for discussing the effectiveness of various analytical tools. 

Each data generator program uses a unique approach to data creation. The article [5] presents a data 

generator designed to fill in gaps that may exist in other programs. The developed system allows users 

to customize and create known statistical distributions to achieve the desired outcome. Additionally, it 

offers real-time data behavior visualization to analyze whether they possess the characteristics 

necessary for effective testing. In the articles [6, 7], the authors provide an overview of the design and 

architecture of the Information Discovery and Analysis Systems (IDAS) Data Set Generator (IDSG), 

which enables a fast and comprehensive evaluation of IDAS. IDSG generates data using statistical 

algorithms, rule-based algorithms, and semantic graphs that represent interdependencies between 

attributes. To illustrate this approach, an application for credit card transactions is used. Sran Popić et 

al. [8] provided a brief overview of various types of generators in terms of their architecture and 

anticipated usage, as well as listed their advantages and disadvantages. They also presented a review of 

the data generation algorithms used and best practices in various domains. 

Researchers in this field has attempted to assess the utility of synthetic data generators using various 

evaluation metrics. However, it has been found that these metrics lead to conflicting conclusions, 

complicating the direct comparison of synthetic data generators. In their study, Fida Kamal Dankar and 

colleagues [9, 10] identified four criteria for evaluating masked data by categorizing available utility 

metrics into different categories based on the information they seek to preserve: attribute fidelity, two-

dimensional parameter fidelity, population fidelity, and application fidelity. In the article [11], the 

authors have introduced several novel and efficient methods and multidimensional data structures that 

can enhance the decision-making process in various domains. They have examined online range 

aggregation, range selection, and weighted range median queries; for most of these, data structures and 

techniques are presented that can provide answers in near-polynomial time. 

In practice, obtaining real data can be challenging due to confidentiality issues. Additionally, real 

data may not conform to specific characteristics required for evaluating new approaches under certain 

conditions. Given these constraints, the use of synthetic data becomes a viable alternative to supplement 

real data in various domains. For example, in the article [12], the authors described the process of 

generating synthetic data using the publicly available tool Benerator to mimic the distribution of 

aggregated statistical data obtained from the national population census. The generated datasets 

successfully replicated microdata containing records with social, economic, and demographic 

information. Forensics also requires testing digital information tools. Thomas Göbel et al. [13] 

introduced the concept of a structure called hystck for creating synthetic datasets based on the ground 

truth. This framework supports automated generation of synthetic network traffic and artifacts of 

operating systems and software by simulating human-computer interactions. To preserve 

confidentiality, banks are unwilling to share fraud statistics and datasets with the public. To overcome 

these limitations, Ikram Ul Haq et al. [14] introduced an innovative technique for generating uniformly 

distributed synthetic data (HCRUD) based on highly correlated rules. This technique allows the 

generation of synthetic datasets of any size, replicating the characteristics of restricted actual fraud data, 

thus supporting further research in fraud detection. Access to medical datasets is also complicated due 

to concerns about patient confidentiality. The development of synthetic datasets that are realistic enough 

for testing digital applications is considered as a potential alternative that allows their deployment. 

Theodoros Arvanitis et al. [15] have devised a method for generating synthetic data statistically 

equivalent to real clinical datasets and have demonstrated that the approach based on Generative 

Adversarial Networks aligns with this goal. Thus, the concept of creating realistic medical synthetic 

datasets has been successfully validated. However, data quality issues exist both in real and synthetic 

data, with the latter reflecting real-world problems and artifacts created by synthetic datasets. The 

intellectual analysis of synthetic healthcare data represents a novel field with its unique challenges. 

According to Alistair Bullward et al. [16], researchers should be aware of the risks associated with 

extrapolating results from synthetic data studies to real-world scenarios and should evaluate outcomes 

using analysts who can review the underlying data. Synthetic data is frequently utilized in computer 
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graphics, which is used for training computer vision models, as mentioned in [17, 18]. In many 

industrial computer vision tasks, deep learning methods such as convolutional neural networks have 

been successfully employed, as indicated by the works [19, 20]. In recent years, generative adversarial 

networks (GANs) have been effectively utilized for generating new realistic images and manipulating 

them, as noted in the research by I. H. Rather and S. Kumar [21].  

Therefore, the increasing availability and utilization of data analytics tools make the standardization 

of benchmark datasets an essential task for their further adoption across various fields. The challenge 

of developing more objective metrics and methods for assessing the utility of synthetic data remains 

unresolved. One of these problems is adequate tail-end modeling of probability density functions.  

Extreme values can significantly impact risks and outcomes in several sectors such as finance, 

insurance, climatology, engineering, among others. This article presents research in the field of creating 

synthetic data that aligns with real-world requirements and enables their effective use for testing various 

analytical tools. The primary focus is on comprehending and analyzing characteristics of this generator, 

especially in the tail areas of the Gaussian probability density function. 

2. Mathematical methods 

The generation of Gaussian distributions is foundational in various scientific and computational 

fields, playing a pivotal role in modeling natural phenomena and simulating random variables. To create 

a Gaussian distribution, it is suggested to use the Box-Muller transform [22]. It produces a pair of 

Gaussian random numbers using a pair of uniform numbers. The fundamental principle of the Box-

Muller algorithm lies in its ability to generate pairs of independent standard Gaussian random variables 

from uniformly distributed random numbers. This method leverages the polar coordinate representation 

in a two-dimensional space to transform pairs of independent uniformly distributed variables into sets 

of normally distributed variables. By employing trigonometric functions and geometric interpretations, 

this algorithm constructs Gaussian values by utilizing the magnitude and angle derived from uniformly 

generated random variables. The algorithm to generate the Gaussian samples: 

1. Generate sample using two distinct uniform random number generators, 𝑢₁ and 𝑢₂. 
2. Apply the inverse cumulative distribution function (CDF) of the exponential distribution to 𝑢₁ 

(𝜆 = 1): 

𝑟 = √−2𝑙𝑛(1 − 𝑢1) = √−2𝑙𝑛(𝑢1), (1) 

where 𝑟 is the distance from origin for each sample. 

For simplicity, 𝑢₁ is replaced by 1 − 𝑢₁ since they are both uniform samples on (0, 1). 
3. Apply the inverse CDF of the uniform distribution on (0, 2𝜋) to 𝑢₂: 

𝜃 = 2𝜋𝑢₂, (2) 

where 𝜃 is the angle of the sample. 

4. Finally, determine the x and y using basic trigonometric calculations:  

𝑥 = 𝑟𝑐𝑜𝑠(𝜃),    𝑦 = 𝑟 𝑠𝑖𝑛(𝜃). (3) 
The Box-Muller algorithm generates two independent random numbers upon each execution. Each 

pair of generated numbers represents two independent random variables following a standard normal 

distribution. These variables possess a mean of 0 and a standard deviation of 1. The produced values 

can be utilized as required for various statistical or computational purposes. For instance, both numbers 

from each pair can be employed to generate pairs of normally distributed random variables. 

Alternatively, a single number from each pair might suffice if the need is for a singular normally 

distributed value. By combining both sets of generated values into a single dataset, a larger and 

potentially more diverse sample can be constructed, enriching the dataset used for testing machine 

learning models. This integration allows for a broader spectrum of data points, enhancing the robustness 

of the evaluation process and potentially fortifying the model's generalization capabilities. 

The Box-Muller algorithm, while efficient in generating core values from the standard normal 

distribution, may necessitate additional methods to generate values from the tails of the distribution 

[23]. Extreme or outlier values that reside in the tails of the distribution are often critical for assessing 

rare events or evaluating the performance of algorithms. The generation of extreme values in random 

numbers can be achieved using specialized distributions. Some distributions, such as the exponential, 
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Weibull, Fréchet extreme value distribution, among others, directly model extreme values. The 

proposed algorithm incorporates the following steps to generate such values. 

Continuation of the algorithm to generate the Gaussian samples: 

5. Set the parameter 𝑐 represents the shape parameter governing the tail behavior. It determines 

the shape and heaviness of the distribution's tails.  

с >  0: indicates a distribution with bounded tails. It implies that the distribution's tails are bounded, 

and the probability of encountering extreme values decreases more rapidly than in a normal distribution. 

с =  0: corresponds to the exponential distribution, where the tails are light, and the probability of 

extreme values decreases exponentially. 

с <  0: indicates a distribution with heavier tails than the exponential distribution. This suggests 

that the probability of encountering extreme values decreases slower than in an exponential distribution. 

6. Establish the probability density function of the distribution is given by the formula: 

𝑓(𝑡; 𝑐) = {
𝑒−[1+𝑐𝑡]−1/𝑐

⋅ (1 + 𝑐𝑡)−1/𝑐−1    for    𝑐 ≠ 0,

𝑒−𝑒−𝑡
⋅ 𝑒 −𝑡   for   𝑐 = 0,

 (4) 

use the inverse transform method to generate extreme values: 

𝑡 = {

1

𝑐
(−𝑙𝑛(1 − 𝑢)−𝑐 − 1) for 𝑐 ≠ 0,

−𝑙𝑛(−𝑙𝑛(1 − 𝑢) for 𝑐 = 0,
 (5) 

where 𝑢 is a random variable from a uniform distribution on the interval (0, 1) and can be obtained 

as a fraction of random variables generated in step 1. Validate the generated extreme values to ensure 

they align with the expected tail behavior. 

7. After obtaining the standard normal random variables and extreme values 𝑧 ∶=
𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥, 𝑦, 𝑡), can move on to a normally distributed value with mathematical expectation 𝜇 

and standard deviation 𝜎: 

𝜉 =  𝜇 + 𝜎𝑧. (6) 

Depending on the practical task there might be a need to shift the distribution along the axis of values 

or change its scale. In such cases, it would be advantageous to employ the Generalized Extreme Value 

(GEV) distributions, which combine the Gumbel, Fréchet, and Weibull families, also known as type I, 

II, and III extreme value distributions [24]. These distributions offer flexibility in adjusting the 

positioning and scaling of the distribution to accommodate various scenarios and analyses. 

3. Development of synthetic dataset generator 

In the domain of data generation for machine learning research, a spectrum of tools and libraries, 

including MOSTLY.AI (https://mostly.ai/), Mockaroo (https://www.mockaroo.com/), and Scikit-learn 

(https://scikit-learn.org/stable/datasets/sample_generators.html), among others, is at researchers' 

disposal. These tools furnish a fundamental framework for the generation of synthetic datasets, enabling 

users to craft data with predetermined statistical distributions. Nevertheless, they exhibit inherent 

limitations. For instance, scikit-learn is primarily constrained by its capacity to generate synthetic 

datasets featuring a limited array of distributions and parameters, rendering it less suitable for the 

creation of intricate or verisimilar data representations. These tools primarily target numerical data and 

lack the specialized capabilities required for the synthesis of structured data types, such as textual 

information, categorical attributes, or time series. In the subsequent sections of this article, the 

utilization of synthetic data will be examined primarily in the context of testing machine learning 

methods, considering the noted shortcomings of existing tools.  

3.1. Data model 

The specific capabilities of a synthetic data generator may vary from implementation. However, 

such software should have the following main features: 

 defining the name, description, and additional information associated with the model; 

https://mostly.ai/
https://www.mockaroo.com/
https://scikit-learn.org/stable/datasets/sample_generators.html
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 describing all dimensions of the model, including their data type, name, description, and most 

importantly, the algorithm for generating the value; 

 export synthetic data rows to a file or database based on the created model. 

Each data model must have at least one dimension. Each dimension should be defined by the 

following characteristics: dimension name; data type (integer or real number, category, string); 

expression/formula that defines how the data will be filled in; additional options (presence of blank 

values/outliers). Values in columns can be either independent expressions or calculated based on values 

in other columns (while avoiding cyclic dependencies, where, for instance, expression A relies on the 

value from column B, and expression B relies on the value from column A). The data model serves as 

an abstraction of a dataset, comprising specifications that characterize the behavior of the data [5]. 

Figure 1 depicts an example of rudimentary data model illustrating the characterization of specific 

individuals for the purpose of analyzing patient ages. There are three dimensions: 

1) Name: an informative dimension, intended more for identifying the string than for analyzing 

the data. Such strings are not useful in machine learning, but if it were real data, there would be a 

privacy issue. Given that this string is generated in a random manner, there is no need for concern 

regarding the utilization of personal data belonging to individuals. Since this dimension is defined 

without modifiers, the data in this row will always be present. 

2) Age: dimension determines the patient's age. Its expression defines a random value in a normal 

distribution with a mean of 14.0 and a variance of 3.0. There are no blank fields. 

3) IsAdult: dimension determines whether the patient is an adult. This is the only dimension that 

uses another dimension in its calculations. If the patient is over 18, this field is set to 1, otherwise 0. 

There are no blank fields. 

 

Figure 1: Example of data model 

3.2. Modelling of the generator 

Editing a data model includes editing general information about the model, such as the name, 

description, and availability to other users. Most importantly, in this mode, you can edit each dimension 

separately, with a real-time check for the correctness of the entered data. Dimensions can be added or 

deleted, but each model will always have at least 1 dimension with a line number. Each dimension must 

be given a unique name that will not match other dimensions within the model. All dimensions must be 

one of the defined data types (see Table1).  

Table 1 
Supported data types 

Data type Description Examples 

String A sequence of symbols with variable length "Oleksii", "Kohut", "test123" 
Integer 𝑥 ∈ ℤ -2, -1, 0, 1, 2... 
Real 𝑥 ∈ ℝ 0.5, 1.3e22, 3.14, -0.001  
Category Custom data type, choose one item from given 

list 
(1, 2, 3),  
("apple", "banana", "orange") 

Boolean Logical data type (example usage of category 
type) 

(0, 1), ("true", "false") 
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The lists of operands and functions available for generation is described in Tables 2-4. 

Table 2 
The list of operand generators 

Operand Description Usage example 

+ Addition x + y 
- Substraction x – y 
* Multiplication x * y 
/ Division x / y 
^ Exponentiation x ^ y 
? Conditional operator (a = 0) ? x : y 

Table 3 
The list of random generators 

Distribution Arguments Usage example 

Uniform 𝑎, 𝑏 ∈  ℝ Uniform (a, b) 
Normal (Gaussian) 𝜇, 𝜎 ∈  ℝ Gauss (mu, sigma) 
Cauchy 𝑥0, 𝛾 ∈  ℝ Cauchy (x0, gamma) 
Poisson 𝜆 ∈  ℝ Poisson (lambda) 
Bernoulli 𝑝 ∈  ℝ Bernoulli (p) 
Categorical 𝑎0, 𝑎1 … 𝑎𝑧 ∈ 𝐶 Category ("a", "b", "c") 

Weighted categorical 
𝑎0, 𝑎1 … 𝑎𝑧 ∈ 𝐶, 
𝑝0, 𝑝1 … 𝑝𝑧 ∈ ℝ 

Weighted_category (("a", 1.0), 
("b", 2.0), ("c", 3.0)) 

Table 4 
The list of function generators 

Function Arguments Usage example 

Modulo x – value, 𝑥 ∈  ℝ abs(x); |x| 
Sign x – value, 𝑥 ∈  ℝ sign(x) 
Sine x – value, 𝑥 ∈  ℝ sin(x) 
Cosine x – value, 𝑥 ∈  ℝ cos(x) 
Tangent x – value, 𝑥 ∈  ℝ tan(x) 
Exponent x – value, 𝑥 ∈  ℝ exp(x) 
Logarithm x – value, p - base, 𝑥, 𝑝 ∈  ℝ log(x, p) 
Natural logarithm x – value, 𝑥 ∈  ℝ ln(x) 
Square root x – value, 𝑥 ∈  ℝ sqrt(x) 
Cube root x – value, 𝑥 ∈  ℝ cbrt(x) 
Root of arbitrary base x – value, p – base, 𝑥, 𝑝 ∈  ℝ nroot(x, p) 

 

3.3. Usage scenarios: generating test datasets 

To verify usefulness of such a software, practical tests were performed with the help of the program. 

A data model was specified in the generator and multiple tweaks were applied to it. The data set was 

created using the proposed algorithm to generate the Gaussian samples (1) – (6). The default model is 

described as follows: 

 two classes; 

 two dimensions: one dimension for the class, another for the value; 

 value is generated depending on class with the help of ternary operator and normal distribution; 

 no outliers, no blank values. 
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The dataset was specified on the data model tab. For each test a CSV file with 1000 entries was 

generated. Then, with the help of Python, graphs for this data were drawn. This provides a visual clue 

about how the change affects the data. A total of four different tests were performed, each with three 

different variations. 

3.3.1. Changing parameters of normal distribution 

In this test, the standard deviation of normal distribution for both classes were changed. The values 

chosen are 5.0, 3.0, 1.0. The expected result of such change is that values would become less dispersed 

across the axis. The result of the software for this case is presented in Figures 2-3. 

 

 

Figure 2: Data model options with standard deviation changes 

 

Figure 3: Resulting data graphs with standard deviation changes (original.csv, std3.csv, std1.csv) 

For the current test, a swarm plot was used. The color represents the class of the item, and its position 

on the Y axis represents the value. With each next plot the values are getting more packed around central 

value, confirming that standard deviation is indeed changing. 

3.3.2. Changing class distribution 

Here, a weighted category was introduced in place of default category. For class 1, the probability 

of appearance will decrease each time, and for class 2 it will increase. The rate of change is 10%. So, 

the first distribution of classes will be 50-50%, then 40-60%, then 30-70% (Figures 4-5). 

 As can be seen on the Figure 5, the amount of class2 entries in getting higher with each next picture, 

confirming that this feature works. 
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Figure 4: Data model options with class distribution changes 

 

 

Figure 5: Resulting data graphs with class distribution changes (original.csv, 40-60.csv, 30-70.csv) 
 

3.3.3. Adding outliers 

To use outliers, an additional dimension was added. A random value is calculated with the help of 

uniform distribution, and if it’s less than certain threshold (which equals probability of such event), then 

the value would be multiplied by 5 (Figures 6-7). Otherwise, the expected value will be placed. 

 

 
Figure 6: Data model options with added outliers 

It’s clear that with the increasing probability of outliers appearing, number of outliers will be bigger. 

Also, it’s worth noting that class2 outliers reach higher values than class1 because of bigger base value. 

This creates additional separation between class1 and class2 in the higher values. 
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Figure 7: Resulting data graphs with outliers (outliers5.csv, outliers10.csv, outliers20.csv) 

3.3.4. Setting up missing values 

It’s possible to make missing values in the dataset in a similar manner to outliers, with the help of 

an additional dimension. The only change is that missing() function is used instead of multiplication 

(Figures 8-9). 

 

 

Figure 8: Data model options with blank values 

For this test, an event plot was used instead of swarm plot. Colored lines represent objects generated 

(from 1 to 1000) with corresponding class. Each black line represents a missing value. 

3.4. Software description 
3.4.1. Module description 

Software implementation of this synthetic dataset generator (lexData) consists of the three main 

parts: tokenizer, parser, and calculator. The input of this system is text expression describing formula 

for the dimension value. Figure 10 depicts how the text input can be processed into result: 

In this simple example, there are multiple steps. In the first step, the input string is parsed into 

multiple tokens. A token is an atomic part of the mathematical formula. A single plus sign is a token, 

but a whole number or variable name is also a token, since we can’t just divide the number into digits. 

After that, the sequence of tokens is handled by the parser, which builds a complete function. After 

passing concrete values for parameters (which may be other dimensions) specified in the function, the 

final value can be calculated and returned as the result. However, there are many more details such as 

verifying if referenced function exists or if there is no circular dependency. The output of calculation is 

just a single number or category, depending on the expression specified. 
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Figure 9: Resulting data graphs with blank values (original.csv, blank10.csv, blank20.csv) 

 

 

Figure 10: Module Interactions: Inputs and Output  

3.4.2. Constraints and decisions 

The .NET Framework and programming language C# were used by the designer of generator 

software. The generator core is implemented on top of custom-created library for parsing and evaluating 

math expressions, called lexCalculator. To integrate it with this software, it was modified to support 

such functions: 

 generating random distributions; 

 string data types; 

 logical expressions; 

 complex data types and lists. 
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With the help of NUnit, a unit testing was performed on this software. Most of the possible test cases 

were checked and tests provided more than 90% of code coverage.  

The system was tested on the following system specifications: 

 Windows 10 Pro; 

 Intel(R) Core(TM) i5-8350U CPU; 

 16GB RAM; 

 NVMe SK hynix 256GB SSD. 

With such specifications, it was found out how the generator performed on the different datasets. 

The following table describes how many rows were generated per second on average for the specified 

dataset. Each dimension is just a simple switch between classes with normal distribution calculation: 

As can be seen in Table 5, the number of classes doesn’t affect performance of generation too much, 

except for the parsing stage, where more classes mean there are more possibilities to handle. As for the 

dimensions, these directly affect the performance, but that also depends on the expressions specified 

for these dimensions. 

Table 2 
Performance testing of the software 

Dataset description Rows/s 

2 classes, 2 dimensions 16534 rows 
2 classes, 4 dimensions 10233 rows 
2 classes, 8 dimensions 7610 rows 
3 classes, 2 dimensions 15669 rows 

4. Discussion 

Generators of synthetic datasets represent a potent tool for conducting controlled experiments and 

investigating the performance of machine learning methods in various scenarios. They facilitate an 

enhanced understanding of the capabilities and limitations of these methods. For instance, in this study, 

the discussed synthetic datasets with known characteristics and distributions were utilized for the 

purpose of conducting controlled tests of logistic regression, as illustrated in Table 6. These benchmark 

datasets can encompass diverse data complexities, such as class imbalance, missing values, and outliers, 

thereby aiding in assessing how effectively logistic regression operates under different conditions and 

whether additional tuning is necessary. To assess the effectiveness of the logistic regression model, the 

following metrics were employed:  

1. Precision is the ability of the classifier not to label as positive a sample that is negative. In table 6 

this metric provides an assessment of the model's overall precision, considering the weights of each 

class based on their distribution in the dataset. This allows for accounting for class imbalance, where 

one class may have significantly more instances than others.  

2. Accuracy. This metric indicates the accuracy of a classification model, measuring the overall 

percentage of correct predictions (both positive and negative) out of the total number of examples in 

dataset: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) =
1

𝑛samples
∑ 1(�̂�𝑖 = 𝑦𝑖)

𝑛samples−1

𝑖=0

, (7) 

where �̂�𝑖 is the predicted value of the 𝑖-th sample, 𝑦𝑖 is the corresponding true value, 1(𝑥) is the 

indicator function. 

3. Type 1 Error. This metric indicates the precision of the model for the class denoted as "class1" 

or the positive class. Type 1 Error measures the percentage of correct positive predictions made by the 

model among all positive predictions: 

𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (8) 

where 𝑡𝑝 (true positive) is correct result, 𝑓𝑝 (false positive) is unexpected result. 
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4. Type 2 Error. This metric typically represents the proportion of false negative predictions made 

by a classification model, specifically in the context of binary classification tasks. Type 2 Error 

quantifies the rate at which the model incorrectly predicts negative outcomes, providing insights into 

its ability to avoid missing positive cases: 

𝑇𝑦𝑝𝑒 2 𝐸𝑟𝑟𝑜𝑟 = 1 − 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (9) 

where 𝑡𝑝 (true positive) is correct result, 𝑓𝑛 (false negative) is missing result. 

5. F1-Score. This metric is a combination of Precision and Recall and is used to assess the balance 

between these two metrics. It is particularly useful in situations where there is class imbalance (different 

numbers of instances for different classes) because it considers both Precision and Recall for each class 

and calculates their weighted harmonic mean: 

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃(𝑦, �̂�) × 𝑅(𝑦, �̂�)

𝑃(𝑦, �̂�) + 𝑅(𝑦, �̂�)
, (10) 

where 𝑃(𝑦, �̂�) is precision, 𝑅(𝑦, �̂�) is recall. 

Leveraging synthetic dataset generators enables rapid iteration and testing of various hypotheses and 

model parameters without the need to wait for real data.  

 
Table 6 
Classification comparison 

Dataset Precision Accuracy Type 1 Error Type 2 Error F1-Score 

original.csv 0.860633 0.860000 0.844660 0.876289 0.859972 
std1.csv 1.000000 1.000000 1.000000 1.000000 1.000000 
std3.csv 0.955073 0.955000 0.961905 0.947368 0.955012 
40-60.csv 0.865830 0.865000 0.876712 0.858268 0.863560 
30-70.csv 0.864803 0.865000 0.862745 0.865772 0.860449 
blank10.csv 0.856354 0.856354 0.858696 0.853933 0.856354 
blank20.csv 0.885321 0.885350 0.884058 0.886364 0.885190 
outliers5.csv 0.865167 0.865000 0.870968 0.859813 0.864888 
outliers10.csv 0.860000 0.860000 0.871560 0.846154 0.860000 
outliers20.csv 0.868215 0.865000 0.831776 0.903226 0.864848 

5. Conclusion 

The article explores the construction of Gaussian distributions using the Box-Muller transform, a 

method relying on uniform random numbers to generate pairs of independent Gaussian variables. 

However, while efficient for core Gaussian values, the Box-Muller algorithm may fall short in 

generating extreme or outlier values crucial for evaluating rare events. To address this limitation, the 

article proposes incorporating specialized distributions to generate extreme values in tails. By 

combining these extreme values with standard normal random variables, a broader dataset can be 

formed, enriching evaluations and bolstering machine learning models. 

This study also introduces a synthetic data generator designed for evaluating data visualization 

methods and machine learning systems. The application is highly adaptable, providing users with the 

capability to create and store models, generate artificial data, and even explore models created by other 

users. This enhanced accessibility promotes collaborative learning and testing of machine learning 

models on data. This article also demonstrates the practical utility of the application in the realm of 

assessing machine learning algorithms. It illustrates the process of generating various datasets, enabling 

precise control over typical challenges encountered in machine learning tasks. The visual 

representations created for each scenario provide compelling evidence of the tool's reliability in 

validating diverse situations. 

In future research endeavors, the exploration of employing machine learning techniques to enhance 

the realism of synthetic data by introducing common noise patterns observed in real-world data, while 
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preserving the fundamental distribution, can be considered. Additionally, another avenue of 

investigation involves the generation of synthetic data encompassing categorical, time-series, or mixed 

data types. This would enable the utilization of the generated synthetic data within the context of the 

Computing with Words Model [25, 26] and other fuzzy set models. 

In conclusion, the creation of benchmark datasets for testing data analytics tools represents a crucial 

step in the advancement of data science and machine learning research, offering a standardized means 

of evaluating and comparing the performance of various analytical methodologies. These benchmark 

datasets not only facilitate fair and rigorous assessment of data analytics tools but also open avenues 

for future research in the refinement of synthetic data generation techniques and the development of 

more comprehensive and realistic benchmark datasets. 
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