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Abstract 
The traffic-sign recognition system developed in this study aims to assist the spatial cognition and 
mobility of visually impaired pedestrians in Kyrgyzstan. The system employs a two-keypoint binary 
descriptor that implements the BRISK algorithm to find sampling patterns on the image. Pairs of 
keypoints are localized using the SIFT method. The developed Java Android mobile application 
implements the SIFT and BRISK approaches in real-time on Android CameraX using AdaBoost classifiers 
and multithreading. With a knowledge base of 86 sampling patterns, the execution time is 0.1 s for an 
example with the traffic sign “Crosswalk left”. In experiments conducted at distances 1.5 m to 3.5 m in 
the city of Naryn, Kyrgyzstan, the presented SIFT/BRISK detector demonstrated a true negative of 
100 % and a true positive close to 100 % (Blackview BV6600 Pro and Doogee S96 Pro smartphones 
achieved 100 % and 75 %, respectively) rates at 3.5 m. This pilot project is expected to continue with 
more precise image descriptors for longer distances. 
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1. Introduction 

The visually impaired and blinds (VIBs) have made significant progress in social integration over 
the last five decades. This achievement is mostly based on inclusive smart technologies that 
create synergies between the community and VIBs [1]. Despite numerous assistive mobile 
applications (e.g., BDS (BeiDou Navigation Satellite System) WeChat and Google Maps) for spatial 
cognition, VIB navigation [2] remains problematic for the last mile, such as finding the entrance 
and identifying traffic signs [3-11]. 

In this study, a Java Android mobile application was developed to detect and recognize Kyrgyz 
traffic signs using the SIFT and BRISK (Scale-Invariant Feature Transform and Binary Robust 
Invariant Scalable Keypoints) methods [12, 13] to localize keypoints and find sampling patterns 
with a two-keypoint binary descriptor, respectively. The true positive (i.e., recognition accuracy) 
and true negative (i.e., crucial mistakes) rates [14] are expected to be near 100 % at distances 
from 1.5 m to 3.5 m from the traffic sign. 

To support VIBs, a new mobile application was developed to recognize traffic signs in 
Kyrgyzstan. Two key problems were solved in this study: 

1. A novel technique has been applied for image processing. In the preprocessing step, the 
method 𝐵𝑖𝑡𝑚𝑎𝑝. 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑐𝑎𝑙𝑒𝑑𝐵𝑖𝑡𝑚𝑎𝑝 creates a new bitmap scaled to a maximum resolution 
of 500 pixels with bilinear filtering. From up to four hundred keypoints detected by the SIFT 
method, two keypoints are selected. Then, the BRISK binary two-keypoint descriptor is 
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designed employing a 291-point shape. The Hamming distance threshold is 19600 after five 
AdaBoost weak classifiers, which shows a true positive rate close to 100 % (smartphone 
Blackview BV6600 Pro – 100 %, Doogee S96 Pro – 75 % at 3.5 m) and a true negative rate of 
100 % at distances from 1.5 m to 3.5 m. 
2. A multithreaded Java Android application was developed using the CameraX library [15]. 
The image, smartphone soft-/hardware, and number of keypoints have an effect on the 
execution time. In the experiment with the traffic sign “Crosswalk left”, the smartphone 
Doogee S96 Pro takes 0.1 s to find the sampling pattern using the knowledge base with 86 
elements. 

2. Related Works 

The World Health Organization showed that over 2.2 billion people experience vision impairment 
worldwide in 2021 [10], and hence assistive tools are in continuous demand. Traffic-sign 
recognition systems in cars [3] have been widely proposed for the market. The leading approach 
is based on convolutional neural networks and specific datasets, e.g., Tunisian traffic signs [4]. 
The percentage of wrongly recognized signs can reach 25 % [3], which is unacceptable for VIBs. 
Analysis of existing commercial products for VIBs, such as those referenced in [5-11], shows that 
they do not support the recognition of traffic signs related to pedestrians. Hence, the development 
of a mobile application that includes this functionality is a crucial task that should be undertaken 
to support the VIBs navigation near roads. Moreover, the usage of existing technologies is 
reasonable since it speeds up the development process, as was done in this study. The distance 
between the VIB and the traffic sign is assumed to be up to 4 m, which is the estimated width of 
the pedestrian path. The analyzed traffic signs are supposed to be of good quality and produced 
according to state standards. 

Google’s Android platform has been taking over 70 % of the market share last five years. The 
CameraX Android API (application programming interface) is a Google Android native approach 
to work with different cameras on Android smartphones. CameraX is a Jetpack support library, 
which is considered the easiest way to make the Android camera application. 

3. Methods 

3.1. Architecture of two-keypoint SIFT detector and BRISK descriptor with 
CameraX Android API 

Two-keypoint SIFT detector and BRISK descriptor with CameraX Android API employ the 
method presented in [16]. It and consists of three steps (see Figure 1): 

1. Keypoints localization: The SIFT method is used to localize keypoints on the template 
image. 
2. Image descriptor design: The BRISK method is employed to design image descriptors 
using pairs of keypoints that are empirically determined by an expert. This procedure will be 
automated in the future. 
3. Image matching: Image capturing is performed using an Android CameraX library. 
The image is then downsampled with bilinear filtering in the method 

𝐵𝑖𝑡𝑚𝑎𝑝. 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑐𝑎𝑙𝑒𝑑𝐵𝑖𝑡𝑚𝑎𝑝 and converted to grayscale from RGB (Red-Green-Blue) format 
using the luminosity function [17]. The best pairs of keypoints calculated by the SIFT algorithm 
are selected for the design of the BRISK binary descriptor. Image matching uses AdaBoost 
classifiers and Hamming distance [18] (see Figure 2). Figure 3 presents two flowcharts: one for 
keypoints localization with the SIFT method and image descriptor design with the BRISK method 
(on the left), and another for the image matching algorithm (on the right). 
 
 



 

Figure 1: Two-keypoint SIFT detector and BRISK descriptor with CameraX Android API: A 
diagram 
 

 

Figure 2: The architecture of the proposed image matching 
 

3.2. Classification of Kyrgyz traffic signs for pedestrians 

As of August 2023, Kyrgyzstan had over 200 road signs [19], including 13 related to 
pedestrians (see Table 1). 

The crosswalk signs “Crosswalk left”, “Crosswalk right”, and “Zebra crossing” are combined 
into a group “Crosswalk”, as well as the signs “Emergency exit left/right” into “Emergency exit”. 

3.3. SIFT keypoint localization 

Regarding the SIFT keypoint localization, the AdaBoost cascade classifier is employed in this 
study. In this approach, scale-invariant locations of keypoints are searched in different scales. The 
convolution of two-dimensional Gaussian function G(x, y, ) and input grayscale image I(x, y) 
gives a filtered image: 
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Downsampling the 
image with bilinear 

filtering 

Selecting pairs of 
keypoints 

Building two-
keypoint 

descriptors (BRISK) 
Image matching 

Localization of 
keypoints (SIFT) 



 

Figure 3: Flowcharts of the keypoints localization with the SIFT method and the image 
descriptor design with the BRISK method (left flowchart) and the image matching algorithm 
(right flowchart) 

 
𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦), (1) 

where ‘*’ is the convolution operation,  is the population standard deviation, x and y are the 
pixel coordinates, and a Gaussian function: 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎
𝑒 ⁄ . 

(2) 

In this study, the luminosity function [17] converts the image from RGB to greyscale I(x, y) 
using Android class 𝐶𝑜𝑙𝑜𝑟: 

𝐼(𝑥, 𝑦) = 𝐶𝑜𝑙𝑜𝑟. 𝑟𝑒𝑑(𝑝𝑖𝑥𝑒𝑙) ∗ 0.21 + 𝐶𝑜𝑙𝑜𝑟. 𝑔𝑟𝑒𝑒𝑛(𝑝𝑖𝑥𝑒𝑙) ∗ 0.72 +  
+𝐶𝑜𝑙𝑜𝑟. 𝑏𝑙𝑢𝑒(𝑝𝑖𝑥𝑒𝑙) ∗ 0.007, (3) 

where 𝐶𝑜𝑙𝑜𝑟. 𝑟𝑒𝑑, 𝐶𝑜𝑙𝑜𝑟. 𝑔𝑟𝑒𝑒𝑛, and 𝐶𝑜𝑙𝑜𝑟. 𝑏𝑙𝑢𝑒 are Java methods, 𝑝𝑖𝑥𝑒𝑙 is the smallest 
element that can be addressed in a raster RGB image. 

The DoG (Difference of Gaussians) function 𝐷(𝑥, 𝑦, 𝜎) is employed to find keypoints that are 
stable across different scales. DoG is the result of subtracting two neighbour scales that are 
smoothed by Gaussian filters with a different weight k: 

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎). (4) 
The DoG function is the approximation of the scale-normalized Laplacian of Gaussian 22G. 

Building DoG 𝐷(𝑥, 𝑦, 𝜎) follows the method proposed in [16]. To generate five SIFT scales, four 
images (maximum dimension sizes are 180, 340, 680, and 1360 pixels, i.e., four SIFT octaves) are 
smoothed five times in the Gaussian blur operator with five square matrix orders r and 
population standard deviations : 

1. 180: r=5, =0.707107; r=7, =1; r=11, =1.414214; r=13, =2; r=19, =2.828427. 

 
Start 

Input image 

Grayscale image 

Locate keypoints using 
SIFT method 

Select pairs of keypoints to 
build BRISK descriptors 

Build two-keypoint 
BRISK descriptors 

End 

Start 

Input image 

Grayscale image 

Downsample image to maximum 500-pixel 
resolution with bilinear filtering 

Locate keypoints using 
SIFT method 

Generate possible pairs: 
Maximum 400 keypoints 

Image matching using Hamming distance 
and AdaBoost weak classifiers 

Build two-keypoint BRISK-like descriptor 

Yes 

End 

Template 
image found? 

No 



2. 340: r=11, =1.414214; r=13, =2; r=19, =2.828427; r=25, =4; r=35, =5.656854. 
3. 680: r=19, =2.828427; r=25, =4; r=35, =5.656854; r=49, =8; r=69, =11.313708. 
4. 1360: r=35, =5.636854; r=49, =8; r=69, =11.313708; r=97, =16; r=137, 
=22.627417. 
 

Table 1 
Kyrgyz traffic signs related to pedestrians 

No. Designation Traffic sign icon No. of sampling patterns 
1 Above ground pedestrian crossing 

 

6 

2 Bike crossing 

 

7 

3 Bike path 

 

13 

4 Bus stop 

 

1 

5 Crosswalk left 

 

16 

6 Crosswalk right 

 

1 

7 Emergency exit left 

 

7 

8 Emergency exit right 

 

8 

9 No entry for pedestrians 

 

10 

10 Pedestrian path 

 

10 

11 Tram stop 

 

5 

12 Underground pedestrian crossing 

 

1 

13 Zebra crossing 

 

1 

 
Detection of keypoint candidates (i.e., local maxima and minima of DoG function) is similar to 

the presented in [16, 20] methodology. Keypoints are rejected using the Taylor expansion of 
𝐷(𝑥, 𝑦, 𝜎): 

𝐷(𝑥) = 𝐷 +
𝜕𝐷

𝜕𝑥
+

1

2
𝑥

𝜕 𝐷

𝜕𝑥
𝑥, 

(5) 

where x=(𝑥, 𝑦, 𝜎)  is the offset from and D and its derivatives are computed at a particular 
point. To find the extremum 𝑥, the equation 𝐷′(𝐱) = 0 should be solved (𝐷′(𝐱) is the derivative of 
D with respect to x): 

𝑥 =
𝜕 𝐷

𝜕𝑥

𝜕𝐷

𝜕𝑥
. 

(6) 

Unstable extrema are rejected if |D(𝑥)|<0.03. The extremum D(𝑥) can be found by combining 
Eq. (6) and Eq. (5): 



𝐷(𝑥) = 𝐷 +
1

2

𝜕𝐷

𝜕𝑥
𝑥. 

(7) 

In this study, edges are detected employing a 2×2 Hessian matrix [12, 20]: 

𝐻 =
𝐷 𝐷

𝐷 𝐷
, 

(8) 

where derivatives Dxx, Dxy, and Dyy are as follows: 
    Dxx = D(x+1, y, ) + D(x-1, y, ) - 2*D(x, y, ), (9) 
   Dyy = D(x, y+1, ) + D(x, y-1, ) – 2*D(x, y, ), (10) 
 Dxy = (D(x+1, y+1, ) – D(x+1, y-1, ) – D(x-1, y+1, ) – D(x-1, y-1, ))/4. (11) 

To eliminate the number of keypoints, the following inequality should be satisfied [12, 16, 20]: 

0 <
𝑇𝑟(𝐻)

𝐷𝑒𝑡(𝐻)
< 12.1 . 

(12) 

3.4. Two-keypoint BRISK descriptor design 

In this study, the BRISK algorithm employs a binary descriptor with 291 points to depict the 
template image. The orientation and scale of the sample pattern are calculated using the positions 
of two keypoints. In the present software version, a human expert chooses two keypoints by 
examining keypoints with a consistent location at various octaves. 

In the binary descriptor, 291 points are split as follows: 0-24 (1st group), 25-82 (2nd group), 
and 83-290 (3rd group). Figure 4 shows an example of the descriptor for the traffic sign “Above 
ground pedestrian crossing” (greyscale representation): (A) – points 0-24, (B) – 25-82, (C) – 83-
290, (D) – 0-290. The distance between any two points is computed via the Euclidean distance 
between two keypoints: for the 1st group point on the line connecting two keypoints, the distance 
to any nearest point is one-third of the distance between two keypoints. Each point n is associated 
with the mean pixel intensity I(n) in a circle of a radius 1/24, 1/16, or 1/12 of the Euclidean 
distance 𝐸  between two keypoints n1 and n2 [16]. 

The Hamming distance is calculated via the binary string 𝐵𝑆 , which is based on the 
comparison of average pixel intensities I(n1) and I(n2) at points n1 and n2, respectively: 

𝐵𝑆 =
1, 𝐷𝑆 > 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (13) 

where the string 𝐷𝑆  is as follows: 
𝐷𝑆 = 𝐼(𝑛 ) − 𝐼(𝑛 ). (14) 

For a specific point n1, absolute differences 𝑎𝑏𝑠 𝐷𝑆   are descending sorted within the 
appropriate group: 

1. Points 0-24: the image binary descriptor considers the first 12 absolute differences for 
each point. 
2. Points 25-82: the image binary descriptor considers the first 32 absolute differences for 
each point. 
3. Points 83-290: the image binary descriptor considers the first 100 absolute differences 
for each point. 
Therefore, a total of 22956 absolute differences 𝑎𝑏𝑠 𝐷𝑆   are considered in the image 

binary descriptor, which can be calculated as follows: 
25 * 12 + 58 * 32 + 208 * 100 = 300 + 1856 + 20800 . 

4. Experiment 

4.1. Knowledge base design 

The knowledge base is stored on the smartphone internal storage and includes the following 
files [16]: ‘root.txt’; N descriptor files “dN.txt”; “Description.txt”; N audio files “NameN.mp3”. 

 



 

Figure 4: The binary descriptor for the traffic sign “Above ground pedestrian crossing” 
(greyscale representation): 1st (A), 2nd (B), and 3rd (C) groups, all points (D) 
 

The knowledge base includes 86 sampling patterns (N=86; see Table 1) and has a size of 
44.1 MB on the internal storage (106 MB in Random Access Memory (RAM) along with other data 
and code of the Android application), which is available on any up-to-date Android smartphone 
with operating system (OS) version 10 (10th and 11th are discussed in this study) or newer. The 
execution time for processing a test image (taken at sunny weather on a campus in Naryn, 
University of Central Asia, Kyrgyzstan; see Figure 5) on a Doogee S96 Pro smartphone is 
approximately 0.1 s. 

In this study, the Hamming distance measures the similarity between two binary strings 
𝐵𝑆 . The image-matching process employs five AdaBoost weak classifiers [21] that use binary 
decision trees. 

4.2. Experiment description 

To minimize the execution time of Java Android application, the maximum number of 
keypoints and the image dimension size are 400 and 500, respectively, which is compatible with 
any modern camera smartphone since a 2-megapixel sensor captures images of 16001200 
pixels. To avoid optical distortion effects [22] and locate the binary descriptor within the borders, 
a new image is created by adding 50-pixel margins to the original image. The method 
𝐵𝑖𝑡𝑚𝑎𝑝. 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑐𝑎𝑙𝑒𝑑𝐵𝑖𝑡𝑚𝑎𝑝 is used to downsample the original image with bilinear filtering. 
Then, a greyscale representation is calculated in eight parallel computational threads. 



 

Figure 5: An example of the traffic sign “Crosswalk left” successfully identified during the 
experiment (photo was taken by smartphone Doogee S96 Pro at sunny weather; author – Dmytro 
Zubov) 
 

To find keypoints, the image with a maximum dimension size of 500 pixels is smoothed five 
times. This process generates five scales using three groups (groups are applied sequentially until 
the target object is detected or not found) of the square matrix orders and population standard 
deviations in the Gaussian blur operator: 

1. r=7, =1; r=11, =1.414214; r=13, =2; r=19, =2.828427; r=25, =4. 
2. r=11, =1.414214; r=13, =2; r=19, =2.828427; r=25, =4; r=35, =5.656854. 
3. r=5, =0.5; r=7, =0.70711; r=9, =1; r=11, =1.414214; r=13, =2. 
To reduce the execution time, four DoG images are calculated employing Eq. (4) in four parallel 

computational threads. 
Keypoints are identified in two parallel computational threads for the third/second/first and 

fourth/third/second scales. Only 400 keypoints, which are closest to the center of the image 
according to the Euclidean distance, are considered. Figure 6 presents the scheme of how points 
are analyzed – the number of side points at the current level is two pixels larger than at the 
previous one: 1, 3, 5, 7, 9, etc. 

The AdaBoost classifier is applied after discarding keypoint pairs whose descriptor points fall 
beyond the image boundaries: 

𝐹 (𝐵𝑆) = 𝑓 (𝐵𝑆), 
(15) 

where ft(BS) is AdaBoost weak classifier and T=5 [16]. If the Hamming distance surpasses the 
threshold 19600, the descriptor is of the template class. The threshold value was selected 
empirically based on the sum of the outcomes of the five weak classifiers mentioned above. 
Table 2 summarizes the speedup techniques used in this study. 

 

 

Figure 6: Scheme of the points analysis on the image 



Table 2 
Speedup techniques in Java Android application 

Operation Speedup technique 
Greyscale representation of the color image Eight parallel computational threads 
Calculation of DoG images Four parallel computational threads 
Localization of keypoints in third/second/first and 
fourth/third/second scales 

Two parallel computational threads 

Image matching Five AdaBoost classifiers 
 

5. Results 

In this study, a Java Android application “TrafficSignsKyrgyzstanWeCanSee” employs the 
proposed method to detect Kyrgyz traffic signs, and hence to support the spatial cognition and 
mobility of VIBs. Figure 7 presents the screenshot, an original image taken by the smartphone 
Doogee S96 Pro at cloudy weather (location is a campus in Naryn, University of Central Asia, 
Kyrgyzstan), and a greyscale image with keypoints (fuchsia and turquoise colors are used for 
third/second/first and fourth/third/second DoG functions, respectively). Two other Java 
Android 10 applications (approximately 72 % of Android smartphones can run these 
applications as of August 2023) were designed in Android Studio 4.0: 

1. Localization of all keypoints using SIFT method. 
2. Identification of keypoints’ pairs and design of the sample pattern via the BRISK 
descriptor. 
Two smartphones, Doogee S96 Pro and Blackview BV6600 Pro, were used in the experiment. 

The true positive rate was calculated at different distances from 1.5 m to 5 m in three attempts. 
The results are shown in Figure 8. Figure 5 presents the photo taken during this experiment. The 
true positive rate was close to the required 100 % from a distance of 1.5 m to 3.5 m for the traffic 
sign “Crosswalk left”: it was 100 % for the smartphone Blackview BV6600 Pro and 75 % for the 
smartphone Doogee S96 Pro at a distance of 3.5 m. The presented two-keypoint SIFT detector 
and BRISK descriptor showed that the true negative rate was 100 %. 

6. Discussion 

In this study, a two-keypoint SIFT detector and a BRISK descriptor with CameraX Android API 
compose the approach to support the navigation and mobility of VIB pedestrians in Kyrgyzstan. 
In this method, keypoints are localized via the SIFT algorithm, and then selected pairs of 
keypoints are employed to design the sample pattern, i.e., the binary BRISK descriptor. The image 
matching is based on the Hamming distance and AdaBoost cascade classifier. The real-life 
experiment showed test results: a true negative rate is 100 % (this is a crucial parameter for VIBs) 
and a true positive rate is close to 100 %. In general, the traffic-sign recognition system satisfies 
requirements and hence can be implemented in practice. However, some elements (e.g., square 
matrix orders and population standard deviations in the Gaussian blur operator) of the presented 
approach are empirical, and therefore discussable. 

7. Conclusions 

In this study, a crucial VIB-assistive software, Java Android mobile application, was developed to 
recognize Kyrgyz traffic signs using two-keypoint SIFT detector, BRISK descriptor, CameraX 
Android API, and mp3 audio files to support the spatial cognition of VIBs near roads. 

With a knowledge base of 86 sampling patterns, the mobile application shows the real-time 
performance: the execution time is 0.1 s for example with the traffic sign “Crosswalk left” 
(location is a campus in Naryn, University of Central Asia, Kyrgyzstan). In experiments on the 



distance from 1.5 m to 3.5 m, the presented SIFT/BRISK detector with two-keypoint descriptor 
showed 100 % true negative rate and a true positive rate close to 100 %: smartphone Blackview 
BV6600 Pro – 100 %, Doogee S96 Pro – 75 % on the distance 3.5 m. 

The real-time performance is achieved using five AdaBoost classifiers for image matching and 
parallel computational threads for the greyscale representation of the color image (eight 
threads), calculation of DoG images (four threads), and localization of keypoints (two threads). 
 

 A)  

 B)  

 C)  

Figure 7: An example of the screenshot (A), an original image taken by the smartphone Doogee 
S96 Pro at cloudy weather (B), and a greyscale image with keypoints (C) 



A)  

 B)  

Figure 8: Results of the experiment: true positive rate on different distances for smartphones 
Doogee S96 Pro (A) and Blackview BV6600 Pro (B) 
 

Analysis of minimum requirements to the hardware shows that the mobile application is 
runnable on any up-to-date Android camera smartphone because it requires only 44.1 MB on the 
internal storage (106 MB in RAM along with other data and code) and a 2-megapixel sensor. 

The most likely prospect for further development of this study is the design of an image 
descriptor that is geometrically close to the traffic signs. 

8. References 

[1] John Bricout, Paul M. A. Baker, Nathan W. Moon, and Bonita Sharma. “Exploring the Smart 
Future of Participation: Community, Inclusivity, and People with Disabilities.” International 
Journal of E-Planning Research 10.2 (2021): 94-108. doi: 10.4018/IJEPR.20210401.oa8. 

[2] M. Gallay, M. Denis, M. Auvray, Navigation Assistance for Blind Pedestrians: Guidelines for 
the Design of Devices and Implications for Spatial Cognition, in T. Tenbrink, J. Wiener, 
C. Claramunt (Eds.), Representing Space in Cognition: Interrelations of Behaviour, Language, 
and Formal Models, Oxford Academic, Oxford, 2013, pp. 244-267. doi: 
10.1093/acprof:oso/9780199679911.003.0011. 

[3] Darko Babić, Dario Babić, Mario Fiolić, and Željko Šarić. “Analysis of Market-Ready Traffic 
Sign Recognition Systems in Cars: A Test Field Study.” Energies 14.12 (2021). doi: 
10.3390/en14123697. 

[4] Hana Ben Fredj, Amani Chabbah, Jamel Baili, Hassen Faiedh, and Chokri Souani. “An Efficient 
Implementation of Traffic Signs Recognition System Using CNN.” Microprocessors and 
Microsystems 98 (2023). doi: 10.1016/j.micpro.2023.104791. 

[5] Kanak Manjari, Madhushi Verma, and Gaurav Singal. “A Survey on Assistive Technology for 
Visually Impaired.” Internet of Things 11 (2020). doi: 10.1016/j.iot.2020.100188. 

[6] Filippo Amore, Valeria Silvestri, Margherita Guidobaldi, et al. “Efficacy and Patients’ 
Satisfaction with the ORCAM MyEye Device Among Visually Impaired People: A Multicenter 
Study.” Journal of Medical Systems 47:11 (2023). doi: 10.1007/s10916-023-01908-5. 

0

20

40

60

80

100

1.5 2 2.5 3 3.5 4 4.5 5 6

T
ru

e 
po

si
ti

ve
 r

at
e,

 %

Distance, m

0

20

40

60

80

100

1.5 2 2.5 3 3.5 4 4.5 5 6

T
ru

e 
po

si
ti

ve
 r

at
e,

 %

Distance, m



[7] Myneni Madhu Bala, D. N. Vasundhara, Akkineni Haritha, and CH. V. K. N. S. N. Moorthy. 
“Design, Development and Performance Analysis of Cognitive Assisting Aid with Multi Sensor 
Fused Navigation for Visually Impaired People.” Journal of Big Data 10 (2023). doi: 
10.1186/s40537-023-00689-5. 

[8] Sonal Mali, Srushti Padade, Swapnali Mote, and Revati Omkar. “An Eye for a Blind: Assistive 
Technology.” International Research Journal of Engineering and Technology 3.12 (2016): 
532-534. 

[9] Zahra J. Muhsin, Rami Qahwaji, Faruque Ghanchi, and Majid Al-Taee. “Review of Substitutive 
Assistive Tools and Technologies for People with Visual Impairments: Recent Advancements 
and Prospects.” Journal on Multimodal User Interfaces 18 (2023): 135–156. doi: 
10.1007/s12193-023-00427-4. 

[10] Adnan Al-Smadi, Talal Al-Qaryouti, Abdurahman Rehan, Homam Assi, and Alhareth Alsharea. 
A Navigation Tool for Visually Impaired and Blind People, in: Proceedings of the Eurasia 
Proceedings of Science, Technology, Engineering & Mathematics, volume 22 of EPSTEM, 
ISRES Publishing, Marmaris Turkey, 2023, pp. 119-126. doi: 10.55549/epstem.1338545. 

[11] Matteo Poggi and Stefano Mattoccia. A Wearable Mobility Aid for the Visually Impaired based 
on Embedded 3D Vision and Deep Learning, in: Proceedings of the IEEE Symposium on 
Computers and Communication, Messina Italy, 2016, IEEE Publishing, pp. 208-213. doi: 
10.1109/ISCC.2016.7543741. 

[12] Zetian Tang, Zemin Zhang, Wei Chen, and Wentao Yang. “An SIFT-Based Fast Image 
Alignment Algorithm for High-Resolution Image.” IEEE Access 11 (2023): 42012-42041. doi: 
10.1109/ACCESS.2023.3270911. 

[13] Guoming Chu, Yan Peng, Xuhong Luo. “ALGD-ORB: An Improved Image Feature Extraction 
Algorithm with Adaptive Threshold and Local Gray Difference.” PLoS ONE 18.10 (2023). doi: 
10.1371/journal.pone.0293111. 

[14] Alaa Tharwat. “Classification Assessment Methods.” Applied Computing and Informatics 17.1 
(2021): 168-192. doi: 10.1016/j.aci.2018.08.003. 

[15] R. Iyengar, Scaling Up Wearable Cognitive Assistance for Assembly Tasks, PhD’s thesis, 
Carnegie Mellon University, Pittsburgh, PA, USA, 2023. UMI order number: CMU-CS-23-112. 
doi: 10.1184/R1/23302121.v1. 

[16] D. Zubov, A. Aljarbouh, A. Kupin, and N. Shaidullaev, Spatial Cognition by the Visually 
Impaired: Image Processing with SIFT/BRISK-like Detector and Two-keypoint Descriptor on 
Android CameraX, in: A. Nandal, L. Zhou, A. Dhaka, T. Ganchev, F. Nait-Abdesselam (Eds.), 
Machine Learning in Medical Imaging and Computer Vision, IET, Stevenage, UK, 2023, 
pp. 249-276. doi: 10.1049/PBHE049E_ch12. 

[17] Mehak Maqbool Memon, Manzoor Ahmed Hashmani, Aisha Zahid Junejo, Syed Sajjad Rizvi, 
and Adnan Ashraf Arain. “A Novel Luminance-Based Algorithm for Classification of Semi-
Dark Images.” Journal of Applied Sciences 11.18 (2021). doi: 10.3390/app11188694. 

[18] Yantong Chen, Wei Xu, and Yongjie Piao. “Target Matching Recognition for Satellite Image 
based on the Improved FREAK Algorithm.” Mathematical Problems in Engineering, 2016 
(2016). doi: 10.1155/2016/1848471. 

[19] Wikipedia, Road signs in Kyrgyzstan, 2023. URL: 
https://en.wikipedia.org/wiki/Road_signs_in_Kyrgyzstan. 

[20] D.G. Lowe. “Distinctive Image Features from Scale-invariant Keypoints.” International 
Journal of Computer Vision 60.2 (2004): 91-110. doi: 
10.1023/B:VISI.0000029664.99615.94. 

[21] Youwei Wang, Lizhou Feng, Jianming Zhu, Yang Li, and Fu Chen. “Improved AdaBoost 
Algorithm Using Misclassified Samples Oriented Feature Selection and Weighted Non-
negative Matrix Factorization.” Neurocomputing 508 (2022): 153-169. doi: 
10.1016/j.neucom.2022.08.015. 

[22] Pengbo Xiong, Shaokai Wang, Weibo Wang, Qixin Ye, and Shujiao Ye. “Model-Independent 
Lens Distortion Correction Based on Sub-Pixel Phase Encoding.” Sensors Journal 21.22 
(2021). doi: 10.3390/s21227465. 


