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Abstract  
Among numerous studies of functional-differential equations, research on periodic boundary 

value problems for differential equations with concentrated delay holds a special place. This 

is primarily due to the wide application of periodic boundary value problems for differential 

equations with concentrated delay in physics, economics [3], biology [4], and mechanics [5]. 

By applying the Adomian decomposition method, we have derived the necessary and 

sufficient conditions for the existence of solutions to the weakly nonlinear periodic boundary 

value problem for a system of differential equations with concentrated delay in the critical 

case. 
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1. Introduction 

We studied the problem of constructing approximations to the 𝑇-periodic solution [1, 2] 

𝑧(𝑡, 𝜀) ∶  𝑧(∙, 𝜀)  ∈ 𝐶¹[0, 𝑇], 𝑧(𝑡,∙)  ∈  𝐶[0, 𝜀₀] 
of a system of differential equations with concentrated delay 
 

            𝑑𝑧(𝑡, 𝜀)/𝑑𝑡 = 𝐴(𝑡)𝑧(𝑡, 𝜀) + 𝐵(𝑡)𝑧(𝑡 − ∆, 𝜀) + 𝑓(𝑡) + 𝜀 𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − ∆, 𝜀), 𝑡, 𝜀).             (1) 
 

The solution of the periodic problem for equation (1) is sought in a small neighborhood of the T-

periodic solution 

𝑧₀(t) ∈ ℂ1[0, 𝑇] 

of the generating system 

𝑑𝑧₀/𝑑𝑡 =  𝐴(𝑡)𝑧₀(𝑡)  +  𝐵(𝑡)𝑧₀(𝑡 − ∆)  +  𝑓(𝑡), ∆ ∈ ℝ¹.   (2) 

 

Where 𝐴(𝑡), 𝐵(𝑡) are continuous 𝑇-periodic (n × n)-matrices, 𝑓(𝑡) is continuous 𝑇-periodic vector-

function, 𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − ∆, 𝜀), 𝑡, 𝜀) is nonlinear vector function, which is analytic in a small 

neighborhood of the generating problem (2), continuous and 𝑇-periodic with the respect to the 

variable t, and also analytic with respect to the small parameter ε on the interval [0, 𝜀₀]. As is known, 

in the critical case [2], specifically, in the presence of 𝑇-periodic solutions 
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of the homogeneous part 

                                                                   𝑑𝑧0/𝑑𝑡 = 𝐴(𝑡)𝑧0(𝑡) + 𝐵(𝑡)𝑧0(𝑡 − Δ)                           (3) 

 

of system (2), and in the case of constant matrices 𝐴(𝑡) ≡  𝐴 and 𝐵(𝑡) ≡  𝐵, with the presence of 
purely imaginary roots 

               
of the characteristic equation 

                 
the generating periodic problem for equation (2) is solvable not for all vector functions 𝑓(𝑡). In the 

critical case, the adjoint system 

                       
has a family of 𝑇-periodic solutions of the form 

                  
 
Periodic problem for the equation (2) is solvable iff 

                        
Here  𝐻𝑟(𝑡) is (n × r)- matrix formed by r linearly independent 𝑇-periodic solutions of the adjoint 

system. Let us assume condition (4) is satisfied; in this case, the general solution of the generating 𝑇-

periodic problem for equation (2) has the form 

               
where 𝐺[𝑓(𝑠)](𝑡) is a particular solution of the generating 𝑇-periodic problem for equation (2), 𝑋𝑟(𝑡) 

is (n × r)- matrix formed by r linearly independent 𝑇-periodic solutions of the system (2). To construct 

a particular solution 𝐺[𝑓(𝑠)](𝑡) of the generating 𝑇-periodic problem for equation (2), provided its 

solvability, the method of least squares [6] is applicable. 

2. The necessary and sufficient conditions for solvability   

Similarly to [2], we obtain the necessary condition for the solvability of the 𝑇-periodic problem for 
equation (2).  

 

Lemma. Let us assume that for the generating periodic problem for equation (2), a critical case 

occurs, and the solvability condition (4) is satisfied. In this case, the periodic problem for equation 
(2) has a family of T-periodic solutions in the form 
 

𝑧0(𝑡, 𝑐𝑟) = 𝑋𝑟(𝑡)𝑐𝑟 + 𝐺[𝑓(𝑠)](𝑡),   𝑐𝑟 ∈ ℝ𝑟 . 
 

Let us also assume that the T-periodic problem for equation (1) has a T-periodic solution 
 

𝑧(𝑡, 𝜀) ∶  𝑧(∙, 𝜀)  ∈ ℂ¹[0, 𝑇],    𝑧(𝑡,∙)  ∈  ℂ[0, 𝜀₀], 
 

which, at 𝜀 = 0, transforms unto the generating solution 

𝑧(𝑡, 0) = 𝑧0(𝑡, 𝑐𝑟
∗). 

 Under these conditions, the vector 𝑐𝑟
∗ ∈ ℝ𝑟  satisfies the equation for the generating amplitudes 

 

                      𝐹(𝑐𝑟
∗) ∶=  ∫ 𝐻𝑟

∗(𝑠)𝑍(𝑧0(𝑠, 𝑐𝑟
∗), 𝑧0(𝑠 − Δ, 𝑐𝑟

∗), 𝑠, 𝜀)𝑑𝑠 = 0.              (5)
𝑇

0

 

 

𝑧0 𝑡, 𝑐𝑟 = 𝑋𝑟 𝑡 𝑐𝑟 ,   𝑐𝑟 ∈ ℝ𝑟  

𝜆𝑗 = ±𝑖𝑘𝑗𝑇,    𝑖 =  −1,   𝑗 ∈ ℕ 

det 𝐴 + 𝐵𝑒−𝜆Δ − 𝜆𝐼𝑛  = 0, 

𝑑𝑦 𝑡 /𝑑𝑡 = −𝐴∗ 𝑡 𝑦 𝑡 − 𝐵∗ 𝑡 𝑦(𝑡 + Δ) 

𝑦 𝑡, 𝑐𝑟 = 𝐻𝑟 𝑡 𝑐𝑟 ,   𝑐𝑟 ∈ ℝ𝑟 . 

 𝐻𝑟
∗ 𝑠 𝑓 𝑠 𝑑𝑠 = 0.

𝑇

0

                    (4) 

𝑧0 𝑡, 𝑐𝑟 = 𝑋𝑟 𝑡 𝑐𝑟 + 𝐺 𝑓 𝑠   𝑡 ,   𝑐𝑟 ∈ ℝ𝑟 , 
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We will refer to equation (5) as the equation for the generating amplitudes of the nonlinear periodic 

boundary value problem for equation (1). The roots 𝑐𝑟
∗ ∈ ℝ𝑟  of equation (5) determine the generating 

solutions 𝑧0(𝑡, 𝑐𝑟
∗), in a neighborhood of which the sought solutions to the original nonlinear T-

periodic boundary value problem for equation (1) may exist. However, if equation (5) has no real 

solutions for 𝑐𝑟
∗ ∈ ℝ𝑟, then the original nonlinear 𝑇-periodic boundary value problem for equation 

(1) has no sought-after solutions. 

 

 Let us denote an (r × r)- matrix 

B0 ≔ ∫ Hr
∗(s)[A1,0(s)Xr(s) + A0,1(s)Xr(s − Δ)]ds;

T

0

 

here 

A1,0(t) =
∂Z(z(t, ε), z(t − Δ, ε), t, ε)

∂z(t, ε)
|

 
z(t, ε) = z0(t, cr

∗)

z(t − Δ, ε) = z0(t − Δ, cr
∗)

 

and 

 

A0,1(t) =
∂Z(z(t, ε), z(t − Δ, ε), t, ε)

∂z(t − Δ, ε)
|

 
z(t, ε) = z0(t, cr

∗)

z(t − Δ, ε) = z0(t − Δ, cr
∗)

 

 

Are (n × n)- matrices. The traditional solvability condition for the nonlinear periodic boundary value 

problem for equation (1) in a small neighborhood of the generating solution z0(t, cr
∗) is the 

requirement for the simplicity of the roots [2, 6] 

det B0 ≠ 0 
of equation (5) for the generating amplitudes. We will demonstrate that the requirement for the 
simplicity of the roots of equation (5) for the generating amplitudes is a sufficient condition for the 

solvability of the nonlinear periodic boundary value problem for equation (1) in a small neighborhood 

of the generating solution 

𝑧0(𝑡, 𝑐𝑟
∗) = 𝑋𝑟𝑐𝑟

∗ + 𝐺[𝑓(𝑠)](𝑡),   𝑐𝑟
∗ ∈ ℝ𝑟 . 

 

In the article [6], we found constructive necessary and sufficient conditions for solvability, along with 

a scheme for constructing solutions of the nonlinear 𝑇-periodic boundary value problem for equation 

(1). Based on the method of simple iterations, we developed a convergent iterative scheme to find 

approximations to the solutions of this problem. However, in the process of constructing solutions to 

the nonlinear 𝑇-periodic boundary value problem for equation (1) using the least squares method, the 

issue of impossibility of finding solutions in terms of elementary functions arises, which, in turn, 

leads to significant errors in solving nonlinear boundary value problems. 

 
Furthermore, the construction of solutions for nonlinear boundary value problems using the method of 

simple iterations [2] and the least squares method is significantly complicated by the computation of 

derivatives of nonlinearities. Given this, simplifying the computation of nonlinear derivatives and the 
potential to find solutions for nonlinear boundary value problems, including periodic boundary value 

problems, in elementary functions can be achieved using the Adomian decomposition method [7, 8]. 

Additionally, the use of the Adomian decomposition method significantly simplifies the proof of 
convergence of iterative schemes for constructing solutions to nonlinear boundary value problems. An 

example of such simplification will be provided below. Thus, the purpose of this article is to find 

constructive solvability conditions and a scheme for constructing solutions to the nonlinear 𝑇-periodic 

boundary value problem for equation (1) using the Adomian decomposition method.  
Fixing one of the solutions of equation (5), we approach the problem of finding analytical 

solutions for the nonlinear 𝑇-periodic boundary value problem for equation (1) in a small 

neighborhood of the generating solution 𝑧0(𝑡, 𝑐𝑟
∗). We seek the solution of the nonlinear 𝑇-periodic 

boundary value problem for equation (1) in the critical case in the form 
 

𝑧(𝑡, 𝜀) ∶= 𝑧0(𝑡, 𝑐𝑟) + 𝑢1(𝑡, 𝜀) + … + 𝑢𝑘(𝑡, 𝜀) +  … . 
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The nonlinear vector function 𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − Δ, 𝜀), 𝑡, 𝜀) is analytic in a small neighborhood of the 
generating solution of problem (2); therefore, in the specified neighborhood, occurs an expansion in 

the form [7, p. 502] 

𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − Δ, 𝜀), 𝑡, 𝜀)
= 𝑍(𝑧0(𝑡, 𝑐𝑟

∗), 𝑧0(𝑡 − Δ, 𝑐𝑟
∗), 𝑡, 0)

+ 𝑍1(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), 𝑡, 𝜀) + … + 

+ 𝑍𝑘(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), … , 𝑢𝑘(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), … , 𝑢𝑘(𝑡 − Δ, 𝜀), 𝑡, 𝜀) + … . 

 

First approximation to solution of nonlinear 𝑇- periodic boundary value problem for equation (1) in 
critical case 

𝑧1(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀),   𝑢1(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐1(𝜀) + (𝑡, 𝜀),   𝑐1(𝜀) ∈ ℝ𝑟  

 

determines the solution of the 𝑇- periodic boundary value problem for equation 

 
𝑑𝑢1(𝑡, 𝜀)

𝑑𝑡
= 𝐴(𝑡)𝑢1(𝑡, 𝜀) + 𝐵(𝑡)𝑢1(𝑡 − Δ, 𝜀) + 𝜀𝑍(𝑧0(𝑡, 𝑐𝑟

∗), 𝑧0(𝑡 − Δ, 𝑐𝑟
∗), 𝑡, 0); 

Here 

𝑢1
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍(𝑧0(𝑠, 𝑐𝑟

∗), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑠, 0)](𝑡) 

 

is a particular solution of this problem. The solvability of the 𝑇-periodic boundary value problem in 

the first approximation is guaranteed by choosing the root 𝑐𝑟
∗ of equation (5) for the generating 

amplitudes of the nonlinear periodic boundary value problem for equation (1). The second 

approximation to the solution of the nonlinear 𝑇-periodic boundary value problem for equation (1) in 
the critical case 

𝑧2(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) + 𝑢2(𝑡, 𝜀),   𝑢2(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐2(𝜀) + 𝑢2

(1)(𝑡, 𝜀),   𝑐2(𝜀) ∈ ℝ𝑟   
 determines the solution of the 𝑇-periodic boundary value problem for the equation 
 

𝑑𝑢2(𝑡, 𝜀)

𝑑𝑡
= 𝐴(𝑡)𝑢2(𝑡, 𝜀) + 𝐵(𝑡)𝑢2(𝑡 − Δ, 𝜀) + 

+𝜀𝑍1(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), 𝑡, 𝜀); 
Here 

𝑢2
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍1(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑢1(𝑠 − Δ, 𝜀), 𝑠, 𝜀)](𝑡) 

 

is a particular solution of this problem. The solvability of the 𝑇-periodic boundary value problem in 

the second approximation guarantees the solvability of the equation 
 

𝐹1(𝑐1(𝜀)) ≔  ∫ 𝐻𝑟
∗(𝑠)𝑍1(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑢1(𝑠 − Δ, 𝜀), 𝑠, 𝜀)𝑑𝑠 = 0

𝑇

0
. 

 

Unlike the equation for the generating amplitudes, the last equation is linear: 

𝐹1(𝑐1(𝜀)) = 𝐵0𝑐1(𝜀) + 𝛿1(𝑐𝑟
∗, 𝜀) = 0, 

and also solvable, provided the roots of the equation for the generating amplitudes are simple; 
here 

𝐵0 = 𝐹1
′(𝑐1(𝜀)) ∈ ℝ𝑟×𝑟 ,   𝛿1(𝑐𝑟

∗) ≔ 𝐹1(𝑐1(𝜀)) − 𝐵0𝑐1(𝜀). 
 

In order to prove this, let us denote the vector function [8, 9] 
 

𝑣(𝑡, 𝜇) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝜇𝑢1(𝑡, 𝜀) +  … + 𝜇𝑘𝑢𝑘(𝑡, 𝜀) + … ; 

in this case 
 

𝐹1(𝑐1(𝜀)) ≔ ∫ 𝐻𝑟
∗(𝑠)𝑍1(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑠, 0, 𝑢1(𝑠 − Δ, 𝜀), 𝜀)𝑑𝑠 ≔

𝑇

0

= ∫ 𝐻𝑟
∗(𝑠)𝑍𝜇 

′ (𝑣(𝑠, 𝜇), 𝑣(𝑠 − Δ, 𝜇), 𝑠, 𝜀)𝑑𝑠
𝑇

0
|  

𝜇=0
= 

=∫ 𝐻𝑟
∗(𝑠)[𝐴1,0(𝑠)𝑢1(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢1(𝑠 − Δ, 𝜀)]

𝑇

0
𝑑𝑠, 

and thus 
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𝐵0 = 𝐹1
′(𝑐1(𝜀)),   𝛿1(𝑐𝑟

∗, 𝜀) = ∫ 𝐻𝑟
∗(𝑠) [𝐴1,0(𝑠)𝑢1

(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢1
(1)(𝑠 − Δ, 𝜀)] 𝑑𝑠.

𝑇

0

 

Therefore, assuming the simplicity of the roots of the equation for the generating amplitudes (5), we 

obtain a unique solution to the boundary value problem in the first approximation 

𝑢1(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐1(𝜀) + 𝑢1
(1)(𝑡, 𝜀), 

𝑐1(𝜀) = −𝐵0
−1 ∫ 𝐻𝑟

∗(𝑠) [𝐴1,0(𝑠)𝑢1
(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢1

(1)(𝑠 − Δ, 𝜀)] 𝑑𝑠.
𝑇

0

 

Third approximation to solution of nonlinear 𝑇- periodic boundary value problem for equation (1) in 

critical case 

𝑧3(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) + 𝑢2(𝑡, 𝜀) + 𝑢3(𝑡, 𝜀), 

𝑢3(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐3(𝜀) + 𝑢3
(1)(𝑡, 𝜀),   𝑐3(𝜀) ∈ ℝ𝑟  

 

determines the solution of the 𝑇-periodic boundary value problem for the equation 
 

𝑑𝑢3(𝑡, 𝜀)

𝑑𝑡
= 𝐴(𝑡)𝑢3(𝑡, 𝜀) + 𝐵(𝑡)𝑢3(𝑡 − Δ, 𝜀) + 

+𝜀𝑍2(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), 𝑢2(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), 𝑢2(𝑡 − Δ, 𝜀), 𝑡, 𝜀); 
Here 

𝑢3
(1)(𝑡, 𝜀) = 

= 𝜀𝐺[𝑍2(𝑧0(𝑠, 𝑐𝑟
∗), 𝑢1(𝑠, 𝜀), 𝑢2(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟

∗), 𝑢1(𝑠 − Δ, 𝜀), 𝑢2(𝑠 − Δ, 𝜀), 𝑠, 𝜀)](𝑡) 
 

is a particular solution of this problem. The solvability of the 𝑇-periodic boundary value problem in 

the second approximation guarantees the solvability of the equation 

𝐹2(𝑐2(𝜀), 𝜀) ≔  ∫ 𝐻𝑟
∗(𝑠) ×

𝑇

0

 

× 𝑍2(𝑧0(𝑠, 𝑐𝑟
∗), 𝑢1(𝑠, 𝜀), 𝑢2(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟

∗), 𝑢1(𝑠 − Δ, 𝜀), 𝑢2(𝑠 − Δ, 𝜀), 𝑠, 𝜀)𝑑𝑠 = 0. 
 

Unlike the equation for the generating amplitudes, the last equation is linear: 
 

𝐹2(𝑐2(𝜀)) = 𝐵0𝑐2(𝜀) + 𝛿2(𝑐𝑟
∗, 𝑐1(𝜀), 𝜀) = 0, 

 

and also solvable, provided that the roots of the equation for the generating amplitudes are simple. 

Here 

𝐵0 = 𝐹2
′(𝑐2(𝜀)) ∈ ℝ𝑟×𝑟,   𝛿2(𝑐𝑟

∗, 𝑐1(𝜀), 𝜀) ≔ 𝐹2(𝑐2(𝜀)) − 𝐵0𝑐2(𝜀). 
 

Denote (n × n) – matrices 

A2,0(t, u1(𝑡, 𝜀)) ≔ 

=
𝜕

𝜕𝑧(𝑡, 𝜀)
[
∂Z(z(t, ε), z(t − Δ, ε), t, ε)

∂z(t, ε)
𝑢1(𝑡, 𝜀)]|

 
z(t, ε) = z0(t, cr

∗)

z(t − Δ, ε) = z0(t − Δ, cr
∗),

 

A1,1(t, u1(𝑡 − Δ, 𝜀)) ≔ 

=
𝜕

𝜕𝑧(𝑡, 𝜀)
[
∂Z(z(t, ε), z(t − Δ, ε), t, ε)

∂z(t − Δ, ε)
𝑢1(𝑡 − Δ, 𝜀)]|

 
z(t, ε) = z0(t, cr

∗)

z(t − Δ, ε) = z0(t − Δ, cr
∗),

 

and 

A0,2(t, u1(𝑡 − Δ, 𝜀)) ≔ 

=
𝜕

𝜕𝑧(𝑡 − Δ, 𝜀)
[
∂Z(z(t, ε), z(t − Δ, ε), t, ε)

∂z(t − Δ, ε)
𝑢1(𝑡 − Δ, 𝜀)]|

 
z(t, ε) = z0(t, cr

∗)

z(t − Δ, ε) = z0(t − Δ, cr
∗),

 

 

Indeed, 

𝐹2(𝑐2(𝜀), 𝜀) =
1

2!
∫ 𝐻𝑟

∗(𝑠)𝑍𝜇2
′′ (𝑣(𝑠, 𝜇), 𝑣(𝑠 − Δ, 𝜇), 𝑠, 𝜀)𝑑𝑠

𝑇

0

|
 

𝜇 = 0
= 

= ∫ 𝐻𝑟
∗(𝑠)[𝐴1,0(𝑠)𝑢2(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢2(𝑠 − Δ, 𝜀)]𝑑𝑠 +

𝑇

0
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+
1

2!
∫ 𝐻𝑟

∗(𝑠)[𝐴2,0(𝑠, 𝑢1(𝑠, 𝜀)) + 2𝐴1,1(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠 − Δ, 𝜀) +
𝑇

0

 

+𝐴0,2(𝑠, 𝑢1(𝑠 − Δ, 𝜀))𝑢1(𝑠 − Δ, 𝜀)]𝑑𝑠, 
 

thus 

 

𝐵0 = 𝐹2
′(𝑐2(𝜀), 𝜀), 

furthermore 

𝛿2(𝑐𝑟
∗, 𝑐1(𝜀), 𝜀) = ∫ 𝐻𝑟

∗(𝑠) [𝐴1,0(𝑠)𝑢2
(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢2

(1)(𝑠 − Δ, 𝜀)] 𝑑𝑠 +
𝑇

0

 

+
1

2!
∫ 𝐻𝑟

∗(𝑠)[𝐴2,0(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠, 𝜀) + 2𝐴1,1(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠 − Δ, 𝜀) +
𝑇

0

 

𝐴0,2(𝑠, 𝑢1(𝑠 − Δ, 𝜀))𝑢1(𝑠 − Δ, 𝜀)]𝑑𝑠. 
 

Thus, provided that the roots of the equation for the generating amplitudes (5) are simple, we obtain a 
unique solution to the boundary value problem in the second approximation 
 

𝑢2(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐2(𝜀) + 𝑢2
(1)(𝑡, 𝜀), 

𝑐2(𝜀) = −𝐵0
−1 ∫ 𝐻𝑟

∗(𝑠) [𝐴1,0(𝑠)𝑢2
(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢2

(1)(𝑠 − Δ, 𝜀)] 𝑑𝑠 −
𝑇

0

 

−
1

2!
𝐵0

−1 ∫ 𝐻𝑟
∗(𝑠)[𝐴2,0(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠, 𝜀) + 2𝐴1,1(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠 − Δ, 𝜀) +

𝑇

0

 

+𝐴0,2(𝑠, 𝑢1(𝑠 − Δ, 𝜀))𝑢1(𝑠 − Δ, 𝜀)]𝑑𝑠. 
 

Solvability of the 𝑇-periodic boundary value problem in 𝑘 + 1 approximation guarantees the 

solvability of the equation 

𝐹𝑘+1(𝑐𝑘(𝜀)) ≔  ∫ 𝐻𝑟
∗(𝑠)𝑍𝑘(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), … , 𝑢𝑘+1(𝑠, 𝜀),
𝑇

0

 

𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑢1(𝑠 − Δ, 𝜀), … , 𝑢𝑘+1(𝑠 − Δ, 𝜀), 𝑠, 𝜀) 𝑑𝑠 = 0. 

 

The sequence of approximations to the solution of the nonlinear 𝑇-periodic boundary value problem 

for equation (1) in the critical case is determined by the iterative scheme 
 

𝑧1(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀),   𝑢1(𝑡) = 𝑋𝑟(𝑡)𝑐1(𝜀) + 𝑢1

(1)(𝑡, 𝜀), 
 

u1
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍(𝑧0(𝑠, 𝑐𝑟

∗), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑠, 0)](𝑡), 

 

𝑐1(𝜀) = −𝐵0
−1 ∫ 𝐻𝑟

∗(𝑠) [𝐴1,0(𝑠)𝑢1
(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢1

(1)(𝑠 − Δ, 𝜀)] 𝑑𝑠,
𝑇

0

 

𝑧2(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) + 𝑢2(𝑡, 𝜀),   𝑢2(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐2(𝜀) + 𝑢2

(1)(𝑡, 𝜀), 
 

𝑢2
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍1(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑢1(𝑠 − Δ, 𝜀), 𝑠, 𝜀))](𝑡), 

 

𝑐2(𝜀) = −𝐵0
−1 ∫ 𝐻𝑟

∗(𝑠) [𝐴1,0(𝑠)𝑢2
(1)(𝑠, 𝜀) + 𝐴0,1(𝑠)𝑢2

(1)
(𝑠 − Δ, 𝜀)] 𝑑𝑠 −

𝑇

0

 

−
1

2!
𝐵0

−1 ∫ 𝐻𝑟
∗(𝑠)[𝐴2,0(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠, 𝜀) + 2𝐴1,1(𝑠, 𝑢1(𝑠, 𝜀))𝑢1(𝑠 − Δ, 𝜀) +

𝑇

0

 

+𝐴0,2(𝑠, 𝑢1(𝑠 − Δ, 𝜀))𝑢1(𝑠 − Δ, 𝜀)] 𝑑𝑠, …, 
 

                   𝑧𝑘+1(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) +  … + 𝑢𝑘+1(𝑡, 𝜀),         (6) 
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𝑢𝑘+1(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐𝑘+1(𝜀) + 𝑢𝑘+1
(1) (𝑡, 𝜀),  𝛿𝑘+1(𝑐𝑟

∗, 𝑐1(𝜀), 𝜀) = 𝐹𝑘+1(𝑐2(𝜀)) − 𝐵0𝑐𝑘+1(𝜀), 
 

𝑢𝑘+1
(1) (𝑡, 𝜀) = 𝜀𝐺[𝑍𝑘(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), … , 𝑢𝑘(𝑠, 𝜀), 
 

𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑠, 𝜀, 𝑢1(𝑠 − Δ, 𝜀), … , 𝑢𝑘(𝑠 − Δ, 𝜀))](𝑡), 

 

 𝑐𝑘+1(𝜀) = −𝐵0
−1𝛿𝑘+1(𝑐𝑟

∗, 𝑐𝑘+1(𝜀), 𝜀),   𝑘 = 1,2, …  . 
 

Theorem. In the critical case, the periodic problem for equation (2) with concentrated delay, under 

condition (4), has an r-parametric family of solutions 
 

𝑧0(𝑡, 𝑐𝑟
∗) = 𝑋𝑟(𝑡)𝑐𝑟 + 𝐺[𝑓(𝑠)](𝑡),   𝑐𝑟 ∈ ℝ𝑟 . 

 

Assuming det 𝐵0 ≠ 0 the simplicity of the roots of the equation (5) for the generating amplitudes in a 

small neighborhood of the generating solution 𝑧0(𝑡, 𝑐𝑟
∗), the nonlinear periodic boundary value 

problem for equation (1) has a unique solution 

 

𝑧(𝑡, 𝜀) ∶  𝑧(∙, 𝜀)  ∈ 𝐶¹[0, 𝑇], 𝑧(𝑡,∙)  ∈  𝐶[0, 𝜀₀]. 
 
The sequence of approximations to the solution of the nonlinear periodic boundary value problem for 

equation (1) is determined by the iterative scheme (6). If there exists a constant 0 < 𝛾 < 1,  for which 

the inequalities 
 

                   ‖𝑢1(𝑡, 𝜀)‖ ≤ 𝛾‖𝑧0(𝑡, 𝑐𝑟
∗)‖,   ‖𝑢𝑘+1(𝑡, 𝜀)‖ ≤ 𝛾‖𝑢𝑘(𝑡, 𝜀)‖,   𝑘 = 1,2, …              (7) 

 

hold, then the iterative scheme (6) converges to the solution of the nonlinear periodic boundary value  
problem for equation (1) with concentrated delay. 

3. Finding approximations to the periodic solution of the equation modeling 
a non-isothermal chemical reaction 

Let us apply the iterative scheme (6) in order to find approximations to the periodic solution of the 

equation with concentrated delay, which models a non-isothermal chemical reaction [10, 11]. 

 

Example.  The conditions of the proven theorem hold in the case of a 2𝜋-periodic boundary value 

problem with concentrated delay 

 

   𝑑𝑧(𝑡, 𝜀)/𝑑𝑡 = 𝐴(𝑡)𝑧(𝑡, 𝜀) + 𝐵(𝑡)𝑧(𝑡 − Δ, 𝜀) + 𝑓(𝑡) + 𝜀𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − Δ, 𝜀), 𝑡, 𝜀);     (8) 

 

here 

𝐴(𝑡) ≔  (
0 1
0 0

) ,   𝐵(𝑡) ≔ 0,   𝑓(𝑡) ≔ (
cos 𝑡

0
) ,   Δ ≔

𝜋

2
, 

and also 

𝑍(𝑧(𝑡, 𝜀), 𝑧(𝑡 − Δ, 𝜀), 𝜀) ≔ (1 + 𝑥(𝑡, 𝜀))𝑒
−

𝜀
1+𝑦(𝑡−Δ,𝜀) (

1
1

) ,   𝑧(𝑡, 𝜀) ≔ (
𝑥(𝑡, 𝜀)

𝑦(𝑡, 𝜀)
). 

 

For the generating periodic problem for equation (8), there is a critical case [2, 12], and condition (4) 

is satisfied, therefore, it is solvable: 

𝑧0(𝑡, 𝑐𝑟) = 𝑋𝑟(𝑡)𝑐𝑟 + 𝐺[𝑓(𝑠)](𝑡),   𝑐𝑟 ∈ ℝ1; 
here 

𝑋𝑟(𝑡) = (
1
0

) ,   𝐺[𝑓(𝑠)](𝑡) = (
sin 𝑡

0
). 
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The equation for the generating amplitudes (5) in the case of a problem of finding a periodic solution 

for equation (8) has a simple root 𝑐𝑟
∗ = 1, which determines the generating solution 

𝑧0(𝑡, 𝑐𝑟
∗) = − (

1 + sin 𝑡
0

). 

The matrix 𝐵0 = 2𝜋 is non-singular, so according to the proven theorem, the 2𝜋-periodic problem for 

equation (8) with concentrated delay is uniquely solvable. Thus, we obtain the first approximation 
 

𝑧1(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀),   𝑢1(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐1(𝜀) + 𝑢1

(1)(𝑡, 𝜀),   𝑐1(𝜀) = −𝜀 

  
to the solution of the periodic problem for equation (8); here 

𝑢1
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍(𝑧0(𝑠, 𝑐𝑟

∗), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗), 𝑠, 0)](𝑡) = 𝜀 (

1 − sin 𝑡 − cos 𝑡
− cos 𝑡

), 

and also 

𝑍(𝑧0(𝑡, 𝑐𝑟
∗), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑡, 0) = (1 + 𝑐𝑟
∗ + sin 𝑡 ) (

1
1

) . 

Similarly, we obtain the second approximation to the solution of the nonlinear periodic boundary 

value problem for equation (8) in the critical case 

𝑧2(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) + 𝑢2(𝑡, 𝜀),   𝑢2(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐2(𝜀) + 𝑢2

(1)(𝑡, 𝜀); 
here 

𝑢2
(1)(𝑡, 𝜀) = 𝜀𝐺[𝑍1(𝑧0(𝑠, 𝑐𝑟

∗), 𝑢1(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟
∗)), 𝑢1(𝑠 − Δ, 𝜀), 𝑠, 𝜀)](𝑡) = 

= 𝜀2 (
sin 𝑡 + 3 cos 𝑡 − 3

2 cos 𝑡 − sin 𝑡
),   𝑐2(𝜀) =

7𝜀2

2
. 

and also 

𝑍1(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), 𝑡, 𝜀) = 

= (1 + 𝑐1(𝜀) − 2 sin 𝑡 − cos 𝑡) (
1
1

). 

In the same way, we obtain the third approximation to the solution of the nonlinear periodic boundary 

value problem for equation (8) in the critical case 

𝑧3(𝑡, 𝜀) ≔ 𝑧0(𝑡, 𝑐𝑟
∗) + 𝑢1(𝑡, 𝜀) + 𝑢2(𝑡, 𝜀) + 𝑢3(𝑡, 𝜀),   𝑐3(𝜀) = −

65𝜀3

8
,  

 

𝑢3(𝑡, 𝜀) = 𝑋𝑟(𝑡)𝑐3(𝜀) + 𝑢3
(1)(𝑡, 𝜀),   𝑢3

(1)(𝑡, 𝜀) = 

= 𝜀𝐺[𝑍2(𝑧0(𝑠, 𝑐𝑟
∗), 𝑢1(𝑠, 𝜀), 𝑢2(𝑠, 𝜀), 𝑧0(𝑠 − Δ, 𝑐𝑟

∗)), 𝑢1(𝑠 − Δ, 𝜀), 𝑢2(𝑠 − Δ, 𝜀), 𝑠, 𝜀)](𝑡) = 

=
𝜀3

8
(

53 − 52 cos 𝑡 − cos 2𝑡 + 12 sin 𝑡 + 2 sin 2𝑡
2(16 sin 𝑡 + sin 2𝑡 − 10 cos 𝑡)

) ; 

and also 

𝑍2(𝑧0(𝑡, 𝑐𝑟
∗), 𝑢1(𝑡, 𝜀), 𝑢2(𝑡, 𝜀), 𝑧0(𝑡 − Δ, 𝑐𝑟

∗), 𝑢1(𝑡 − Δ, 𝜀), 𝑢2(𝑡 − Δ, 𝜀), 𝑡, 𝜀) = 

=
𝜀2

2
(7 − 2𝑐2(𝜀) − 8 cos 𝑡 − cos 2𝑡 − 5 sin 𝑡) (

1
1

). 

 

For the obtained approximations to the periodic solution of equation (8), the inequalities  
 

‖𝑢1(𝑡, 𝜀)‖ ≤ 𝛾‖𝑧0(𝑡, 𝑐𝑟
∗)‖,   ‖𝑢𝑘+1(𝑡, 𝜀)‖ ≤ 𝛾‖𝑢𝑘(𝑡, 𝜀)‖,   𝛾 ≈ 0, 131 256,   𝑘 = 0,1,2, 

 

hold, indicating the practical convergence of the obtained approximations to the periodic solution of 
the equation (8) for 

𝜀 ∈ [0, 𝜀0],   𝜀0 ≈ 0, 25. 
The accuracy of the obtained approximations to the periodic solution of equation (8) is determined by 
the residuals 

 

Δ𝑘(𝜀) ≔ ||𝑑𝑧𝑘(𝑡, 𝜀)/𝑑𝑡 − 𝐴(𝑡)𝑧𝑘(𝑡, 𝜀) − 𝐵(𝑡)𝑧𝑘(𝑡 − Δ, 𝜀) − 𝑓(𝑡) − 

−𝜀𝑍(𝑧𝑘(𝑡, 𝜀), 𝑧𝑘(𝑡 − Δ, 𝜀), 𝑡, 𝜀)||
 

ℂ[0; 2𝜋]
,   𝑘 = 0, 1, 2, 3. 

In particular, 
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Δ0(0, 1) ≈ 0, 0904 837,   Δ1(0,1) ≈ 0, 0213 474, 
Δ2(0, 1) ≈ 0, 00 469 105,   Δ3(0,1) ≈ 0, 00 112 528; 

Δ0(0, 01) ≈ 0, 0099 005,   Δ1(0,01) ≈ 0, 000 222 616, 
Δ2(0, 01) ≈ 4, 97 520 × 10−6,   Δ3(0,01) ≈ 1, 21 626 × 10−7 . 

 
The research scheme proposed in the article for investigating solvability conditions and constructing 

approximations to the periodic solution of equation (1) can be transferred to matrix boundary value 

problems, including those with concentrated delay [13 - 16]. 
 

   The authors of the article express their sincere gratitude to the Managing Director of the Max 

Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Professor Peter Benner, 

for his support and discussion of the obtained results. 
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