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Abstract 
The purpose of this paper is to study new classes of program-oriented logical formalisms of 

the modal type. We propose transitional modal logics (TML) of partial quasiary predicates 

without monotonicity condition and enriched with equality predicates. The work describes 

semantic models and languages of pure first-order TML with strong equality predicates,  the 

properties of the equality predicates are given. A feature of these logics is the use of the 

extended renomination composition. The semantic basis of TML is transitional modal 

systems (TMS). Important varieties of such systems are specified – general TMS (GMS), 

temporal TMS (TmMS), multimodal TMS (MMS). The languages of GMS, TmMS and 

MMS are described, interpretation mappings of formulas on semantic models are defined. 

The properties of transitional modal systems are considered, the interaction of modal 

compositions with renominations and quantifiers is investigated. A number of logical 

consequence relations are determined on sets of formulas specified with states (irrefutability, 

truth, falsity and strong logical consequence relations). The properties of these relations, in 

particular, properties related to equality predicates, are described. On the basis of these 

properties, a construction of sequent type calculi is planned for the proposed logics. 
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1. Introduction 

The apparatus of modal logics is used with great success to describe and model various subject 

areas and aspects of human activity (see, e.g., [1–5]). Temporal logics are used for dynamic systems 
modeling, specification and verification of programs [1, 2, 6–8], a number of specification systems 

and languages have been developed on the basis of these logics. Epistemic logics are successfully 

used to describe artificial intelligence systems, information and expert systems, databases and 
knowledge bases with incomplete information. Traditional modal logics are based on classical logic of 

predicates. However, classical logic has a number of limitations, it does not adequately take into 

account the partiality, incompleteness, structuredness of information about the subject area. The 
fundamental limitations of classical logic of predicates bring to the fore the task of building new, 

program-oriented classes of logical formalisms of modal type. Such are composition nominative 

modal logics [9], built on the basis of a common for logic and programming composition nominative 

approach. Composition nominative modal logics (CNML) combine capabilities of composition 
nominative logics of partial quasiary predicates [10] and traditional modal logics. A very important 

class of CNML is transitional modal logics (TML), they reflect the aspect of change and evolution of 

subject areas. Traditional modal logics – aletic, temporal, epistemic, deontic, etc – can be naturally 
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considered within TML. Multimodal and temporal composition nominative logics are subclasses of 
TML; within the multimodal TML, general TML and TML of epistemic type are further singled out. A 

number of TML classes have been investigated, in particular, in [9]. 

In this paper we study new classes of program-oriented logical formalisms of modal type – pure 

first-order transitional modal logics of partial non-monotonic quasiary predicates with equality. Such 

logics use the extended renomination composition and 0-ary compositions xy (strong equality 
predicates). Transitional modal systems of these logics (TMS) and their important varieties – general 

(GMS), temporal (TmMS) and multimodal (MMS) TMS – are described. We specify languages of the 

introduced systems and present their properties. Special attention is paid to properties related to the 
strong equality predicates and interaction of quantifiers with modal compositions. For formalization 

of logical consequence in TML for sets of formulas specified with states, we define irrefutability, 

truth, falsity and strong logical consequence relations and provide their main properties, in particular, 

ones related to the equality predicates and elimination of modalities. 

2. Quasiary predicates and their compositions 

To facilitate reading, we will provide the definitions necessary for the further presentation. 

Concepts that are not defined here are interpreted in the sense of works [9, 10]. 

In this paper, we will follow the notation used in [9, 10]. In particular, modalities “necessarily” and 
“possibly” are denoted by the operators  (“box”) and  (“diamond”) respectively, their symbols in 

the language by  and ; temporal operators are denoted by , , , , and their symbols in the 

language by , , , . 

Quasiary predicates. Data in the logics of quasiary predicates have a structure of nominative sets. 
Functions and predicates defined on nominative sets are called quasiary. 

A nominative set is a set of named values, i.e. set of pairs (name, value). Formally, a V-A-

nominative set (V-A-NS) is defined as a single-valued function of the form  :d V A® . We interpret V 

and A as sets of subject names (variables) and subject values respectively. Next, V-A-NS is presented 

in the form [v1a1,...,vnan,...]; here vіV, aіA, vі  vj when і  j. We denote the set of all V-A-
nominative sets by VA.  

For single-valued functions, we will further write: 

– f(d), if the value of f(d) is defined, 

– f(d), if the value of f(d) is undefined. 

For V-A-NS we introduce operations || Z and ||–Z, where Z  V: 

  || { | };   || { | }.Zd Z v a d v Z d v a d v Z        

Operation 1 1

1

,..., , ,...,

 ,..., , ,...,r :n m

n

v v u u

x x  
VА® VA of the extended renomination, where all vi, xi, uj V, and the 

symbol V means no value, is specified as follows: 

1 1

1 11

,..., , ,...,
{ ,..., , ,..., } 1 1 ,..., , ,...,r ( ) ||  [ ( ),..., ( )].n m

n mn

v v u u
v v u u n nx x d d v d x v d x     

In case d(xі), the component with name vі is absent. 

We introduce an abbreviated notation y  for y1,..., yn: instead of 1 1

1

,..., , ,...,

 ,..., , ,...,r n m

n

v v u u

x x   , we will write 
,

 ,r .v u
x    

Thus, given d(z), we obtain 
, , , , , , ,

 , ,  , ,  , ,  ,r ( ) r ( ) and r ( ) r ( ).v u y v u y v u z v u
x z x x xd d d d        

Sequential application of operations 
, ,

 ,  ,r  and rv z u t
y x   can be interpreted as one renomination 

operation called their convolution and denoted by 
,  ,

 ,  ,r .v z u t
y x   Hence 

, , ,  ,
 ,  ,  ,  ,r (r ( )) r ( ).u t v z v z u t
x y y xd d      

A partial function of the form Q : VA { , }T F®  is called a V-A-quasiary predicate. Here {T, F} is 

the set of truth values. In this paper, we will consider modal logics of single-valued quasiary 
predicates, or P-predicates. 

We will denote by PrPV–A the class of V-A-quasiary predicates. 
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Each P-predicate S is determined by two sets: 

– the truth domain T(S) = {d | S(d) = T};  

– the falsity domain F(S) = {d | S(d) = F}.  

The single-valuedness of the predicate S means that T(S)F(S) = .  

The name хV is unessential for the predicate S, if for all d1, d2 
VA we have: 

d1 ||–х = d2 ||–х  Q(d1) = Q(d2). 

The unessentiality of x means that the predicate S is “insensitive” to the data component named x. 

V-A-quasiary P-predicate S is: 

– irrefutable (partially true), if  F(S) = ;  

– constantly true (denoted T), if F(S) =   and  T(S) = VА;   

– constantly false (denoted F), if T(S) =   and  F(S) = VА;  

– totally undefined (denoted Ê ), if T(S) = F(S) = .  

Therefore, we have three constant P-predicates: T, F, and .Ê   

For single-valued predicates, the concept of monotonicity is specified as equitonicity – 

preservation of the already accepted value after data expansion. 

P-predicate S is equitone if the conditions S(d) and d  d' imply S(d') = S(d).  

Variable assignment predicates Ez which indicate whether a component with a corresponding name 

zV has a value in the input data are used for quantifier elimination in logics of non-monotonic 
predicates [10]. In this paper, instead of Ez, we will use a more descriptive notation z. We define the 

predicates z as follows: 

T(z) = {d | d(z)};  F(z) = {d | d(z)}.  

Predicates z are total, single-valued, non-monotonic. 

Every xV such that x  z, is unessential for z.  

Equality predicates. In logics of quasiary predicates, two types of equality predicates can be 

considered: weak (up to definability) equality and strong equality. Weak equality predicates are 
inherent for logics of monotonic (equitone) predicates, while strong equality predicates are inherent 

for logics of non-monotonic predicates. 

In this work, we consider modal logics of P-predicates without monotonicity restrictions with 

strong equality predicates {x,y}. We specify these predicates as follows (see [10]):  

T({x,y}) = {d | d(x), d(y) and d(x) = d(y)} 
 {d | d(x) and d(y)}, 

F({x,y}) = {d | d(x), d(y), d(x)  d(y)} 
 {d | d(x), d(y) or d(x), d(y)}. 

Further on the predicates {x,y} will be denoted as xy. We will also use the traditional notation x  y.  

Note that xy and yx denote the same predicate! 

Predicates {x} – a special case of {x,y} when x and y are the same name – will be denoted by xх 

(or x  x in the traditional form).  

Every zV \{x, y} is unessential for xy; every zV \{x} is unessential for xх.  

Predicates xy are total single-valued and non-monotonic. 

For xх we have T(xx) = VА and F(xx) = , therefore xх is a constant predicate T. 

Basic logical compositions. Basic logical compositions of pure first-order modal logics of 

quasiary predicates are logical connectives  and , renomination 
,
,R ,v u

x   and existential 

quantification x. Let us briefly recall their definitions (see [10]). 

Renomination composition is specified using a corresponding operation: 

, ,
,  ,R ( )( ) (r ( ))v u v u

x xQ d Q d   for all dVА. 

We define compositions , , x through the truth and falsity domains of the corresponding 

predicates: 
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T(P) = F(P);           F(P) = T(P); 

T(PQ) = T(P)T(Q);        F(PQ) = F(P)F(Q); 

T(xP) = { | ( ||  ) };x
a A

d Q d x a T


     F(xP) = { | ( ||  ) }.x
a A

d Q d x a F


   

Properties of propositional compositions and quantifiers not related to renominations are similar to 

the properties of classical logical connectives and quantifiers. Properties associated with 

renominations are specified as follows:  

R) R(Q) = Q;  

RI) 
, , ,
, , ,R ( ) R ( )z v u v u

z x xQ Q   – convolution of an identical pair of names in renomination; 

RU) zV is unessential for the predicate Q  
, , ,
, , ,R ( ) R ( )z v u v u

y x xQ Q  ; 

R) given d(z), then 
, , , , , , ,
, , , , , , ,R ( )( ) R ( )( ) and R ( )( ) R ( )( )v u y v u y v u z v u

x z x x xQ d Q d Q d Q d       ; 

R) 
, ,
, ,R ( ) R ( );v u v u

x xQ Q     

R) 
, , ,
, , ,R ( ) R ( ) R ( );v u v u v u

x x xP Q P Q       

RR) 
, , , ,
, , , ,R (R ( )) R ( );v z u t v z u t

y x y xQ Q      

Ren) given z is unessential for Q then R ( );y
zyQ z Q     

Rs) given { , , }y v x u  then 
, ,
, ,R ( ) R ( );v u v u

x xy Q yQ      

R) given z is unessential for Q and { , , }z v x u  then 
, ,
, ,R ( ) R ( ).v u v u y

x x zyP z P     

The quantifier elimination is based on the following properties:  

Tv) 
, , ,
, , ,(R ( )) ( ) (R ( ));u w x u w

v y vT Q T y T xQ      

Fv) 
, , ,
, , ,(R ( )) ( ) (R ( )).u w u w x

v v yF xQ T y F Q      

Let the predicate  z be denoted by z. Then we have z  z = T. 

Let us consider properties of equality predicates. Note that the symmetry of equality is virtually 

technical as xy and yx is the same predicate. 

The reflexivity of equality predicates follows from the fact that T(xx) = VА and F(xx) = :  

Rf) xx = T, i.e. each xx is a constant predicate T. 

The transitivity of equality predicates: 

Tr) xy & yz  xz = T. 

Renomination properties of equality predicates (properties of the R type):  

Rxx) 
, ,
, ,R ( )  ;v u x

w z xx zz      

R0) given , { , }x y u v , then 
,
,R ( )  ;v u

w xy xy      

in particular, given { , }x u v , then 
,
,R ( )  ;v u

w xx xx      

R1) 
, ,
, ,given { , } and ,  then R ( )  ;v u x

w z xy zyy u v x y        

R2) 
, , ,
, , ,R ( )  ;v u x y

w z s xy zs      

R1) 
, ,
, ,given { , } and ,  then R ( )  ;v u x

w xyy u v x y y       

R2) 
, , ,
, , ,R ( )  ;v u x y

w z xy z      
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R) 
, , ,
, , ,R ( )  T;v u x y

w xy      in particular, 
, , 
, ,R ( )  T.v u x

w xx      

The substitution of equals in renomination: for all QPrPV–A and dVA we have  

rp) xy(d) = T  
, , , ,
, , , ,R ( )( ) R ( )( ).v u z v u z

w x w yQ d Q d    

Derivative property of the elimination of a pair of equals: for all QPrPV–A and dVA we have 

elR) xy(d) = T  
, , ,
, , ,R ( )( ) R ( )( ).v u x v u

w y wQ d Q d    

3. Transitional modal systems and their varieties  

The concept of composition nominative modal system [9] is the central notion of CNML. Such 

systems describe possible worlds of modal logic and are models of these worlds. 

Composition nominative modal system (CNMS) is an object of the form M = (Cms, Ds, Dns), 
where: 

– Cms is a composition modal system (CMS); it defines semantic aspects of the world; 

– Ds is a descriptive system; it defines a set of standard descriptions Fm – formulas of the CNML 
language; 

– Dns is a denotation system; it determines values of standard descriptions (language formulas) on 

semantic models; an interpretation mapping Iт of formulas on states of the world is usually used for 
this. 

CMS are relational semantic models. They have the form Cms = (St, R, Pr, C), where: 

– St is a set of states of the world; 

– R is a set of relations on St of the form R  St  Stn;  

– Pr is a set of predicates on states of the world; 

– C is a set of compositions on Pr. 

Therefore, CNMS can be interpreted as objects M = ((St, R, Pr, C), Fт, Iт).  

For the first-order CNMS, a set of states of the world St is specified as a set of algebraic structures 

 = (A, Pr), where A is a set of basic data of the state , Pr is a set of quasiary predicates 
VA {T, F}, called predicates of the state .  

Let us call global the predicates of the form VA {T, F}, where 
S

A A


 . 

A set of compositions in CNMS is determined by basic logical compositions of the corresponding 

level and basic modal compositions. 

We consider logical connectives  and , compositions of extended renomination 
,
,R ,v u

x   

quantification compositions x and special 0-ary compositions – strong equality predicates xy – to be 

basic logical compositions of pure first-order KNMS with equality. 

Transitional modal systems. An important class of CNML, transitional modal logics (TML) 

reflect the aspect of change and evolution of subject areas, describing transitions from one state of the 

world to another. At the heart of TML lies the concept of transitional modal system [9]. 
Transitional modal system (TMS) are CNMS in which the set R consists of relations of the form 

R  St  St. We interpret them as state transition relations. 

Special cases of TMS are general transitional, temporal and multimodal systems. 

TMS in which R consists of a single binary relation  and with a basic modal composition  

("necessary") are called general (GMS). 

TMS in which R consists of a single binary relation  and with basic modal compositions  ("it 

will always be the case") and  ("it has always been the case") are called temporal (TmMS). 

TMS with a set of relations R = {i | iI} and basic modal compositions Mi, iI, in which each 

i R is matched with a corresponding modal composition Mi, are called multimodal (MMS). 
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GMS is a special case of MMS, with R consisting of a single relation   and a single basic modal 
composition M identical to . 

For GMS, the derivative composition  ("possible") is traditionally specified as: 

Р means Р. 

For MMS, each Mi is identical to  with respect to its relation i, iI.  

For TmMS, the derivative compositions  ("it will sometimes be the case") and  ("it was 

sometime the case") are defined as: 

Р  means Р;  Р means Р.  

Further on TMS will be abbreviated denoted M = (St, R, A, Im), where .
S

A A


   

GMS languages. Let us describe a language of a first-order GMS with equality. The alphabet: 

– a set V of subject names (variables); 

– a set Ps of predicate symbols (language signature); 

– a set of basic logical compositions’ symbols 
,
,{ , , , , };v u

x xyR x      

– a set of basic modal compositions’ symbols (modal signature), which consists of one symbol: 
Ms = {}.  

The set Fт of language formulas is determined inductively: 

FA) every pPs and every symbol ху is a formula; such formulas are atomic; 

FP) let  and  be formulas; then  and  are formulas; 

FR) let  be a formula; then 
,
, ( )v u

xR    is a formula; 

F) let  be a formula; then x is a formula; 

F) let  be a formula, then  is a formula. 

We will use the derived modal composition , and thus write  instead of . 

For each pPs, a set of its unessential names is specified using a total mapping  : Ps2V. Let us 

limit ourselves to the set VT
  V of names unessential for all рPs – called a set of totally unessential 

names, therefore (р)  VT for each рPs. To define sets of guaranteed to be unessential names for 

formulas, we continue  to the mapping  : Fт2V as follows: 

– (ху) = V \{x, y};  

– () = (Ф);  

– () = ()(); 

– 1 1

1

,..., , ,...,

,..., , ,..., ( )n m

n

v v u u

x xR      ((){v1,...,vn, u1...,um}) \ {xi | vi(), i{1,…, n}};  

– (x) = (){x}; 

– () = ().  

The pair  = (Ps, ) is an extended GMS signature. 

A GMS type is determined by an extended signature and properties of the relation .  

Let us define an interpretation mapping of formulas on states of the world. 

First, we specify an interpretation mapping of atomic formulas Im : Рs  St Pr, where a condition 

Iт(p, )  Pr should hold (basic predicates are predicates of states). Compositions’ symbols (in 

particular, xy symbols) are interpreted as corresponding compositions (in particular, corresponding 

equality predicates xy). The mapping Im is continued to an interpretation mapping of formulas on  

states Iт : Fт  St Pr as follows: 

IP) Iт(, ) = (Iт(, ));  Iт(, ) = (Iт(, ), Iт(, ));  

IR) 
, ,
, ,( ( ), ) R ( ( , ));v u v u

x xIm R Im        
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I) Iт(x, )(d) =
,  if ( , )( ||  )  for some ,
,  if ( , )( ||  )   for any ,

 else undefined.                                                          

x

x

T  Im d x a T  a A
F Im d x a F a A

 

 

    
    



  

I) for each St we set  

Iт(, )(d)
,  if ( , )( )  for any :  ,   
,  if exists :   and ( , )( ) ,

else undefined.                                                

T Im d T St
F St  Im d F

     
      


  

Given for St there is no  such that , then for each dVA we define Iт(, )(d).  

Note that for abbreviations of formulas of the form , we define the mapping Iт as follows: 

I) for each St we specify:  

Iт(, )(d) 
,  if exists :   and ( , )( ) ,
,  if ( , )( )  for any :  ,  

else undefined.                                             

T St  Im d T
F Im d F  St

     
      


  

Given for St there is no  such that , then for each dVA we define Iт(, )(d).  

Predicates which are values of formulas that do not use modalities belong to predicates of states. 

A predicate Iт(, ), which is a value of the formula  in the state , is denoted by . 

A formula  is valid on state  (denoted  |= ), if  is a valid (irrefutable) predicate. 

A formula  is valid in GMS M (denoted M |= ), if for each St the predicate  is valid. 

Let ℳ be a GMS class of a given type. The formula  is called ℳ-valid (denoted ℳ |= ), if 

M |=   for all GMS Mℳ.  

Depending on conditions imposed on the relation , different classes of GMS can be specified. 

Traditionally, cases where  can be reflexive, symmetric or transitive are considered. In case  is 

reflexive/transitive/symmetric, then we will write the corresponding symbol R/T/S in the GMS name. 
Thus we get the following GMS classes: 

R-GMS, T-GMS, S-GMS, RT-GMS, RS-GMS, TS-GMS, RTS-GMS. 

Note that R-GMS, RS-GMS, RT-GMS, RTS-GMS are similar to classical T-model, B-model, S4-
model and S5-model structures. 

TmMS languages. Let us describe a language of a first-order TmMS with equality. The alphabet 

is identical to the alphabet of a first-order GMS language with equality, with a set Ms specified as 

follows: Ms = {, }.  
The set Fm of language formulas is determined according to the described above items FA, FP, FR, 

F, but instead of F we have: 

F) let  be a formula, then  and  are formulas. 

We will use the derived modal compositions  and  to write formulas of the form  

та . 

When we define a mapping Im, instead of I for formulas  and  we have: 

I) for each St we specify: 

Iт(, )(d)
,  if ( , )( )  for any :  ,   
,  if exists :   and ( , )( ) ,

else undefined.                                               

T Im d T St
F St  Im d F

     
      


  

Iт(, )(d)
,  if ( , )( )  for any :  ,   
,  if exists :   and ( , )( ) ,

else undefined.                                               

T Im d T St
F St  Im d F

     
      


  

Given for St there is no  such that , then for each dVA we define Iт(, )(d).  

Given for St there is no  such that , then for each dVA we define Iт(, )(d).  

Depending on conditions imposed on , different classes of TmMS can be defined. Considering 

the cases when  can be reflexive, symmetric or transitive, we obtain the following classes: 

R-TmMS, T-TmMS, S-TmMS, RT-TmMS, RS-TmMS, TS-TmMS, RTS-TmMS. 
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MMS languages. Let us describe a language of a first-order MMS language with equality. The 
alphabet is identical to the alphabet of a first-order GMS language with equality, with a set Ms is 

specified as follows: Ms = {Mi | iI}.  

The set Fт of language formulas is determined according to the described above items FA, FP, FR, 

F, but instead of F we have: 

FM) let  be a formula, Mi Ms;  then Mi  is a formula. 

When we define a mapping Im, instead of I for formulas of the form Mi  we have: 

IM) for each St we specify:  

Iт(Mi , )(d)
,  if ( , )( )  for any :  ,   
,  if exists :   and ( , )( ) ,

else undefined.                                                

i

i

T Im d T St
F St  Im d F

     
      


  

Given for St there is no  such that i , then for each dVA we define Iт(Mi , )(d).  

Depending on properties of relations i, different classes of MMCs can be defined. We consider 

cases where i can be reflexive, symmetric or transitive, and all i are of the same type. Thus we 

obtain the following MMS pure types: 

R-MMS, T-MMS, S-MMS, RT-MMS, RS-MMS, TS-MMS, RTS-MMS. 

At the same time, much more complex, mixed types are possible here. For example, the relation 1 

is transitive and reflexive, 2 is symmetric, 3 is transitive, etc. 

We will call MMS with finite sets of same-type relations i epistemic MMS (EpMS). Therefore, 

GMS can be interpreted as a special case of EpMS. 

Traditional systems of epistemic logic of knowledge can be naturally considered within EpMS. In 
particular, R-EpMS, RT-EpMS, RTS-EpMS are generalizations of epistemic Т(n), S4(n), S5(n)-systems 

respectively. 

4. Properties of transitional modal systems 

Let dVA. The question arises: how to set the value of (d)?  

Let given dVA we have (d), hence (d)  dVA. Such a property is called a strong 

condition of undefinedness on states. In this case, from ()(d) = T follows that dVA for all  such 

that . This means that basic objects (basic data) cannot disappear when transitioning to a 

successor state, which imposes strong restrictions on semantic models. In addition, equitonicity of 

predicates is violated under a modal composition. Therefore, the strong undefinedness on states 
condition is too restrictive. 

The general condition of undefinedness on states seems more organic: 

given dVA, we specify (d) = (d).  

Here d denotes NS [vad | aA].  

Informally, this means that a predicate on states  "perceives" only such components va that 

aA. Hence for TMS with a general condition of undefinedness on states, we have (d) = (d) for 

all dVA.  

It is not difficult to show that in GMS, TmMS, MMS with a general condition of undefinedness on 
states, basic modal compositions preserve the predicates’ equitonicity. 

Thus, further on we will consider TMS with a general condition of undefinedness on states. 

Predicates that are values of non-modalized formulas, belong to predicates of state; they are 

defined as follows: for each dVA we have (d) = (d). 
Predicates which are values of modalized formulas, belong to global predicates. 

Interaction of modal compositions with renominations and quantifiers. Symbols of TMS 

modal compositions can be carried through renominations: 

Theorem 1. 
, ,
, ,R ( ( ))( )  (R ( ))( )v u v u

x xd d     for arbitrary Ms, Fm, dVA.  
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The statement of Theorem 1 is specified for the cases of GMS, TmMS, MMS. 
Here we consider: 

Ms= {} for the GMS case, 

Ms= {, } for the TmMS case, 

Ms= {Mi | iI} for the MMS case. 

Consequence 1. Formulas 
, ,
, ,R ( ( ))  (R ( )),v u v u

x x     where  Ms, are irrefutable. 

The interaction of modal compositions and quantifiers in TMS is more interesting. We will 

consider the interaction of  and  with x and x in GMS, cases of TmMS and MMS are similar. 

Theorem 2. Let M be a GMS of equitone predicates, then for each Fm we have: 

1) M |= x  x; 

2) M |= x x.   

Consequence 2. Let M be a GMS of equitone predicates, then for each Fm we have: 

1) M |= x  x;   

2) M |= x  x. 

Thus, in a GMS of equitone predicates, formulas x  x, x x, 

x  x, x  x are irrefutable (valid). 

In contrast to the statement of Theorem 2, in a GMS without monotonicity restrictions, formulas 

x  x та x x are refutable (see also [9]). 

Example 1. Formula xx is refuted in a GMS without monotonicity restrictions. 

Let St = {, },  R = {},  A = {a, b}, A = {b}. We have [xa, yb] = [yb].  

Let us take рPs from (р) = V \{x}. Let us set р([yb]) = T,  р([xb, yb]) = F. 

Given A = {b} and р([xb, yb]) = F, we have (x р)([yb]) = F  (x р)([yb]) = F. We 

obtain р([xa, yb]) = р([yb]) = T  (р)([xa, yb]) = T  (xр)([yb]) = T.  So, 

(xрx р)([yb]) = F, therefore  | xрx р.   

Example 2. Formula x x  is refuted in a GMS without monotonicity restrictions. 

Let St = {, },  R = {},  A = {a}, A = {b}.  Let us take рPs from (р) = V \{x}. 

Let us set р() = F,  р() = F,  р([xb]) = T.  

We have р[xb] = T   (x р)() = T   (x р)() = F. 

We obtain [xa] =   р([xa]) = р() = F  (р)([xa]) = F  (xр)() = F.  

Therefore, (x рxр)() = F    | x рxр.  

Note that in the examples 1 and 2, the predicate р is non-equitone. 

Consequence 3. Formulas xx and xx  are refutable. 

Example 3. Formulas xx and xx are refuted in a GMS of equitone 

predicates. 

Let St = {, }, R = {}, A = {a}, A = {a, b}.  

Let us take р, qPs from (р) = (q) = V \{x}.  

Let us set р([xa]) = F, р([xa]) = F, р([xb]) = T.  

Given A = {a}, we have р[xa] = F  (р)[xa] = F  (xр)([xa]) = F  .  

However, given р([xb]) = T, we obtain (x р)([xa]) = T  (x р)([xa]) = T. 

Therefore, (x рxр)([xa]) = F   | x рxр.  

Let us set q([xa]) = T, q([xa]) = T, q([xb]) = F.  

We have q[xb] = F  (x q)([xa]) = F  (x q)[xa] = F.  

Given q([xa]) = T, we have (q)([xa]) = T  (xq)([xa]) = T.  

Therefore, (xqx q)[xa]) = F, whence  |xqx q.  

Consequence 4. Formulas xx and xx are refutable in a GMS of equitone 
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predicates. 

Characteristic features of equality predicates in TML. In the classical logic of predicates, 

formulas of the form x = y are refutable under 2-element interpretations, but they are irrefutable 

under 1-element interpretations. However, this is not the case for formulas ху of logic of quasiary 
predicates, they are also refutable under 1-element interpretations. Indeed, let us take an 1-element 

interpretation A = ({a}, I) and d = [xa]. Then d(x) = a and d(y), therefore ху([xa]) = F.  

For TML, this gives the following result. 

Statement 1. Formulas ху and ху can be refuted on GMS with 1-element states. 

At the same time, formulas xx are always interpreted as a constant predicate T. Hence 

Statement 2. M |= хх and M |= хх for each GMS M.  

Note that хх is not always interpreted as a constant predicate T!  

Example 4. Let us consider GMS with St = {, } and R = {}. Since there is no state  such 

that , then (хх)(d) for each d. 

Example 5. Formulas  ху  ху and ху  ху  are refuted in the specified above GMS. 

Let St = {, }, R = {}, A = {a}, A = {b}.  

Let us take d = [xb, za]  d = [za], d = [xb]. Hence d(x), d(y), d(x) = b, d(y).  

We have (ху)(d) = (ху)(d) = Т.  

At the same time, (ху)(d) = (ху)(d) = F  (ху)(d) = (ху)(d) = F. 

Therefore, (ху  ху)(d) = F   | ху  ху.  

Let us take h = [xa, zb]  h = [xa], h = [zb]. Hence h(x) = a, h(y), h(x), h(y).  

We have (ху)(h) = (ху)(h) = F.  

At the same time, (ху)(h) = (ху)(h) = T  (ху)(h) = (ху)(h) = T.  

Therefore, (ху  ху)(h) = F   | ху  ху.  

5. Logical consequence relations in TML 

We will define logical consequence relations in TML on a set of formulas specified with names of 

states (or simply, specified with states). 

Let us denote a formula specified with a state by , where  is a formula of the language, and 

S is its specification (S is a set of names of states of the world). Hence, the specification indicates 

the state of the world on which the formula is considered. 
To eliminate quantifiers in the logics of non-monotonic predicates, variable assignment predicates 

z will be used. Therefore, further on we will consider extended sets of formulas specified with states, 

in which special formulas of the form z can appear: although the set of language formulas is 

expanded with predicate symbols z, formulas z are not used for construction of more complex 

formulas. In fact it is possible to consider z as full-fledged atomic formulas, using them for 
construction of complex formulas, however this does not actually change semantic properties of the 

language.  

Let  be a set of formulas specified with states with a specifications’ set S. We will call a set  

consistent with a TMS M = (St, R, A, Im), provided that an injection of S into St is defined. 

On sets of formulas specified with states, we will introduce the relations of irrefutability, truth, 
falsity and strong (denoted by IR, T, F and TF respectively) logical consequence. Such relations are 

specified similarly to the corresponding relations in the traditional logics of quasiary predicates 

(see [10]). 

Let  and  be sets of formulas specified with states. 

Further on, when writing  M|=* , we will assume by default that  and  are consistent with the 

TMS M. 

 is an IR-consequence of  in a consistent with them TMS M (denoted  M|=IR ), if for all dVA: 

(d) = T for all   Ψ(d)  F for some Ψ.   
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 is a logical IR-consequence of  with respect to a TMS of a type ℳ  if  M|=IR  for all TMS 

Mℳ.  We will denote this by  
ℳ|=IR , or  |=IR , if ℳ is implied.  

Therefore,  |IR   a TMS M consistent with  and  and dVA exist such that: 

(d) = T for all   and  Ψ(d) = F for all Ψ.   

 is a T-consequence of   in a consistent with them TMS M (denoted  M|=T ), if for all dVA: 

(d) = T for all   Ψ(d) = T for some Ψ.   

 is a logical T-consequence of  with respect to a TMS of a type ℳ  if  M|=T  for all TMS 

Mℳ.   
ℳ|=T , or  |=T , if ℳ is implied.  

Therefore,  |T   a TMS M consistent with  and  and dVA exist such that: 

for all  we have (d) = T  and  for all Ψ we have Ψ(d)  T.   

 is a F-consequence of   in a consistent with them TMS M (denoted  M|=F ), if for all dVA: 

Ψ(d) = F for all Ψ   (d) = F for some .  

 is a logical F-consequence of  with respect to a TMS of a type ℳ  if  M|=F  for all TMS 

Mℳ.  We will denote this by  
ℳ|=F , or  |=F , if ℳ is implied.  

Therefore,  |F   a TMS M consistent with  and  and dVA exist such that: 

for all Ψ we have Ψ(d) = F  and  for all  we have (d)  F.  

 is a TF-consequence of  in a consistent with them TMS M (denoted  M|=TF ), if: 

 M|=T  and  M|=F .  

Therefore,  M|TF    M|T  or  M|F .  

 is a logical TF-consequence of  with respect to a TMS of a type ℳ  if  M|=TF  for all TMS 

Mℳ.  This will be denoted by  
ℳ|=TF , or  |=TF , if ℳ is implied.  

It is obvious that  |=TF      |=T  and  |=F . 

Therefore,  |TF   a TMS M consistent with  and  exists such that:  

 M|T  or  M|F .  

The non-modal properties of the specified relations repeat the corresponding properties of the 

same-named relations for sets of formulas of the traditional logic of quasiary predicates. 
These properties are: 

– decompositions of formulas L, R, L, R, L, R, and also L, R;  

– properties that guarantee the corresponding consequence relation; 

– simplifications and equivalent transformations induced by properties of predicates R, RI, RU, 

R, R, RR, R. Each such property R (except R) produces 4 corresponding properties RL, RR, 

RL, RR for the logical consequence relation when the selected formula or its negation is on the 

left or right side of this relation, and R produces 8 properties; 

– properties related to the quantifier elimination; 

– properties related to equality predicates. 

As an example, let us give the properties produced by R: 

R1L) 
, ,

 , , ( ) ,v u y
x zR 
   M|=* , z

    
, ,

 , , ( ),v u y
xR     M|=* , z

; 

R1L) 
, ,

 , , ( ) ,v u y
x zR 
   M|=* , z

    
, ,

 , , ( ),v u y
xR     M|=* , z

; 

R1R)  M|=* ,
, ,

 , , ( ) ,v u y
x zR z 
       M|=* ,

, ,
 , , ( ) , ;v u y
xR z 
    

R1R)  M|=* ,
, ,

 , , ( ) ,v u y
x zR z 
       M|=* ,

, ,
 , , ( ) , ;v u y
xR z 
    

R2L) 
, ,

 , , ( ) ,v u y
xR 
    M|=*, y

   
,

 , ( ) ,v u
xR 
   M|=*, y

;  

R2L) 
, ,

 , , ( ) ,v u y
xR 
    M|=*, y

   
,

 , ( ) ,v u
xR 
   M|=*, y

;  
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R2R)  M|=* ,
, ,

 , , ( ) ,v u y
xR y 
        M|=* , 

,
 , ( ) , ;v u
xR y 
    

R2R)  M|=* ,
, ,

 , , ( ) ,v u y
xR y 
        M|=* ,

,
 , ( ) , .v u
xR y 
   

Equality properties. Let us consider properties related to equality predicates. 

Predicates xy are total single-valued, so  can be removed similarly to L and R:  

L) xy
,  M|=    M|= xy

, ;   

R)  M|= xy
,   xy

,  M|= ;   

RL) 
, ,
, ,( ) , |   | ( ) , ;v u v u

w xy M M w xyR R 
               

RR) 
, ,
, ,| ( ) ,   ( ) , | .v u v u

M w xy w xy MR R 
               

Transitivity of equality: 

Tr) xy
, yz

,  M|=   xy
, yz

, xz
,  M|= .  

Basing on Rxx, R0, R1, R2, R1, R2, we obtain the corresponding simplification properties; 

let us give an example of the properties induced by R1 and R2:   

R1L) given { , } and y u v x y   then , ,
, ,R ( ) , |   | , ;v u x

w xy M M y 
              

R1R) given { , },  y u v x y   then 
, ,
, ,| ,R ( )   , | ;v u x

M w xy My 
             

R2L) 
, , ,
, , ,R ( ) , |   , | , ;v u x y

w z xy M M z 
             

R2R) 
, , ,
, , ,| ,R ( )   , | .v u x y

M w z xy Mz 
             

Basing on Rxx and R, we obtain the elimination properties for the constant T-formula: 

Elxx) xx
,  M|=    M|= ; 

ElRxx) 
, , 
, ,R ( ) , |   | ;v u x

w xx M M


             

ElR) 
, , ,
, , ,R ( ) , |   | .v u x y

w xy M M


              

Property rp induces the following properties of substitution of equals: 

rpL) 
, , , , , ,
, , , , , ,, , , ( ) , |   , , , ( ) , ( ) , | ;v u z v u z v u z

xy w x M xy w x w y Mx y R x y R R        
                  

rpR) 
, , , , , ,
, , , , , ,, , , | ( ) ,   , , , | ( ) , ( ) , ;v u z v u z v u z

xy M w x xy M w x w yx y R x y R R        
                  

rpL) , , , , , ,

, , , , , ,, , , ( ) , |   , , , ( ) , ( ) , | ;v u z v u z v u z

xy w x M xy w x w y Mx y R x y R R        

                     

rpR) , , , , , ,

, , , , , ,, , , | ( ) ,   , , , | ( ) , ( ) , .v u z v u z v u z

xy M w x xy M w x w yx y R x y R R        

                     

Basing on Rf, Rxx and RT, we obtain the properties which guarantee each of the consequence 
relations: 

СRf)  M|= , xx
;  

СRxx)  M|= ,
,
, ( ) ;v u

w xxR 
    

CR)  M|= ,
, , ,
, , , ( )v u x z

x xzR 
    .  

The property related to z and xy which guarantees each of the consequence relations:  

C) xy
, x

,  M|= y
, .  

Properties related to modal compositions. For TMS of non-monotonic predicates with equality, 
such properties are generally analogous to the corresponding properties of TMS without equality 

predicates (see, e.g., [9]). These are properties of carrying modalities over renominations and 

properties of modality elimination. 
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The properties of carrying modalities over renominations belong to the properties of equivalent 
transformations based on Theorem 1. In a general case, there are 4 such properties. We present these 
properties for the composition  in GMS, for TmMS and MMS they are formulated similarly: 

RL) 
, ,
, * ,, ( ) |   ,  ( ) | ;v u v u

x M x MR R 
             

RL) 
, ,
, * ,, ( ) |   ,  ( ) | ;v u v u

x M x MR R 
               

RR) 
, ,

* , ,| , ( )   | ,  ( ) ;v u v u
M x M xR R 

             

RR) 
, ,

* , ,| , ( )   | ,  ( ) .v u v u
M x M xR R 

               

The elimination properties for the composition  in GMS have the following form: 

El_L) ,  M|=*     { | } M|=* ;  

El_R)  M|=* ,      M|=* { | };  

El_R)  M|=* ,      M|=* ,   for all states S such that ;  

El_L) ,  M|=*     ,  M|=*   for all states S such that .  

The properties of El_L and El_R are sufficient for the relation M|=IR.  

The elimination properties for modalities can be similarly formulated for TmMS and MMS. 

In the case of additional conditions imposed on the transition relation, the elimination properties 
for modalities will be modified accordingly.  

For example, for the relation M|=IR in GMS, let us consider the cases when  can be transitive, 
reflexive or symmetric. 

1.  reflexive. We have ,   therefore, for El_L an additional condition {| }.    

2.  symmetric. We have ,    therefore El_L and El_R are specified as follows: 

SEl_L) ,  M|=IR   { |  or }     M|=IR . 

SEl_R)  M|=IR ,    M|=IR ,  for all states S such that  and .      

3.  reflexive and symmetric. We have SEl_R and since    we obtain 

RSEl_L) ,  M|=IR   { |  or }     M|=IR  and { |  or }.      

4.  transitive. We have El_R and 

TEl_L) ,  M|=IR   { | }{ | } M|=IR . 

Here { | } is necessary due to the transitivity of the relation .   

5.  transitive and reflexive. We have El_R and TEl_L, and since    for TEl_L we obtain the 

condition { | }.  

6.  transitive and symmetrical. We have SEl_R and  

TSEl_L) ,  M|=IR   { |  or }    { |  or }     M|=IR .  

7.  transitive, reflexive and symmetric. We have SEl_R and TSEl_L, and since    for TSEl_L 

we obtain the condition { |  or     }.  

The above properties of relations M|=* for sets of formulas in a given TMS M induce analogous 

properties of the corresponding logical consequence relations |=*. 

Properties of logical consequence relations for sets of formulas specified with states are the 

semantic basis for constructing the corresponding sequent calculi. 

6. Conclusion 

In this paper we propose new classes of program-oriented logical formalisms – transitional modal 

logics of partial non-monotonic quasiary predicates with equality and extended renomination. We 
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describe the semantic models and languages of pure first-order TMLs with strong equality predicates, 
the properties of equality predicates are given. The following classes of transitional modal systems are 

specified: general TMS, temporal TMS, multimodal TMS. The languages of such systems are 

described, the semantic properties, in particular, properties related to equality predicates, are 

considered. The interaction of modal compositions with renominations and quantifiers is investigated. 
We define relations of irrefutability, truth, falsity and strong logical consequence on sets of formulas 

specified with states, and present their properties. These properties are the semantic basis for further 

constructing the sequent type calculi for the proposed logics. 
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