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2. Related Works 



3. Methods 

3.1. Dataset 

The research utilized the "Connectionist Bench (Sonar, Mines vs. Rocks)" dataset from the UCI 
Machine Learning repository. The dataset is a csv file in which sonar patterns are stored. These 
patterns result from bouncing sonar signals off a metal cylinder and rocks, each explored across 
various angles and conditions. The sonar signals transmitted are frequency-modulated chirps, 
ascending in frequency, and were captured from diverse aspect angles—spanning 90 degrees for 
the cylinder and 180 degrees for the rock. Each pattern consists of 60 numerical values within 
the range of 0.0 to 1.0. These numbers denote the energy within specific frequency bands, 
integrated over defined time periods. Notably, the integration aperture for higher frequencies 
occurs later in time due to their transmission later in the chirp. 



The labels assigned to each record are "R" for rocks and "M" for mines (metal cylinders). While 
the labels exhibit an ascending order corresponding to the aspect angle, they do not directly 
encode the angle information. 

3.2. Data processing and organization methods 

In the context of the work on "Utilization of Machine Learning in recognition of rocks and mock-
mines by sonar chirp signals," Label Encoding is employed to convert the class labels (categories) 
into numerical values. For the task of recognizing rocks ("R") and mock-mines ("M") based on 
sonar chirp signals, the classes can be encoded into numerical values. 

For example, if there is a column with class labels like: 
["R", "M", "R", "R", "M", "M", "R", "M", "R", "R"] 
Label Encoding can be used to transform these classes into numerical values, for instance: 
[1, 0, 1, 1, 0, 0, 1, 0, 1, 1] 
Here, "R" has been assigned the value 0, and "M" has been assigned the value 1. This 

conversion allows machine learning algorithms to work with the data, as many algorithms 
require numerical values for both input and output. 

Label Encoding can be performed using libraries like scikit-learn in Python, utilizing the 
LabelEncoder class. This encoding is particularly useful when dealing with categorical data in 
machine learning models. Ensemble methods, specifically AdaBoost-Samme, were employed to 
leverage the strengths of multiple weak learners. Decision trees, logistic regression, and random 
forests were individually used as base classifiers within the ensemble framework to assess the ir 
impact on classification accuracy. Various neural network architectures were explored. 
Techniques such as dropout and L2 regularization were applied to mitigate overfitting and 
enhance generalization performance. The performance of each model was assessed using 
accuracy as the result of cross validation score. 

3.3. ML Methods 

In this study, a diverse set of machine learning algorithms has been employed to discern patterns 
and classify sonar signals. The algorithms chosen demonstrate versatility in handling the 
complexity of the data and offer a comprehensive exploration of the recognition task. The 
following algorithms have been applied: 





3.4. Overfitting 

4. Experiment 

4.1. Dataset Preprocessing: 

4.2. Evaluation 

5. Results 

Table 1:  
Model accuracies 

Algorithm Accuracy 

AdaBoost-Samme - decision tree 71.12% 

AdaBoost-Samme - logistic regression 79.76% 
AdaBoost-Samme - random forest 87.50% 
Decision Tree 73.52% 



Decision Tree - min cost complexity pruning 71.21% 
Gaussian process - Laplace approximation 82.76% 

K-nearest neighbors vote 79.81% 
Logistic Regression 76.48% 

Logistic Regression - L1 77.93% 
Logistic Regression - L2 75.98% 
Logistic Regression - L1 and L2 77.43% 

Multi-layer Perceptron 80.31% 
Multi-layer Perceptron - L2 80.93% 
Neural Network 85.45% 

Neural Network - dropout 87.64% 
Neural Network - L2 86.61% 

Neural Network - dropout and L2 88.45% 
Random Forest 85.57% 

 

 
Figure 2: Dropout accuracies (according to weights – x axis)  
 
 

 
Figure 2: L2 Regularization accuracies (according to regularization factors – x axis) 

 



6. Discussions 

6.1. Effectiveness of methods 

6.2. Comparison with Previous Research 

Conclusions 



 systems. 

References 

[1] X. Lin, R, Dong, Z,Lv, Deep Learning-Based Classification of Raw Hydroacoustic Signal,  
Journal of Marine Science and Engineering 11 (2023). 
https://doi.org/10.3390/jmse11010003. 

[2] Jason Brownlee, Dropout Regularization in Deep Learning Models with Keras, 2022. 
URL: https://machinelearningmastery.com/dropout-regularization-deep-learning-models-
keras/. 

[3] Y. Steiniger, D. Kraus, T. Meisen, Survey on deep learning based computer vision for sonar 
imagery, Engineering Applications of Artificial Intelligence 114 (2022). 
https://doi.org/10.1016/j.engappai.2022.105157 

[4] D. Karimanzira, H. Renkewitz, D. Shea, Object Detection in Sonar Images, Electronics 9 
(2020). https://doi.org/10.3390/electronics9071180 

[5] J. Fernandes, N. Junior, Deep Learning Models for Passive Sonar Signal Classification of 
Military Data, Remote Sensing 14, (2022). https://doi.org/10.3390/rs14112648 

[6] OpenGenus, Advantages and Disadvantages of Logistic Regression, 2024. 
URL: https://iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/. 

[7] IBM, What is a Decision Tree?, 2024. URL: https://www.ibm.com/topics/decision-
trees#:~:text=A%20decision%20tree%20is%20a,internal%20nodes%20and%20leaf%20
nodes. 

[8] A. Nagpal, L1 and L2 Regularization Methods, 2017. 
URL: https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c 

[9] Y. Tian, Y. Zhang, A comprehensive survey on regularization strategies in machine learning, 
Information Fusion, (2021). https://doi.org/10.1016/j.inffus.2021.11.005 

[10] J. Shubham, An Overview of Regularization Techniques in Deep Learning, 2023. 
URL: https://www.analyticsvidhya.com/blog/tag/regularization-in-deep-learning/. 

[11] L. Ruhela, Droput Rtgularization, 2023. URL: https://ruhelalakshya.medium.com/dropout -
regularization-b27885b4c55b. 

[12] N. Srivastava, G. Hinton, (Eds.), Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting, Journal of Machine Learning Research 15, (2014): 1929-1958. 

[13] G. Geeks, Logistic Regression in Machine Learning, 2023. 
URL: https://www.geeksforgeeks.org/understanding-logistic-regression/. 

https://doi.org/10.3390/rs14112648


[14] W. Gong, J. Tian, J, Liu, Underwater Object Classification Method Based on Depthwise 
Separable Convolution Feature Fusion in Sonar Image, Applied Sciences 12 (2022). 
https://doi.org/10.3390/app12073268. 

[15] Harsh Yadav, Dropout in Neural Networks, 2022. 
URL: https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9 

[16] IBM, What is overfitting?, 2024. URL: https://www.ibm.com/topics/overfitting. 


