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Abstract  
The article examines the problem of constructing an algorithm for finding positive definite 

matrices that are the solution to Sylvester's three-term matrix equation. The problem is that, 

unlike the Lyapunov equation, such a condition cannot be written in terms of eigenvalues. The 

condition for the existence of a solution to the Sylvester equation is based on the principle of 

contraction mappings. The article also proposes an iterative procedure and algorithm for 

finding a solution. 
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1. Introduction 

The Sylvester matrix equation 𝐴𝑋 +  𝑋𝐵 =  𝐶, also sometimes called the continuous Sylvester 

equation, and the Stein matrix equation 𝑋 +  𝐴𝑋𝐵 =  𝐶, in turn, sometimes called the discrete 

Sylvester equation, as well as their special cases - the Lyapunov equations 𝐴𝑇𝑋 +  𝑋𝐴 =  𝐶 and 𝑋 −

 𝐴𝑋𝐴𝑇 =  𝐶, are well-studied and frequently encountered (for example, in the theory of differential 

equations) classes of matrix equations [1-6]. The conditions for the unique solvability of these equations 

have long been known; there are numerical algorithms for solving them, for example, the Bartels-

Stewart and Golub-Nash-Van Loan algorithms. 

An analogue of Sylvester's equation  𝐴𝑋 + 𝑋𝐵 =  𝐶 began to attract the attention of researchers 

relatively recently [7-9]. Although this equation is superficially very similar to Sylvester's equation, 

their natures are profoundly different. Let's give a simple example to illustrate this difference. If all 

matrices are square and 𝐴 =  𝐵, then Sylvester’s equation has a unique solution 𝑋 - for any right-hand 

side 𝐶. For the same coefficients 𝐴 and 𝐵, the equation 𝐴𝑋 + 𝑋𝐵 =  𝐶  has a solution only if the matrix 

𝐶 is symmetric. If this condition is met and 𝑋 satisfies this equation, then 𝑋 +  𝐾, where 𝐾 is an 

arbitrary skew-symmetric matrix, is also a solution. 

Equation 𝐴𝑇𝑋 +  𝑋𝐴 =  𝐶 , as well as the equations  𝐴𝑋 +  𝑋𝐵 =  𝐶 we will generally call two 

member equations of Sylvester type. The relevance of studying this kind of equations is beyond doubt. 

Let us give several examples showing why the study of equations of Sylvester type is justified. Equation 

𝐴𝑋 +  𝑋𝐵 =  𝐶 was first encountered by us in article [10-12], where it was studied under the additional 

assumption  𝐶 = 𝐶𝑇. 

Solvability conditions and a description of the general solution were given in terms of generalized 

inverses for matrices 𝐴 and 𝐵 and their associated projectors. These conditions are not entirely 
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constructive and are difficult to verify. Homogeneous equation 𝐴𝑋 +  𝑋𝐵 =  𝐶  was studied in article 

[2] in the special case 𝐵 =  𝐴. The authors were motivated by the fact that the set 𝐴𝑋 +  𝑋𝐵 ∈  𝐶𝑛×𝑛 

 is the tangent space (calculated at point 𝐴) of the orbit of matrix 𝐴 under the action of congruences. The 

codimension of this orbit is exactly the dimension of the space of solutions to the equation 𝐴𝑋 +  𝐴𝑋 =

 0. The main result of work [2,3] was the establishment of the canonical structure of matrices in general 

position with respect to congruences. In a similar way, the same authors in [4] studied the equation 

𝐴𝑋 +  𝐴𝑋 =  0. In the publication [4] the equations 𝐴𝑋 +  𝑋𝐵 =  𝐶  arise when constructing an 

algorithm for palindromic eigenvalue problems 𝐴𝑥 = 𝜆𝐴𝑇𝑥  .  

In the process of reducing matrix A to antitriangular form, the need arises to solve these equations 

numerically. In article [5], the conditions for unique solvability and a numerical algorithm for solving 

the equation 𝐴𝑋 +  𝑋𝐵 =  𝐶 are formulated. 

By analogy with equations of Sylvester type, equations of Stein type will be called equations 𝑋 +

 𝐴𝑋𝐵 =  𝐶. The first of them was partially studied in publication [6]. The question naturally arises 

about the completion of this study. The topic of solvability of the other two equations, on the contrary, 

is explored exhaustively in this publication. 

No less interesting is the problem of obtaining sufficient solvability conditions for the Sylvester 

matrix equation 

𝐴𝑇𝐻 + 𝐻𝐴 + 𝐵𝑇𝐻𝐵 = −𝐶, 

where 𝐶 is a positive definite matrix. The need to solve such equations is emphasized in [13-14]. 

It is noted in [9] that there are now several approaches to solving the Sylvester equation. The first is 

to reduce the matrix equation to a vector (linear algebraic equation of increased dimension) and then 

the condition for the solvability of this equation is expressed through the non-degeneracy of the 

corresponding matrix. The second approach uses the small parameter method. It is also possible to 

obtain a spectral sparsity criterion for an equation with mutually commutable matrices. An analytical 

solution of this equation is possible only for the case of the two-term Sylvester equation. 

At the same time, the question of the existence of a positive definite solution in the general case 

remains open. The procedure for finding this solution is also of interest for another investigations [15-

16]. The purpose of the article is to obtain sufficient conditions for the existence of a solution to the 

Sylvester matrix equation on a set of positive definite matrices. The article will also present an iterative 

procedure and algorithm for finding these solutions. 

2. Main result 

The approach is based on a modification of the contraction mapping method. If on a complete 

metric space 𝑀 the following operator is specified 𝐹[𝑥], 𝑥 ∈ 𝑀, that maps points 𝑥 ∈ 𝑀to points of the 

same space 𝐹[𝑥] ∈ 𝑀 and satisfies the contraction condition 𝜌(𝐹[𝑥], 𝐹[𝑦]) ≤ 𝛼𝜌(𝑥, 𝑦), 0 < 𝛼 < 1, 

where 𝜌(𝑥, 𝑦) is the metric of the space M, then the operator equation 

𝑥 = 𝐹[𝑥] 

has a unique solution 𝑥∗ ∈ 𝑀, and it can be found by the method of successive iterations 

𝑥 = lim
𝑛→∞

𝑥𝑛, 𝑥𝑛 = 𝐹[𝑥𝑛−1], 𝑛 = 1,2, … , 𝑥0 = 𝑥0. 

Let 𝑥0 - be an arbitrary point in space, H is some complete metric space with metric 𝜌(𝐻1 , 𝐻2). Let 

us fix the following operators: 

𝐹, 𝐺: 𝐻 →  𝐻. 

Consider the operator equation 

                                                           𝐹[𝐻] = 𝐺[𝐻]                                       (1) 
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Let us show that to solve this equation we can use an iterative procedure based on the following 

implicit scheme 

                                           𝐹[𝐻𝑠+1] = 𝐺[𝐻𝑠], 𝐻0 = 𝐻0 , 𝑠 = 1,2, . . , ;  𝐻0 ∈H                                        (2) 

Definition. We call method (2) converging to the solution of equation (1) if the sequence {𝑦𝑠}, 𝑦𝑠 =

𝐹[𝐻𝑠], at 𝑠 → ∞  converges. Let us prove a theorem whose conditions ensure the convergence of 

method (2) to the solution of equation (1). 

Let us assume that the solution to equation (1) lies in the set 𝐻(𝐴, 𝑟): 

𝐻(𝐴, 𝑟) = {𝐻 ∈ 𝐻:  𝜌 (𝐹[𝐻], 𝐹[𝐴])⟨𝑟}. 

Theorem 1. Let us fix the set 𝐻(𝐴, 𝑟), i.e. the values of 𝑟 and 𝐴 are determined. If for arbitrary 

𝐻1 , 𝐻2 ∈ 𝐻(𝐴, 𝑟) operators 𝐹, 𝐺: 𝐻 →  𝐻 satisfy the contraction condition 

                                            𝜌(𝐺[𝐻1], 𝐺[𝐻2]) < 𝑞 𝜌(𝐹[𝐻1], 𝐹[𝐻2]), 0 < 𝑞 < 1,                                 (3) 

and 

                                                        𝜌(𝐺[𝐴], 𝐹[𝐴]) < (1 − 𝑞)𝑟 ,                                                                     (4) 

then operator equation (1) has a unique solution in the set 𝐻(𝑎, 𝑟) and the sequence {𝑦𝑠}, 𝑦𝑠 = 𝐹[𝐻𝑠] 

constructed according to scheme (2) converges to 𝑦∗ = 𝐹[𝐻∗]  for any starting point 𝐻0𝜖𝐻(𝐴, 𝑟). For 

the error of method (2), the following estimate is valid: 

                                       𝜌(𝐹[𝐻𝑘], 𝐹[𝐻∗]) <
𝑞𝑘

1−𝑞
𝜌(𝐺[𝐻0], 𝐹[𝐻0]).                                               (5) 

Proof. Let 𝐻0 - be an arbitraryelement of H(A, r) . Let us prove that the sequence 𝐻𝑘  built according 

to scheme (2) will not leave the set H(A, r). By condition 𝐻0 ∈ 𝐻(𝐴, 𝑟). Let us assume that 𝐻𝑘 ∈

𝐻(𝐴, 𝑟)for some fixed k. Let us show that then 𝐻𝑘+1 ∈ 𝐻(𝐴, 𝑟). Consider the equality: 

𝐹[𝐻𝑠+1] = 𝐺[𝐻𝑠] 

Let us subtract the 𝐹[𝐴] from both sides of the above mentioned equation, we get 

𝐹[𝐻𝑘+1] − 𝐹[𝐴] = 𝐺[𝐻𝑘] − 𝐹[𝐴] = (𝐺[𝐻𝑘] − 𝐺[𝐴]) + (𝐺[𝐴] − 𝐹[𝐴]) 

Then the inequality holds

𝜌(𝐹[𝐻𝑘+1], 𝐹[𝐴]) < 𝜌(𝐺[𝐻𝑘], 𝐺[𝐴]) + 𝜌(𝐺[𝐴], 𝐹[𝐴]). 

Using the induction hypothesis, we have 

𝜌(𝐺[𝐻𝑘], 𝐺[𝐴]) < 𝑞𝜌(𝐹[𝐻𝑘], 𝐹[𝐴]) < qr 

and since by the conditions of the theorem 𝜌(𝐺[𝐴], 𝐹[𝐴]) < (1 − 𝑞)𝑟 we get that 

𝜌(𝐹[𝐻𝑘+1], 𝐹[𝐴]) < qr + (1 − 𝑞)𝑟 = 𝑟. 

Thus 𝐻𝑘+1 ∈ 𝐻(𝐴, 𝑟). 

Now we will show that the following sequence {𝑦𝑠}, 𝑦𝑠 = 𝐹[𝐻𝑠] is Cauchy. Let's consider the 

difference 𝐹[𝐻𝑘+1] − 𝐹[𝐻𝑘]: 

𝐹[𝐻𝑘+1] − 𝐹[𝐻𝑘] = 𝐺[𝐻𝑘] − 𝐺[𝐻𝑘−1] 

Because the 𝐻𝑘 ∈ 𝐻(𝐴, 𝑟), then using condition (3) we obtain 

𝜌(𝐹[𝐻𝑘+1], 𝐹[𝐻𝑘]) = 𝜌(𝐺[𝐻𝑘], 𝐺[𝐻𝑘−1]) < 𝑞𝜌(𝐹[𝐻𝑘], 𝐹[𝐻𝑘−1]) 

and therefore 

𝜌(𝐹[𝐻𝑘+1], 𝐹[𝐻𝑘]) < 𝑞𝑘𝜌(𝐹[𝐻1], 𝐹[𝐻0]) (6) 

 

     

Let 𝑝 ∈ 𝑁. Then it's fair 

𝐹[𝐻𝑘+𝑝] − 𝐹[𝐻𝑘] = ∑ (𝐹[𝐻𝑘+𝑗] − 𝐹[𝐻𝑘+𝑗−1])𝑝
𝑗=1 . 

And according to (6) we get: 
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𝜌(𝐹[𝐻𝑘+𝑝], 𝐹[𝐻𝑘]) <
𝑞𝑘

1−𝑞
𝜌(𝐹[𝐻1], 𝐹[𝐻0]). 

(7) 

Because lim
𝑘→¥

𝑞𝑘

1−𝑞
= 0 and does not depend on 𝑝, then the sequence {𝑦𝑠} - Cauchy. Therefore there 

is a limit 

lim
𝑘→∞

𝑦𝑠 = 𝑦∗, 𝑦∗ = 𝐹[𝐻∗], 𝐻∗ ∈ 𝐻(𝐴, 𝑟) 

 

Let us pass to the limit in  (2) at 𝑘 → ∞,  then we get that 𝐹[𝐻∗] = 𝐺[𝐻∗]. Hence 𝐻∗- is a solution 

of equation (1). Let us prove the uniqueness of this solution. Let 𝐻∗ is a some another solution (1) and  

𝐻∗ ∈ 𝐻(𝐴, 𝑟). Then 

𝐹[𝐻∗] − 𝐹[𝐻∗] = 𝐺[𝐻∗] − 𝐺[𝐻∗] 

and

𝜌(𝐹[𝐻∗], 𝐹[𝐻∗]) < 𝑞𝜌(𝐹[𝐻∗], 𝐹[𝐻∗]). 

Because 0 < 𝑞 < 1, That 𝐻∗ = 𝐻∗. 

Let us prove the estimate of the error of method (2). Let k be fixed and 𝑝 → ∞. Then from (7) we 

obtain 

𝜌(𝐹[𝐻𝑘], 𝐹[𝐻∗]) <
𝑞𝑘

1−𝑞
𝜌(𝐹[𝐻1], 𝐹[𝐻0]), 𝑘 = 1,2, 𝐾. 

Therefore the theorem is proven. 

2.1. Existance of solution 

Denote as H the space of symmetric matrices with the metric -𝜌(𝐻1 , 𝐻2) = |𝐻1 − 𝐻2|. 

Let us write the Lagrange formula for the operators F and G. We have: 

𝐹[𝐻1] − 𝐹[𝐻2] = 𝐻2(𝑥)(𝐻1 − 𝐻2), 𝐺[𝐻1] − 𝐺[𝐻2] = 𝐻1(𝑥)(𝐻1 − 𝐻2), 

Where 𝐻1(.), 𝐻2(.) are the Gâteaux derivatives of the operators 𝐹 and 𝐺 at some midpoint. 

Assume that there is an inverse operator 𝐻2
−1. Then we get: 

𝐺[𝐻1] − 𝐺[𝐻2] = 𝐻1(𝑥)𝐻2
−1(𝑥)(𝐹[𝐻1] − 𝐹[𝐻2]). 

Thus we have 

|  𝐺[𝐻1] − 𝐺[𝐻2]| ≤ |𝐻1(𝑥)𝐻2
−1(𝑥)||𝐹[𝐻1] − 𝐹[𝐻2]| (8) 

It follows that condition (3) of Theorem 1 will be satisfied if 

|𝐻1(𝑥)𝐻2
−1(𝑥)| ≤ 𝑞 < 1. (9) 

This condition is not always convenient. Using Theorem 1 and inequality (9), we obtain the 

conditions for the solvability of the Sylvester matrix equation. 

Let us define the operators F and G as follows: 

𝐹[𝐻]=-𝐴𝑇𝐻 − HA, 𝐺[𝐻] = 𝐶 + 𝐵𝑇HB, 

where 𝐴, 𝐵 are some matrices, 𝐶 is a positive definite matrix. Then the Sylvester matrix equation 

can be rewritten as: 

𝐹[𝐻] = 𝐺[𝐻]. (10) 

Let us obtain constructive solvability conditions for this equation. 

Lemma 1. A necessary condition for the solvability of the Sylvester matrix equation on the set of 

positive definite matrices is that the matrix 𝐴 is Hurwitz. 

Proof. Let 𝐻0 is a positive definite solution to Sylvester's equation. Consider the expression 

−𝐴𝑇𝐻0 − 𝐻0𝐴 = 𝐶 + 𝐵𝑇𝐻0𝐵. 

Let's denote 𝐶1 = 𝐶 + 𝐵𝑇𝐻0𝐵. Because 𝐶 and 𝐻0 are positive definite, then 𝐶1 will be a positive 

definite. Then 
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−𝐴𝑇𝐻0 − 𝐻0𝐴 = 𝐶1 

is a matrix Lyapunov equation and since 𝐻0 is his solution, then 𝐴 is a Hurwitz matrix. 

2.2. Iteration procedure 

Lemma 2. Let matrices 𝐴, 𝐵 satisfy the following conditions: 

1) 𝐴- is Hurwitz matrix, (11) 

2)|(𝐵𝑇×B)(−𝐴𝑇×I − I×A)−1| ≤ 𝑞, (12) 

where × denotes the Kronecker product, then there is a unique positive definite solution to the 

Sylvester matrix equation and it can be found using the iterative procedure 

−𝐴𝑇𝐻𝑘+1 − 𝐻𝑘+1𝐴 = 𝐶 + 𝐵𝑇𝐻𝑘𝐵, 

where 𝐶 is an arbitrary positive definite matrix. 

Proof. Let us apply inequality (9) to the operators defining the Sylvester equation. For operator 𝐺 

we have: 

𝛨1(𝜉) = 𝐵𝑇×B. 

Since 𝐴 is Hurwitz, then the operator 𝐻2
−1(𝜉) exists and can be written 

𝛨2
−1(𝜉) = (−𝐴𝑇xI − IxA)−1. 

Consequently, we find that inequality (12) ensures that condition (3) of Theorem 1 is satisfied. 

Let us take as the working set the entire space of positive definite matrices, then 𝑟=∞. Thus, we obtain 

conditions for the existence and uniqueness of a solution to the Sylvester matrix equation. 

Let us show that the solution obtained by the iterative procedure 

−𝐴𝑇𝐻𝑘+1 − 𝐻𝑘+1𝐴 = 𝐶 + 𝐵𝑇𝐻𝑘𝐵 

will be a positive definite matrix. Let us prove this by mathematical induction. Matrix 𝐻0 positive 

definite - due to the choice of the starting point. Let 𝐻𝑘   is a positive definite matrix. Let's show positive 

definiteness 𝐻𝑘+1. 

Consider the equation 

−𝐴𝑇𝐻𝑘+1 − 𝐻𝑘+1𝐴 = 𝐶𝑘 , 

where  𝐶𝑘 = 𝐶 + 𝐵𝑇𝐻𝑘𝐵,𝑘 = 1,..., 𝑛,... 

Since 𝐴 is Hurwitz and 𝐶𝑘- is always positive definite, then𝐻𝑘+1, as a solution to the Lyapunov 

equation will be a positive definite matrix. The lemma is proven. 

2.3.  Application examples 

Let us consider examples of the fulfillment of the conditions of Lemma 2. Let in the first 

example 

𝐴 = (
3 5 0
2 1 0
0 3 5

)    𝐵 = (
0.1 0.5 0
4 0.3 0.9

0.1 0 0.5
) 

where matrix 𝐴 is Hurwitz. We substitute the values of matrices 𝐴 and 𝐵 into condition (12), carry out 

calculations and find that all elements in the resulting matrix are less than 1 in absolute value, which 

indicates that the condition is met. 

In the second example 

𝐴 = (
1 2 0
3 4 0
0 1 2

)    𝐵 = (
0.1 0.2 0.1
0.3 0.1 0.5
0.2 0.4 0.1

) 
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we carry out similar calculations and obtain the fulfillment of conditions (11) and (12). 

Let us give an example of non-fulfillment of the conditions of Lemma 2. Let the values of the 

matrices be as follows: 

𝐴 = (
1 2 0
3 4 0
0 1 2

)        𝐵 = (
1 2 3
3 4 5
2 4 1

) 

 

In this case, when calculating condition (12), we obtain a matrix where some elements have absolute 

values greater than 1, and this indicates that the condition is not met. 

2.4. Algoritm for solving Silvest’r equation 

Let us consider an algorithm for finding positive definite solutions. For finding a solution of the 

Sylvester equation, we apply the following algorithm: 

1. Check the Hurwitz property of matrix 𝐴. 

2. Check the condition |(𝐵𝑇×B)(−𝐴𝑇×I − I×A)−1| ≤ 𝑞. 

3. If 1.2 are true, then a solution exists and perform step 4. Otherwise, step 9. 

4. We let 𝑘 = 0, 𝐻0 = 𝐼, 𝐼 − identity matrix. 

5. At the kth step we calculate 𝐶1 = 𝐶 + 𝐵𝑇𝐻𝑘𝐵. 

6. Solve the Lyapunov equation −𝐴𝑇𝐻𝑘+1 − 𝐻𝑘+1𝐴 = 𝐶1. 

7. Check the condition for ending the iteration procedure. If it is not fulfilled, then 𝑘 = 𝑘 + 1 and 

go to step 5, otherwise go to step 8. 

8. Resulting matrix 𝐻𝑘  - is a solution to the Sylvester matrix solution. 

9. The end. 
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4. Conclusions and discussion of results 

The article studies the solvability of Sylvester's three-term matrix equation. Using the principle of 

contraction mappings, a sufficient condition for the existence of a positive definite solution is obtained. 

It should be noted that such conditions have not been published before. In other works authors solve 

similar equations by expanding the equation into a system of linear algebraic equations with constant 

coefficients and then solving it, for example, using the Gauss method. This approach does not allow us 

to obtain the condition for the existence of the necessary solution. In this article, in addition to the 

sufficient condition for the existence of a positive definite solution to the three-term matrix Sylvester 

equation, an algorithm for finding it is proposed and the convergence of this algorithm is proven.  

The method presented in this article will allow us to more effectively solve problems of stability and 

controllability, which are presented in [17-22]. The solvability condition for Sylvester's three-term 

matrix equation is easy to verify. It is constructive. The proposed algorithm effectively finds a 

symmetric positive definite solution. 

5. References 

[1]. Xing Lili, Li Weiguo, Bao Wendi, Some results for Kaczmarz method to solve Sylvester matrix 
equations, Journal of the Franklin Institute, Volume 360, Issue 11, 2023, pp. 7457-7461. 



143 

 

[2]. Piao F., Zhang Q., Wang Z. The solution to matrix equation AX + XTC = B // J. Franklin Inst. 
2007. V. 344. N 8. P. 1056-1062. 

[3]. Zebin Chen, Xuesong Chen, Modification on the convergence results of the Sylvester matrix 

equation AX+XB=C, Journal of the Franklin Institute, Volume 359, Issue 7, 2022, pp. 3126-3147 

[4]. Teran F., Bopico F. M. The solution of the equation XA+AXT = 0 and its application to the theory 
of orbits // Linear Algebra Appl. 2011. V. 434. N 1. P. 44-67. 

[5]. Zhaolu Tian, Yudong Wang, Yinghui Dong, Xuefeng Duan, The shifted inner–outer iteration 

methods for solving Sylvester matrix equations, Journal of the Franklin Institute, Volume 361, 
Issue 5, 2024, https://www.sciencedirect.com/science/article/pii/S0016003224000954 

[6]. Shihai Li, Changfeng Ma, Factor gradient iterative algorithm for solving a class of discrete periodic 

Sylvester matrix equations, Journal of the Franklin Institute, Volume 359, Issue 17, n2022, pp. 
9952-9970. 

[7]. Soheila Ghoroghi Shafiei, Masoud Hajarian, Developing Kaczmarz method for solving Sylvester 

matrix equations, Journal of the Franklin Institute, Volume 359, Issue 16, 2022, pp. 8991-9005. 

[8]. Lakhlifa Sadek, Ahmad Sami Bataineh, Osman Rasit Isik, Hamad Talibi Alaoui, Ishak Hashim, A 
numerical approach based on Bernstein collocation method: Application to differential Lyapunov 

and Sylvester matrix equations, Mathematics and Computers in Simulation, Volume 212, 2023, 

pp. 475-488. 
[9]. Kressner V., Schroder C., Watkins BS Implicit QR algorithms for palindromic and even eigenvalue 

problems // Numerical Algorithms. 2009. V. 51. N 2. P. 209-238. 

[10]. George A., Ikramov Kh. D., Matushkina E.V., Tang W.-P. On a QR-Like Algorithm for Some 
Structured Eigenvalue Problems // SIAM J. Matrix Anal. Appl. 1995. V. 16. N. 4. P. 1107-1126. 

[11]. Zhou W., Lam J., Buan G.-R. Toward solution of matrix equation X = Ai(X)B + C // Linear 

Algebra Appl. 2011. V. 435. N 6. P. 1370-1398. 

[12]. Wenli Wang, Caiqin Song, Iterative algorithms for discrete-time periodic Sylvester matrix 
equations and its application in antilinear periodic system, Applied Numerical Mathematics, 

Volume 168, 2021, pp. 251-273. 

[13]. Zhaolu Tian, Yudong Wang, Yinghui Dong, Shiyu Wang, New results of the IO iteration 
algorithm for solving Sylvester matrix equation, Journal of the Franklin Institute, Volume 359, 

Issue 15, 2022, pp. 8201-8217. 

[14]. Soheila Ghoroghi Shafiei, Masoud Hajarian, An iterative method based on ADMM for solving 

generalized Sylvester matrix equations, Journal of the Franklin Institute, Volume 359, Issue 15, 
2022, pp. 8155-8170. 

[15]. Korenivsky D.G. Destabilizing effect of parametric white noise in continuous and discrete 

dynamic systems. – Proceedings of the Institute of Mathematics of the National Academy of 
Sciences of Ukraine, vol. 59, 2006. – 110 p. 

[16] Biswa Datta Numerical methods for linear control systems: design and analysis. Elsevier Academic 

Press, Amsterdam ; Boston. ISBN 978-0-12-203590-6. 
[17]. Shatyrko A., Khusainov D. On the Interval Stability of Weak-Nonlinear Control Systems with 

Aftereffect // Open Source Journal. The Scientific World Journal, vol. 2016, Article ID 6490826, 

8 pages, 2016. doi:10.1155/2016/6490826  

[18]. Khusainov D.Ya., Bychkov A.S. Estimates of exponential convergence of difference systems with 
delay //Differential equations, vol. 38, no. 6, 2002, pp. 1803-1806 

[19]. Khusainov D.Ya., Shatyrko A.V. Absolute stability of multidelay regulation systems. Journal of 

Automation  and Information Sciences, 1995, 27(3-4). P.33-42 
[20]. Bychkov A.S., Merkuryev M.G. Stability of continuous hybrid automata //Cybernetics and 

systems analysis. – 2007. - No. 2. - With. 123-128 

[21]. K. Merkulova and Y. Zhabska, "Input Data Requirements for Person Identification Information 
Technology", Proceedings of the 1st International Workshop on Computer Information 

Technologies in Industry 4.0 (CITI 2023), vol. 3468, 2023, pp. 24-37 

[22] O. Kalivoshko, V. Kraevsky, K. Burdeha, I. Lyutyy and N. Kiktev, "The Role of Innovation in 

Economic Growth: Information and Analytical Aspect," 2021 IEEE 8th International Conference 
on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, 

pp. 120-124, doi: 10.1109/PICST54195.2021.9772201 

 


	1. Introduction
	2. Main result
	2.1. Existance of solution
	2.2. Iteration procedure
	2.3.  Application examples
	2.4. Algoritm for solving Silvest’r equation

	3. Acknowledgements
	4. Conclusions and discussion of results
	5. References

