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Abstract  
It is offered a mathematical model of propagation of a hydraulic crack which allows to estimate 

the sizes formed as a result of it in a mountain breed of area of the weakened communications. 

The results obtained allow to establish the basic laws of influence of mechanical properties of 

mountain breeds and controllable parameters of hydraulic fracture on the process of formation 

of an area of weakened connections in the massif during the formation of a crack. Based on the 

presented methods, appropriate rock mass effect calculation software with a convenient user 

interface has been developed. 
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1. Introduction 

One of the powerful geotechnologies that is actively used to intensify mineral extraction, and thus 
to influence and control the physical and mechanical properties of the rock mass, is hydraulic fracturing 

(fracking). Modeling the process of fracture development, which currently remains the most accurate 

method of interpreting the entire range of parameters of hydraulic fracturing technology, involves 
determining its main characteristics - the law of opening and the length of fracture development, which 

depend on the physical and mechanical properties of rocks, rheological properties of the working agent, 

and the mode of hydraulic fracturing.  

1.1. Related works 

Among the known theoretical models, there are two fundamentally different ones that are widely 

used to predict the geometry of cracks. The first one is the Khristianovich-Zheltov model, and the 

alternative one is the Perkins-Kern model. These models differ in the principles of describing the crack 

banks at the crack tip and are the result of applying the methods of the linear theory of elasticity to study 
the stress-strain state at high deformations, which does not correspond to the actual stress-strain state at 

the crack tip. This contradiction, noted by Griffiths, became the basis for models in which the crack 

banks should close smoothly under the influence of large adhesive forces (of the order of theoretical 
strength). At the same time, all known models of imperfectly brittle bodies are based on the introduction 

of adhesive forces between the crack banks and differ only in the assumptions regarding these forces, 

i.e., in such models, unlike Griffiths' model of an ideally brittle body, the end zone is not autonomous 
[1-7]. 

1.2. Research objectives 

An equally important aspect of research on the description of specific mining situations under 

conditions of deformation and destruction of the rock environment or some engineering structures is to 
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assess the spread of the area of influence of the hydraulic fracturing result beyond the formed fracture. 
This involves studying the state of the rock mass in the one-sided section of the crack tip in the direction 

of its propagation. 

In this regard, the objective of the study is to build a mathematical model of the process of fracture 

development of a hydraulic fracturing crack that will allow a more accurate and correct display of the 
relations between the applied stress and the mode of hydraulic fracturing (parameters controlled at the 

wellhead: injection pressure, injection rate), the length of the crack, its opening, and, as a result, the size 

of the formed area of weakened connections in the rock mass. 

2. Research methodology 
2.1 . A solution of the problem of vertical crack propagation 

When modeling the propagation of a hydraulic fracture in the underlying rocks of a technogenic 

deposit, three main types of fundamental relations generally accepted in this case were taken into 

account: 

1) the provisions of linear-elastic fracture mechanics; 
2) the laws of motion of a fracture fluid in a narrow slit; 

3) the continuity equation. 

Let at hydraulic fracturing of the underlying rocks a symmetrical fracture is formed relative to the 
well, propagating under the directional action of the fracture fluid in the vertical direction to a height 

and depth sufficient to provide hydraulic connection between the rocks of the technogenic deposit and 

the protective bottom. In the horizontal direction the fracture is technologically limited and has a 
constant length 2L. 

Following [1-4], we will neglect violations of the continuity of the medium by the borehole, we will 

consider the elastic constants of the formation and its host rocks to be the same, the fluid pressure 𝑝 in 

the fracture to be constant along the length of the fracture (|𝑥| ≤ 𝐿 ) in each of its horizontal sections 

(|𝑧| = 𝑐𝑜𝑛𝑠𝑡). Fracture opening 2𝑤 in each cross-section (|𝑧| ≤ 𝑐𝑜𝑛𝑠𝑡), taking into account real time 

parameters of the pressure pulse and fracture dimensions – 𝜏𝜈𝑝 ≫ ℎ, can be considered as a quasi-static 

process, the parameters of which will be found as a solution of the two-dimensional problem of static 

elasticity theory, relating the fracture width 2𝑤 to its propagation height ℎ and the intra-fracture 

pressure 𝑝(𝑧, 𝑡) − 𝑞∞ given at its banks, where 𝑞∞ is lateral rock pressure. 
With the adopted proposals, we use the Perkins-Kern model for modeling crack propagation when 

a vertical crack of constant height, strongly extended in the horizontal direction, is formed as a result 

of fracture. According to the results of [13, 14], in this case of crack propagation, its opening can be 

represented as 

𝑤(𝑥, 𝑧, 𝑡) =
2(1 − 𝜈2)𝐿𝑞∞

𝜋𝐸
√1 − (

𝑥

𝐿
)
2

(
𝑝(𝑧, 𝑡)

𝑞∞
− 1) , (1) 

In (1) the variables 𝑧 and 𝑡 are parameters; 𝜈 – Poisson's coefficient; 𝐸 – Young's modulus. 

Let us limit ourselves to the consideration of impermeable formations or weakly permeable 

formations at the initial stage of hydraulic fracturing, when leakage into the formation can be neglected. 
In this case, the fluid flow in the fracture will be described by the equation of motion generalized to 

the case of variable fracture width, valid at Reynolds numbers for the flow of viscous fluid in the slit, 
not exceeding 1000 at relatively small angles of inclination of the slit surface [3]: 

𝑢 = −
𝑤2

12𝜇
∙
𝜕𝑝

𝜕𝑧
 (2) 

and the continuity equation: 
𝜕

𝜕𝑡
〈𝑤〉 +

𝜕

𝜕𝑧
〈𝑤 ∙ 𝑢〉 = 0, (3) 

where  

〈𝑓〉 =
1

2𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

−𝐿

,                   
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and 〈𝑤〉, 〈𝑤 ∙ 𝑢〉 are values averaged over the crack opening and over the horizontal section of the crack. 

Here 𝑢 – velocity of viscous fracture fluid in the crack, 𝜇 – viscosity of fracture fluid. 

These equations are supplemented by the condition of "no flow" at the ends of the crack for the 

averaged one-dimensional flow, determining the law of crack propagation 

𝑑ℎ(𝑡)

𝑑𝑡
= 〈𝑢〉,   ℎ = ℎ(𝑡), (4) 

the condition of smooth interlocking of crack surfaces at its ends (analog of Khristianovich's condition) 

𝑝 = 𝑞, 𝑧 = ℎ(𝑡), (5) 

initial conditions 

𝑙(0) = 𝑙0, 𝑝(𝑧, 0) = 𝑝0(𝑧), (6) 

as well as the condition determining the mode of fluid injection into the fracture. The latter will be 
considered as specified in the form of the flow rate of the fluid to the fracture, which also satisfies the 

condition of conservation of mass or volume: 

8𝐿 ∙ ∫𝑤(𝑧, 𝑡)𝑑𝑧

ℎ

0

= 𝑉0 + 8𝐿 ∙ ∫𝑤(0, 𝑡) ∙ 𝑢(0, 𝑡)𝑑𝑡 = 𝑄(𝑡)

𝜏

0

, (7) 

where 𝐿 is the half-width of the fracture zone, which does not change in the fracture process, 𝑉0 – 

volume of the initial crack, 𝑄(𝑡) – amount of liquid injected into the crack for time 𝑡. 
On the basis of formula (1) we will find the average values included in equation (3): 

〈𝑤〉 =
1

2𝐿
∫
2(1 − 𝜈2)

𝜋𝐸
𝐿𝑞√1 − (

𝑥

𝐿
)
2

(
𝑝(𝑧, 𝑡)

1
− 1) 𝑑𝑥

𝐿

−𝐿

=
𝑘𝜋

4
𝑌(𝑧, 𝑡),

𝑘 =
2(1 − 𝜈2)

𝜋𝐸
𝐿𝑞∞, 𝑌(𝑧, 𝑡) =

𝑝(𝑧, 𝑡)

𝑞
− 1. 

(8) 

〈𝑤 ∙ 𝜈〉 = −
1

2𝐿
∫
𝑤3

12𝜇

𝜕𝑝

𝜕𝑧
𝑑𝑥

𝐿

−𝐿

= −
1

24𝐿𝜇
∫(1 − (

𝑥

𝐿
)
2

)

3
2
𝑑𝑥.

𝐿

−𝐿

                   

Given that 

1

2𝐿
∫(1 − (

𝑥

𝐿
)
2

)

3
2
𝑑𝑥 =

𝐿

−𝐿

1

𝐿
∫(1 − (

𝑥

𝐿
)
2

)

3
2
𝑑𝑥 =

𝐿

0

∫(1 − 𝑠2)
3
2𝑑𝑠 =

1

0

1

2

Γ (
1
2
) ∙ Γ (

5
2
)

Γ(3)
=
3𝜋

16
, 

where Γ(𝑎) is a gamma-function, finally, for the average value 〈𝑤 ∙ 𝑣〉 we obtain: 

〈𝑤 ∙ 𝜈〉 = −
𝜋𝑘3𝑞∞
64𝜇

𝑌3(𝑧, 𝑡)
𝜕𝑌

𝜕𝑧
. (9) 

Taking into account the obtained mean values (8), (9) for the case of a viscous Newtonian rupture 
fluid subject to the law of motion in a narrow slit (2), the continuity equation (3) takes the form: 

𝜕𝑌

𝜕𝑡
−
𝑘2𝑞∞
16𝜇

∙
𝜕

𝜕𝑧
(𝑌3 ∙

𝜕𝑌

𝜕𝑧
) = 0. (10) 

The resulting equation is fairly well understood in the general form of the notation: 

𝜕𝜔

𝜕𝑡
− 𝑎 ∙

𝜕

𝜕𝑥
(𝜔𝑚 ∙

𝜕𝜔

𝜕𝑥
) = 0. (11) 

Equation (11) belongs to the class of parabolic partial differential equations with power nonlinearity 
and is often encountered in nonlinear problems of heat and mass transfer, combustion theory and 

filtration theory. For example, it describes unsteady heat transfer in a stationary medium when the 

diffusivity is a stepped function of temperature. General solutions of equation (11) are known [14], one 

of which for the case (10) is written in the form: 

𝑌(𝑧, 𝑡) = (𝐴𝑧 + 𝐴𝜆𝑡 + 𝑏)
1
3, 𝐴 =

48𝜆𝜇

𝑘2𝑞∞
, (12) 

where 𝜆, 𝐵 are arbitrary constants. Considering (12), (8) we write the crack opening in the form: 
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𝑤(𝑧, 𝑡) =
𝑘𝜋

4
√(

48𝜆μ

𝑘2𝑞∞
𝑧 +

48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵)

3

 . (13) 

We determine the values of coefficients 𝜆, 𝐵, considering the initial (6), boundary (4), (5) conditions 

and the condition governing the injection mode (7). 

Considering the initial crack opening (6), the value of coefficient 𝐵 is equal to: 

𝐵 = (
4𝑤0
𝑘𝜋

)
3

.               

On the basis of the found solution (13), the condition of smooth closure of the crack surfaces at its 

ends (5) and the law of propagation (4), the validity of equation: 

48𝜆μ

𝑘2𝑞∞
ℎ +

48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵 = 0, (14) 

Substituting the found form of the solution (12) of equation (10) into the condition (7), we obtain 

the following equation with respect to the parameters 𝜆, ℎ: 

𝐿𝑞𝑘3𝜋

32𝜆𝜇
((
48𝜆μ

𝑘2𝑞∞
ℎ +

48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵)

4
3

− (
48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵)

4
3

) = 𝑉0 + 𝑄𝑡. (15) 

Taking into account the conditions (14), (15) governing the hydraulic fracturing regime, the law of 
fracture opening (8) and (13), the crack development for each moment of time is found as a solution of 

a system of nonlinear equations: 

{
 
 
 
 

 
 
 
 

48𝜆μ

𝑘2𝑞∞
ℎ +

48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵 = 0,

−𝐿𝑞∞𝑘
3𝜋

32𝜆𝜇
(
48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵)

4
3

= 𝑉0 + 𝑄𝑡,

𝑝(𝑧, 𝑡)

𝑞∞
−1 = (

48𝜆μ

𝑘2𝑞∞
ℎ +

48𝜆2μ

𝑘2𝑞∞
𝑡 + 𝐵)

1
3

.

 

 
 
 

(16) 

After excluding the unknown parameter 𝜆 from the system (16), the formulas for estimating the size 
of the crack with regard to the hydraulic fracturing parameters (fracture pressure, injection rate) are 

obtained: 

𝑤(𝑧, 𝑡) = 𝑏𝜎0√ℎ − 𝑧
3

 , (17) 

where  

𝑏 =
𝜋𝑘

2
3

4
√
48𝜇

𝑞∞𝑡

6

 ,      𝜎0 = √(
𝑝(0, 𝑡)

𝑞∞
− 1)

3

−𝐵
6

.                        

 For the case of fracturing fluid flow rates we have 

𝑤(𝑧, 𝑡) =
𝑉0 +𝑄𝑡

6ℎ𝐿
√
ℎ − 𝑧

ℎ

3

 , (18) 

The longitudinal development of the fracture crack is determined by the formula 

ℎ(𝑡) =
2(𝑉0 + 𝑄𝑡)𝑞∞

3𝑘𝜋𝐿(𝑝(0, 𝑡) − 𝑞∞)
. (19) 

2.2. The area of weakened connections 

The found solution of the elastic problem of crack propagation assumes smooth closure of the crack 
banks, which means a singular stress distribution in the vicinity of the crack tip. On practice, 

geomaterials under significant external loads in the area usually have a yield strength, which means 
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plastic deformation at stresses above this limit [8]. Thus, in the vicinity of the crack tip, there is always 
a region where plastic deformations occur, which means that the stresses cannot be singular. 

The fundamental difference in the outline of the crack banks at the crack tip is a consequence of the 

application of linear elasticity theory methods to the study of the stress-strain state of a body in the 

presence of large deformations, which does not correspond to the real picture of the stress-strain state 
at the crack tip. This contradiction, noted by Griffiths, led to models in which the crack banks under the 

influence of large cohesive forces (of the order of theoretical strength) should be washed away 

smoothly. In this case, all known models of non-ideally brittle bodies are based on the introduction of 
cohesive forces between the banks of the forming crack and differ only in the assumptions regarding 

these forces, i.e., in these models, unlike Griffiths' model of an ideally brittle body, the end zone is not 

autonomous [10-12]. 
For a more accurate and correct representation of the relations between the applied stresses, the 

length of the crack, and the size of the area of broken and weakened connections, it is proposed to use 

the Leonov-Panasyuk brittle crack model, which is formally equivalent to the Dugdale elastic-plastic 

crack and Barenblatt brittle crack models, although its mechanical content is somewhat different. In 
this model of a crack, the presence of a finite zone R of the crack is taken into account, where its banks 

are attracted with constant stress 𝜎 if the distance between them does not exceed a certain value  
𝛿𝑐𝑟. If 𝑤 > 𝛿𝑐𝑟, then in accordance with the Leonov-Panasyuk concept of a brittle crack, there is no 
interaction between the crack banks. The zone of length R is called the area of weakened connections 

(Fig. 1). In the vicinity of each point of this area, two parameters are set that characterize the places of 

the beginning and end of fracture and correspond to two criteria of fracture [17]: 

1) the condition of finite stresses in the final crack zone, i.e., 𝐾 = 0, where 𝐾 is the stress intensity 
factor at the crack tip; 

2) the condition of transformation of the adhesion forces to zero at the point of transition from the 

area of weakened connections to the area of destroyed connections. The value 𝜎 is considered to be 
equal to the brittle strength limit, i.e., the fracture stress in the absence of plastic deformation. 

 

Figure 1: Crack model of hydraulic fracturing with consideration of the area of weakened connections 

The critical condition for crack propagation is the equality 

2𝑤(ℎ, 𝑡) = 𝛿𝑐𝑟, (20) 

where 𝛿𝑐𝑟 is critical crack opening, 𝑤(ℎ, 𝑡) – crack opening in the direction of the Y-axis. 

Condition 2) means that at a certain value of crack bank deflection 𝛿𝑐𝑟, which is a characteristic of 

the geomaterial, the cohesive forces turn to zero, which leads to the condition 𝐾 = 0 at the point (𝑥 =
ℎ) of transition from the area of weakened connections to the area of broken connections. 

2.3. A solution of the problem of crack propagation with consideration of the 
area of weakened connections 

The opening of the fracking crack and the acting load in the absence of an area of weakened 

connections according to the proposed solution can be found by formulas (17)-(19). In general, for a 

crack of a certain propagation value due to the acting load, these formulas take the following form: 
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𝑑𝑤 = 𝑏𝜑(𝑠)√𝑠 − 𝑧
3

𝑑𝑠, (21) 

𝑑𝑝 = 𝑞∞ (
4𝑏

𝑘𝜋
𝜑(𝑠)√𝑠 − 𝑧

3 + 1) 𝑑𝑠. (22) 

Then, according to the principle of superposition, for a set of cracks of different lengths  
𝑠 (ℎ < 𝑠 < ℎ + 𝑅) and taking into account the presence of an area of weakened connections of length 

𝑅 and a small distance 𝛿𝑐𝑟 separating the crack banks at point ℎ in accordance with formulas (21), (22), 

we obtain the following relations: 

𝑤(𝑧, 𝑡) =

{
 
 
 

 
 
 

𝑏 ∫ 𝜑(𝑠)√𝑠 − 𝑧
3

𝑑𝑠

ℎ+𝑅

ℎ

    for    𝑧 < ℎ,

𝑏 ∫ 𝜑(𝑠)√𝑠 − 𝑧
3 𝑑𝑠

ℎ+𝑅

𝑧

    for    ℎ < 𝑧 < ℎ + 𝑅,

0    for    𝑧 > ℎ + 𝑅,

 

 
 
 

(23) 

𝑝(𝑧, 𝑡) = 𝑞∞∫(
4𝑏

𝑘𝜋
𝜑(𝑠)√𝑠 − 𝑧

3
+ 1) 𝑑𝑠

𝑧

ℎ

    for    ℎ < 𝑧 < ℎ + 𝑅. (24) 

2.4. Estimating the size of the area of weakened connections 

It is known [9] that a guaranteed condition for the formation of vertical cracks in hydraulic fracturing 

is to ensure that the pressure inside the well is such that the following condition is met: 

𝑝𝑐 = 𝜎𝑝 + 2𝑞∞, (25) 

where 𝜎𝑝 is limit value of rock tensile strength. 

Taking into account condition (25) and the formulated problem, we can conclude that for the stable 

development of a fracking crack propagation and in order to overcome the constricting stresses between 
the crack banks, it is necessary to create an equivalent load (not less than  
𝑝𝑐) in the area of weakened connections. Counteraction to the existing constricting loads will be ensured 

if we set the function 𝜑(𝑠) in such way that in the region of weakened connections, for each fracking 

crack of size 𝑠 (ℎ < 𝑠 < ℎ + 𝑅), the following compensation condition is met: 

∫(𝜎𝑝 + 2𝑞∞)𝑑𝑠 =

𝑧

ℎ

𝑞∞∫(
4𝑏

𝑘𝜋
𝜑(𝑠)√𝑧 − 𝑠

3 + 1) 𝑑𝑠

𝑧

ℎ

. 

 
(26) 

From condition (26), to determine the value of the required compensation load 𝜑(𝑧), we obtain the 

following equation: 

𝜎𝑝(𝑧 − ℎ) =
4𝑏𝑞∞
𝑘𝜋

∫𝜑(𝑠)√𝑧 − 𝑠
3 𝑑𝑠

𝑧

ℎ

. (27) 

Equation (27) is a Volterra integral equation of the first kind of convolution type with a kernel 

(𝑧, 𝑠) = (𝑧 − 𝑠)
1

3  [15, 16].  

As a result of solving the equation (27), we obtain the following form of compensation load 𝜑(𝑧): 

𝜑(𝑧) =
3√3(𝜎𝑝 + 𝑞∞)𝑘

8𝑏𝑞∞
(𝑧 − ℎ)−

1
3. (28) 

Based on the solution (28) and taking into account the value of the acting load at the wellhead during 
hydraulic fracturing (injection mode), we estimate the value of the propagation of the area of weakened 

connections by solving with respect to 𝑅 the equation 

𝜎0 =
3√3(𝜎𝑝 + 𝑞∞)𝑘

8𝑏𝑞∞
∫ (𝑠 − ℎ)−

1
3𝑑𝑠

ℎ+𝑅

ℎ

. (29) 
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By finding the integral in the right-hand side of (29), taking into account the value of the 

characterizing function 𝜎0 we obtain the size of the region of weakened connections: 

𝑅 = (
16𝜎0𝑏𝑞∞

9√3(𝜎𝑝 + 𝑞∞)𝑘
)

3
2

. (30) 

2.5. Condition for crack opening 

According to (23), the development of a fracking crack under the action of a de-claying agent in the 
area of fractured connections (crack opening) and deformation displacements in the area of weakened 

connections for each time 𝑡 are written in the following form:  

𝑤(𝑧, 𝑡) =

{
 
 
 

 
 
 3√3𝑘

8𝑞∞
(𝜎𝑝 + 𝑞∞) ∫ √

𝑠 − 𝑧

𝑠 − ℎ

3
𝑑𝑠

ℎ+𝑅

ℎ

    for    𝑧 < ℎ,

3√3𝑘

8𝑞∞
(𝜎𝑝 + 𝑞∞) ∫ √

𝑠 − 𝑧

𝑠 − ℎ

3
𝑑𝑠

ℎ+𝑅

𝑧

    for    ℎ < 𝑧 < ℎ + 𝑅,

0    for    𝑧 > ℎ + 𝑅,

 (31) 

Note that the integral in formula (31) with the new variable  

𝑣 = (
𝑠−𝑧

𝑠−ℎ
)

1

3
 is transformed to the integral of a fractional rational function, which in turn is always 

integrated in finite form and the result is an algebraic sum of elementary functions (fractional rational, 

natural logarithm and arctangent). However, such an analytical solution for practical application is 
rather cumbersome and it is reasonable to use numerical integration for formula (31). 

Formula (31) allows us to find the critical condition for fracking crack opening, namely, based on 

condition (20), the adhesive forces turn to zero at the point 𝑧 = ℎ of transition from the area of weakened 

connections to the area of fractured connections. Taking into account these relations, we obtain: 

𝛿𝑐𝑟 = 2 ⋅
3√3𝑘

8𝑞∞
(𝜎𝑝 + 𝑞∞) ∫ √

𝑠 − ℎ

𝑠 − ℎ

3

𝑑𝑠

ℎ+𝑅

ℎ

=
3√3𝑘

4𝑞∞
(𝜎𝑝 + 𝑞∞)𝑅,  

so 

𝛿𝑐𝑟 =
16

9√3
4 √

𝑞∞

(𝜎𝑝 + 𝑞∞)𝑘
⋅ (𝜎0𝑏)

3
2. 

Fig.2 shows the fracture opening profile of the fracturing crack taking into account the 

disturbed bond zone. 

  
Figure 2: Fracture crack opening profile in the zone of working agent penetration (solid line) 
and the zone of weakened bonds (dashed line) 

 



86 

 

2.6 Rock mass effect calculation software 

Based on presented methods an appropriate software that allows to calculate the dependence of the 

propagation of the area of weakened connections on the value 𝜎𝑝 during hydraulic fracturing and the 

dependence of critical crack opening 𝛿𝑐𝑟 on the value 𝜎𝑝 during hydraulic fracturing was developed. 

Input data consists of type of the rock, maximum propagation, maximum opening, area of weakened 

connections, critical crack opening and model parameters 𝑞∞, 𝜇, 𝐿, 𝑧0, 𝑄, 𝑡. The example of the 

developed software user interface presented on the figure 3. Also, methods that presented in the research 

[18, 19] can be modified for rock type identification. 

 

Figure 3: Rock mass effect software user interface 

2.7. Results of the numerical experiment 

To illustrate the determination of the propagation of the area of weakened connections in the rock 

mass due to the formation of a fracture crack, a numerical experiment was carried out for the following 

model parameters of hydraulic fracturing: 𝑞∞ = 10 𝑀𝑃𝑎, 𝜇 = 0,1 𝑃𝑎 ⋅ 𝑠, 𝐿 = 2 𝑚,  𝑧0 = 0,1 𝑚, 𝑄 =

0,5
𝑚3

𝑠
, 𝑡 = 3 𝑠 and mechanical properties of rocks 𝐸1 = 5 𝐺𝑃𝑎, 𝜈1 = 0,3,           𝐸1 = 5 𝐺𝑃𝑎, 𝜈1 =

0,3, 𝜎𝑝1 = 30 𝑀𝑃𝑎, 𝐸2 = 10 𝐺𝑃𝑎, 𝜈2 = 0,23, 𝜎𝑝2 = 5 𝑀𝑃𝑎, 𝐸3 = 30 𝐺𝑃𝑎, 𝜈3=0,2, 𝜎𝑝3 = 10 𝑀𝑃𝑎, 

which correspond to the average mechanical properties of sandstone, mudstone and clay shale. 

Table 1 shows the results of calculating the main characteristics of hydraulic fracturing: maximum 
crack propagation and opening, critical opening, and propagation of the area of weakened connections. 

Table 1 
Fracking crack parameters taking into account the area of destroyed and weakened connections and 
critical crack opening 

Rock Maximum 
propagation 
ℎ𝑚𝑎𝑥 (𝑚) 

Maximum 
opening 
𝑤𝑚𝑎𝑥  (𝑚) 

Area of weakened 
connections 
𝑅 (𝑚) 

Critical crack 
opening 
𝛿𝑐𝑟 (𝑚) 

Sandstone 19,7 6,3410-3 0,132 1,610-3 
Mudstone 27,1 4,5810-3 0,8 1,810-3 
Clay shale 46,9 2,6510-3 0,89 9,410-4 
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In the next series of calculations, we studied the effect of the parameter on the propagation of the 
region of weakened connections and critical crack opening, which is due to the significant variation of 

this parameter even for rocks of the same petrographic name, depending on the composition and 

structure of the rock. Figures 4 and 5 illustrate the obtained results. 

 
Figure 4: Dependence of the propagation of the area of weakened connections on the value 𝜎𝑝 during 

hydraulic fracturing 

 

Figure 5: Dependence of critical crack opening 𝛿𝑐𝑟 on the value 𝜎𝑝 during hydraulic fracturing 

3. Conclusions 

On the example of a man-made field, where hydraulic fracturing technology is proposed to be used 

to improve the filtration properties of the underlying rocks, a solution to the linear-elastic problem of 
the development of a symmetric crack in the vertical direction is found. 

Based on the results of the study, it can be concluded that the extension of the region of weakened 

connections in the massif containing a fracking crack depends on both the value of the elastic modulus 

and the ultimate tensile strength 𝜎𝑝, and is greater for rocks with a lower value of the parameter 𝜎𝑝 at a 

higher value of the Young's modulus.  
For the case of rocks of the same petrographic name, the propagation of the area of weakened 

connections is larger at lower values of the rock tensile strength. Also, an example of the developed 

software was presented. 
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