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Abstract 
This paper investigates the performance of Deep Q-Network (DQN) and Proximal Policy Optimization 
(PPO) algorithms in the context of two-dimensional simulated drone navigation, focusing on obstacle 
avoidance. It explores the usage of reinforcement learning to improve drones' navigational capabilities 
in environments populated with various obstacles. The study assesses how some activation functions, 
such as ReLU, Leaky ReLU, Tanh, and Sigmoid, impact the neural networks' performance and decision-
making. Through comparative analysis, it highlights the unique aspects of DQN and PPO in navigation 
tasks and offers valuable insights for further investigations. The results demonstrate that the selection 
of activation function and algorithm significantly influences model efficiency in obstacle navigation, 
affecting overall strategy in simulations. This emphasizes the need for a comprehensive approach in 
choosing both architecture and activation functions for developing models with improved adaptability 
and strategic depth in complex scenarios. 
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1. Introduction 

The advent of Unmanned Aerial Vehicles (UAVs) [1] commonly known as drones, has 
transformed numerous industries by providing new abilities for surveillance, delivery, military 
operations, and disaster management, among other uses. The ability of a UAV to autonomously 
navigate in complex environments is a fundamental prerequisite for these applications. This 
requires advanced obstacle avoidance systems that guarantee safety and operational efficiency. 
The importance of this study comes from creating and comparing these systems with the latest 
Deep Reinforcement Learning (DRL) algorithms [2].  

This study focuses on a two-dimensional (2D) simulation environment that models the 
dynamics of UAV flight and interaction with various obstacles. The primary goal is to assess the 
performance of two prominent DRL algorithms, Deep Q-Network (DQN) [3] and Proximal Policy 
Optimization (PPO) [4] in guiding a UAV through cluttered environments. This involves an 
analysis of the UAV's ability to learn and adapt to its surroundings to avoid collisions and survive 
efficiently. 

The specific objectives of this research are as follows: 
 to develop a simplified 2D simulation environment to simulate UAV navigation 
challenges; 
 to use a fine-tune DQN and PPO algorithms, ensuring their suitability for the task of UAV 
navigation and obstacle avoidance; 
 to investigate the impact of different activation functions on the learning efficiency and 
performance of the DRL models; 
 to evaluate and compare the performance of DQN and PPO algorithms in various 
simulated scenarios, providing insights into their strengths and limitations; 
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 to draw practical conclusions that can aid in the design of more robust and reliable UAV 
navigation systems in the future. 
This research aims to contribute to the understanding of autonomous UAV navigation in a 

controlled 2D simulation setting, emphasizing the exploration of DRL algorithms' efficacy in 
obstacle avoidance. While the findings offer insights into algorithmic behaviors and potential 
improvements, they should be considered preliminary and largely relevant to similar simulated 
contexts. Future studies might expand these results, exploring their relevance in more complex 
or real-world scenarios. 

2. Related Works 

The comprehensive study [5] conducted by Reuf Kozlica and colleagues explores the comparative 
efficacy of DQN and PPO within the framework of a material sorting task simulation. This 
investigation shows that PPO outperforms DQN in terms of learning speed and task completion. 
It also points out the importance of how rewards are set up for these algorithms, showing that 
changes in reward structures can affect how well they learn. This study emphasizes the benefits 
of using advanced reinforcement learning techniques like PPO and suggests looking into more 
complex methods to make these models work better in industrial settings. The insights from this 
research are important. It provides key information that is very useful for other areas of study, 
including drone navigation and obstacle avoidance, even though the main focus was on a different 
task. This connection highlights the wide-ranging usefulness and importance of comparing DQN 
and PPO in different types of challenges. 

Another research [6] conducted by Amudhini P. Kalidas and colleagues presents a detailed 
evaluation of DQN, PPO, and Soft Actor-Critic (SAC) [7] for UAV obstacle avoidance, focusing on 
both stationary and moving obstacles. This study, conducted in a simulated 3D environment, 
underscores the significance of selecting the appropriate reinforcement learning strategy for 
specific UAV tasks, especially in complex and dynamic scenarios. SAC demonstrates a superior 
performance highlighting the benefits of off-policy algorithms in environments requiring 
nuanced decision-making and flexibility. DQN's success, despite its discrete action space 
limitation, emphasizes the importance of sample efficiency and the strategic use of replay buffers. 
Conversely, PPO's challenges in this context reveal the limitations of on-policy algorithms in 
handling the complexity of 3D environments with dynamic obstacles. 

This thorough evaluation of DQN, PPO and SAC algorithms contributes significantly to the 
conversation around effective UAV navigation and paves the way for further studies. The findings 
suggest exploring hybrid approaches or further algorithmic enhancements to address the 
identified limitations, particularly for on-policy methods like PPO. 

3. Methods and Materials 

3.1. Reinforcement learning 

Reinforcement learning is a branch of machine learning where an agent learns to make decisions 
by performing actions in an environment to achieve some objectives. The learning process is 
based on the agent's interactions with the environment, where it learns from the consequences 
of its actions through a process of trial and error, receiving feedback in the form of rewards, which 
it seeks to maximize over time. 

In an RL framework, the agent interacts with the environment in discrete time steps. At each 
time step, the agent observes the current state of the environment, decides on an action based on 
its policy - a strategy that specifies the action to be taken in each state - executes the action, and 
then receives a reward and observes a new state from the environment. The ultimate goal of the 
agent is to learn a policy that maximizes the cumulative reward it receives over time. 

The core components of an RL are: 
 Environment. The domain or space in which the agent operates and makes decisions. 



 Agent. The learner or decision-maker that interacts with the environment. 
 State. A representation of the current situation or condition of the environment. 
 Action. The set of all possible moves or decisions that the agent can make. 
 Reward. Feedback from the environment used to evaluate the effectiveness of an action. 
The process of reinforcement learning can be visualized in a Figure 1 that illustrates the cyclic 

interaction between the agent and its environment: 
 

 
Figure 1: The reinforcement learning process 
 

Reinforcement learning encompasses a wide range of algorithms and strategies. While 
foundational methods such as Q-learning [8] and SARSA [9] lay the groundwork for 
understanding RL dynamics, this study focuses exclusively on DQN and PPO. These advanced 
methodologies incorporate deep learning to effectively handle environments characterized by 
high-dimensional observation spaces, offering sophisticated solutions for complex decision-
making tasks. 

3.2. Deep Q-Network 

The DQN is a model-free, off-policy reinforcement learning algorithm. This algorithm is 
particularly distinguished by its use of a neural network to approximate the Q-function, which is 
pivotal in estimating the expected rewards for action-state pairs.  

In the 𝑠𝑡𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠3 implementation [10], the DQN algorithm utilizes the experience 
replay mechanism, which stabilizes training by storing the agent's experiences and utilizing them 
for multiple learning iterations. By storing the agent's experiences at each timestep, denoted as 
𝑒𝑡 = (𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), in a dataset known as the replay buffer, DQN decouples the correlation 
between consecutive experience samples. Here, each experience consists of the state 𝑠𝑡, the action 
𝑎𝑡the reward 𝑟𝑡, and the subsequent state 𝑠𝑡. 

During the training process, rather than learning from consecutive experiences as they occur 
sequentially within the environment, the DQN algorithm randomly samples a mini-batch of 
experiences from the replay buffer. This stochastic sampling method serves to break the 
correlation between consecutive learning steps, reducing update variance and leading to more 
stable and efficient learning. 

 Given a mini-batch of experiences (𝑠, 𝑎, 𝑟, 𝑠′) sampled from the replay buffer, the loss function 
for updating the Q-network is defined by: 

𝐿(𝜃) = 𝐸(𝑠,𝑎,𝑟,𝑠′)~𝑈(𝐷) [(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃))
2

]  (1) 

where: 
 𝑈(𝐷) represents the uniform distribution over the dataset 𝐷 (the replay buffer), 
 𝛾 is the discount factor, 
 𝜃 denotes the parameters of the Q-network being trained, 
 𝜃− are the parameters of the target network, updated periodically to stabilize the learning 
process by providing a fixed target for Q-value updates. 



This approach allows the DQN to more effectively leverage its past experiences, leading to 
improved sample efficiency and faster convergence. 

3.3. Proximal Policy Optimization 

The PPO algorithm represents a significant advancement in on-policy, policy gradient methods 
for reinforcement learning, striking a balance between sample efficiency, simplicity, and ease of 
tuning.  

PPO's implementation [4] within the 𝑠𝑡𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠3 library harnesses an actor-critic 
approach, to concurrently predict both action values and value functions. This method aims to 
improve the stability and efficiency of policy updates, making it one of the most widely used 
algorithms in complex environments. PPO operates within the actor-critic framework, where the 
"actor" updates the policy based on the gradient of expected rewards, and the "critic'' estimates 
the value function, serving as a baseline to reduce variance in the policy gradient estimation. The 
actor and critic are represented by neural networks with parameters 𝜃 for the actor and 𝜙 for the 
critic. 

The core of PPO's innovation lies in its objective function, which seeks to take the greatest 
advantage of the policy update step without causing excessive changes to the policy. The objective 
function, 𝐿𝐶𝐿𝐼𝑃(𝜃), is designed to minimize the cost of deviation from the old policy while 
encouraging improvement. It is defined as: 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[min (𝑟𝑡(𝜃)�̂�𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)�̂�𝑡)]  (2) 

where 𝑟𝑡(𝜃) is the probability ratio 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, indicating how the new policy 𝜋𝜃 

diverges from the old policy 𝜋𝜃𝑜𝑙𝑑
. �̂�𝑡 is an estimator of the advantage function at time 𝑡, which 

measures the benefit of taking action 𝑎 in state 𝑠 over the expected value. 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀) 
constrains 𝑟𝑡(𝜃) to be within the range [1 − 𝜀, 1 + 𝜀], with 𝜀 being a hyperparameter, typically set 
to a small value like 0.2. 

The advantage function, �̂�𝑡, is critical for calculating the policy gradient. It is usually estimated 
using the critic's value function 𝑉𝜙(𝑠𝑡), leading to the expression: 

�̂�𝑡 = 𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1) − 𝑉𝜙(𝑠𝑡)     (3) 

This estimator helps in determining the relative value of each action compared to the baseline 
value of the state, as provided by the critic. 

Training in PPO alternates between sampling data through interaction with the environment 
using the current policy and optimizing the clipped objective function with respect to the actor's 
parameters. The critic's parameters are updated to minimize the value function error, typically 
using mean squared error loss: 

𝐿𝑉𝐹(𝜙) = (𝑉𝜙(𝑠𝑡) − 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

)2         (4) 

where 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

 is the target value for state 𝑠𝑡, often computed using bootstrapped estimates of 
future rewards.  

PPO's effectiveness comes from its balance between exploration and exploitation, achieved 
through the clipped objective function, which prevents overly aggressive updates that could lead 
to policy performance degradation. 

3.4. Activation functions 

Activation functions [11] play a pivotal role in neural networks by introducing non-linear 
properties that enable the network to learn complex patterns. In the context of DQN and PPO 
algorithms, the choice of activation function can significantly influence the performance and 
convergence of the models. The experiments in this study concentrate on four well-known 
activation functions: Leaky ReLU, ReLU, Tanh, and Sigmoid. The choice of these specific functions 
is based on the variation in their output value ranges. Leaky ReLU does not have a lower or upper 
limit, while ReLU is limited only below zero. Conversely, Tanh and Sigmoid are bounded on both 



sides. Such variations influence the way gradients are sent back through the network during 
training, resulting in different learning behaviors and performance results. 

The Rectified Linear Unit (ReLU) is perhaps the most popular activation function in deep 
learning architectures. This function passes positive values through unchanged while replacing 
negative values with zero. This characteristic helps to avoid the vanishing gradient problem 
during the training of deep neural networks, simplifying the optimization process and improving 
overall training speed. It is defined as:  

𝑓(𝑥) = max(0, 𝑥) ,    𝑟𝑎𝑛𝑔𝑒(𝑓) ∈ [0; +∞)       (5) 
The Leaky Rectified Linear Unit (Leaky ReLU) is a modification of the ReLU that permits a slight, 

non-zero gradient when the neuron is inactive. In contrast to ReLU, which may experience the 
problem of dead neurons throughout training, Leaky ReLU addresses this by allowing a small 
negative slope. This ensures that neurons stay active and keep adjusting throughout the learning 
phase, preventing the issue of neurons becoming non-responsive. It is defined as: 

𝑓(𝑥) = {
0.01𝑥, 𝑖𝑓 𝑥 < 0
𝑥,          𝑖𝑓 𝑥 ≥ 0

,    𝑟𝑎𝑛𝑔𝑒(𝑓) ∈ (−∞; +∞)       (6) 

The Sigmoid function, or logistic function, compresses its input values to fall within the range 
of 0 to 1. Historically, it was a favored option for binary classification tasks because its output 
could be interpreted as a probability. However, its application in deep learning has decreased 
because of the vanishing gradient issue, especially in layers that are distant from the output. This 
problem makes it challenging for the network to learn and adjust the weights of neurons in earlier 
layers effectively. It is defined as: 

𝑓(𝑥) =
1

1+𝑒−𝑥 ,    𝑟𝑎𝑛𝑔𝑒(𝑓) ∈ (0; 1)    (7) 

The Hyperbolic Tangent (Tanh) function produces outputs in the range of -1 to 1, effectively 
making it a scaled variation of the sigmoid function. This attribute means that the Tanh function 
centers the data, which can enhance convergence during the gradient descent process. This 
feature is especially advantageous in situations where normalizing the input data is beneficial, as 
it helps in stabilizing the learning process and can lead to faster convergence. It is defined as: 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ,    𝑟𝑎𝑛𝑔𝑒(𝑓) ∈ (−1; 1)   (8) 

Each activation function contributes distinct characteristics to the learning process. ReLU and 
Leaky ReLU can accelerate the convergence of stochastic gradient descent due to their linearity 
and non-saturation of gradients. On the other hand, Tanh and Sigmoid, with their saturated 
nature, can regularize the learning and offer more refined control over the outputs, which can be 
advantageous in certain contexts within the reinforcement learning framework. 

3.5. Technologies 

The technology foundation of the simulation environment is mainly centered around Python, 
utilizing the dynamic and flexible features of this programming language. Python's ecosystem, 
 

 

 

 
Figure 2: Simulation environment  Figure 3: Obstacle coordinates transformation 



known for its wide range of libraries and frameworks, supports quick development and 
prototyping, making it a perfect option for creating detailed simulations. 

The graphical representation and interactive elements of the simulation are powered by 
Pygame [12], a cross-platform set of Python modules designed for writing video games. Its robust 
functionality and straightforward syntax provide a user-friendly interface for rendering the 
environment and processing user or AI-driven interactions. 

The AI part of the simulation is built on the 𝑠𝑡𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠3 [13, 14] library, a set of reliable 
reinforcement learning algorithms for Python. It provides a variety of ready-to-use neural 
network policies, such as DQN and PPO, crucial for developing drone navigation models. This 
library simplifies the use of complex learning algorithms and promotes uniformity and 
repeatability in the AI training process. 

3.6. Simulation environment 

The simulation environment, shown in Figure 2, crafted with Python and the Pygame library, 
offers an interactive 2D space visualized through an 800x600 pixel window. This window is a 
dynamic arena where the drone interacts with various obstacles. Borders, arranged as squares 
with each side measuring 20 pixels, frame the simulation space, setting clear boundaries and 
presenting navigational challenges for the drone. The placement and dimensions of these borders 
are integral as they influence the drone's route planning and maneuvering strategies. Within 
these confines, the environment is populated with obstacles, manifested as circles with radii 
ranging from 30 to 100 pixels. These obstacles are placed to emulate real-world challenges, 
creating a complex landscape for the drone to navigate. The exact positioning and size of these 
obstacles significantly affect the simulation's complexity, providing a realistic approximation of 
navigating through cluttered spaces. The drone, central to this environment, is defined by its 30-
pixel radius and equipped with a sensory device. This device, positioned at the drone's core, 
grants a 120-pixel radius field of view, covering a sweeping 180-degree arc in front of the drone. 

The data perceived through this sensory apparatus is pivotal as it informs the drone's 
decision-making process, enabling it to react and adapt to its immediate surroundings. The 
sensory interpretation of the environment is defined by translating absolute obstacle coordinates 
into its drone's frame of reference. This transformation [15] involves (Figure 3): 

 translating the coordinate system  to align with the drone's current position: 

{
𝑥′ = 𝑥 − 𝑥𝑑𝑟𝑜𝑛𝑒,

𝑦′ = 𝑦 − 𝑦𝑑𝑟𝑜𝑛𝑒,
      (9) 

where (𝑥′, 𝑦′) are the obstacle's coordinates after moving the coordinate system, (𝑥, 𝑦)  are 
the coordinates before moving, and (𝑥𝑑𝑟𝑜𝑛𝑒 , 𝑦𝑑𝑟𝑜𝑛𝑒) are the absolute drone's coordinates. 
 rotating it to match the drone's heading direction: 

{
𝑥obstacle = 𝑥′ cos(𝑎) − 𝑦′ sin(𝑎) ,

𝑦obstacle = 𝑥′ cos(𝑎) + 𝑦′ sin(𝑎) ,
    (10) 

where 𝑎 is the angle by which the coordinate system needs to be rotated, and 
(𝑥obstacle, 𝑦obstacle) are the obstacle coordinates in the drone’s frame of reference. 
The next step in this sensory processing is normalization. The drone normalizes distances to 

obstacles against its field of vision radius while taking into account its own size to accurately 
measure how close it is to obstacles. The directional vectors, indicating obstacles' positions 
relative to the drone, are normalized to ensure consistent representation. This normalization 
ensures that x-coordinates range between -1 and 1, and y-coordinates between 0 and 1, providing 
a standard format for further data processing. To ensure efficiency and concentrate on relevant 
obstacles, the drone is designed to process only the first 10 obstacles within its field of view. This 
approach of selective focus helps the drone prioritize the most immediate obstacles, thereby 
improving its path planning and decision-making capabilities. 

The simulation environment, through its setup, obstacle behavior, and sensory data 
processing, creates a framework for studying drone navigation methods. The interaction among 



the drone's sensory functions, the environment's characteristics, and the neural network models 
lays the groundwork for this simulation. 

4. Experiment 

4.1. Simulation environment configuration 

Before initiating the simulations, a pre-generated file containing the coordinates and radii of 
various obstacles. This standardization ensures that all models are trained under consistent 
conditions, facing the same set of obstacles. The simulation environment is represented as a 
window, at the center of which the drone is initially placed. To foster a controlled and safe training 
start, all obstacles are generated while maintaining a safe zone of 50 pixels radius around the 
drone's initial position.  

Each movement of the drone within the environment is referred to as a "step". An "episode" is 
defined as the sequence of steps from the start of the drone's movement until it collides with an 
obstacle. Upon collision, the drone is reset to its initial central position, and a new set of obstacles 
is fetched from the pre-generated file and rendered into the environment. This process 
constitutes the core of the training loop, allowing the drone to learn from diverse scenarios.  

For the experimental setup, the models are configured to run for 1 million steps, which 
approximates around 10 hours of continuous simulation. Two primary models are under 
examination: DQN and PPO. Each of these models is run four times, altering the activation 
function with each iteration. This approach is aimed at exploring the influence of different 
activation functions on the learning behavior and overall performance of the models. 

4.2. Hyperparameters and reward function 

The action space for the neural network models is discrete and defined within the range of 0 to 
99. Each action value can be decomposed into two components: the turning angle and the 
distance of movement. The turning angle is calculated as an integer part of the action divided by 
10, determining the drone's rotation. If the calculated angle is less than or equal to 5, the drone 
rotates left by the angle in degrees. For angles greater than 5, the drone turns right by the 
difference between 10 and the angle degrees.  

The turning angle is defined as: 

𝑎𝑛𝑔𝑙𝑒 = {
𝑎𝑐𝑡𝑖𝑜𝑛 ÷ 10,                𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 ÷ 10 ≤ 5
10 − 𝑎𝑐𝑡𝑖𝑜𝑛 ÷ 10,      𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 ÷ 10 > 5

,    𝑎𝑐𝑡𝑖𝑜𝑛 ∈ [0; 99] (11) 

The distance the drone moves forward in pixels is determined by the remainder of action 
divided by 10, allowing the drone to move a distance ranging from 0 to 9 pixels in each step.  

The distance is defined as: 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑 10,    𝑎𝑐𝑡𝑖𝑜𝑛 ∈ [0; 99]   (12) 

The observation space is defined by an array of triplets, each consisting of x, y, and l values. 
Here, x and y represent the normalized directional vector pointing from the drone to an obstacle, 
and l indicates the normalized distance to that obstacle. This setup gives the neural network a 
comprehensive view of the environment, detailing the relative positions and distances of up to 
10 obstacles near the drone. This approach ensures that the neural network has a clear 
understanding of the immediate surroundings, facilitating informed decision-making for 
navigation and obstacle avoidance.  

The observation space is defined as: 
𝑠𝑝𝑎𝑐𝑒 = 𝑥1, 𝑦1, 𝑙1, … 𝑥𝑖, 𝑦𝑖 , 𝑙𝑖, … 𝑥𝑛, 𝑦𝑛, 𝑙𝑛,     𝑥𝑖 ∈ [−1; 1], 𝑦𝑖 ∈ [0; 1], 𝑙𝑖 ∈ [0; 1], 𝑛 = 10      (13) 

The reward function is crucial in steering the learning journey of the neural networks. It was 
initially designed to give a penalty of -10 for a collision and a small positive reward of +0.01 times 
l for each step taken without crashing, with l standing for the distance the drone moved in pixels. 
However, experimental tests uncovered two problems: the drone sometimes remained 
stationary, not moving at all, and exhibited "trembling" behavior, which involves making quick, 



back-and-forth turns when it was navigating near obstacles. These issues indicated a need to 
refine the reward structure to encourage more desirable behaviors, such as smooth navigation 
and avoidance of unnecessary movements or hesitation near obstacles. 

To resolve the issues of stationary behavior and excessive turning, the reward system was 
modified by introducing minor penalties. A penalty of -0.01 is now given if the drone does not 
move forward, and an additional -0.01 is applied for every turn it makes. This adjustment 
encourages the drone to keep moving continuously with as few turns as possible, changing its 
path only when it's essential to avoid collisions. The revised reward function fosters a balance 
between moving forward, conserving energy by minimizing unnecessary actions, and 
maintaining safety by steering clear of obstacles. This approach aims to guide the development 
of optimal navigation strategies that prioritize smooth and efficient movement.  

The reward function is defined as: 

𝑟𝑒𝑤𝑎𝑟𝑑 = {
−10,                                   𝑖𝑓 ∃𝑖: 𝑙𝑖 ≤ 0 (𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛)             
−0.01,                               𝑖𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 𝑜𝑟 𝑎𝑛𝑔𝑙𝑒 ≠ 0
0.01 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                     

   (14) 

This section has detailed the core components of the simulation, including the action and 
observation spaces, and the carefully crafted reward function intended to direct the learning 
algorithms towards effective navigational behaviors. Together, these elements constitute the 
foundation that supports the neural network models as they operate, learn, and adjust in the 
simulated drone environment. 

4.3. Evaluation metrics 

Throughout the simulations, a comprehensive set of metrics will be collected to evaluate the 
performance and behavioral patterns of the neural network models. These metrics offer insights 
into the models' efficacy and the drone's interaction dynamics within the simulation 
environment. Let's consider these metrics. 

Average steps per episode reflects the mean number of steps taken per episode, highlighting 
the drone's efficiency in navigating through the environment. This metric is crucial for 
understanding how well the drone utilizes its actions to survive in the environment. 

Percentage of full stops measures the proportion of actions within each episode where the 
drone remains stationary, calculated as the ratio of steps without movement to the total number 
of steps. This metric addresses the stationary behavior issue, with a lower percentage indicating 
more continuous and dynamic navigation.  

Percentage of turning actions quantifies the frequency of turning actions, highlighting the 
drone's maneuvering behavior. It's calculated as the ratio of steps involving turns (either left or 
right) to the total steps. This metric is insightful for assessing the drone's adaptability and its 
tendency to change directions in response to obstacles, aiming for a balance that avoids excessive 
"trembling" or unnecessary rotations. 

Average distance covered per episode represents the cumulative distance covered by the drone 
in pixels per episode. This metric directly correlates to the drone's ability to progress through the 
environment, serving as an indicator of effective obstacle avoidance and efficient navigation. 

Average speed of movement per step is calculated as the average distance moved per action 
step, this metric sheds light on the drone's navigational efficiency. It reflects the balance between 
speed and cautiousness in approaching obstacles, with higher values indicating quicker 
advancement towards survival objectives. 

Average reward per episode calculates the mean reward accumulated per episode, providing a 
comprehensive measure of the drone's overall performance, including its ability to avoid 
obstacles, maintain movement, and minimize unnecessary actions.  

Continuous monitoring of the simulation process is essential to qualitatively assess each 
model's behavioral pattern. Observing the drone's movement, its reaction to obstacles, and its 
overall navigation strategy offers an in-depth understanding of the model's performance and its 
decision-making rationale.  



By systematically analyzing these metrics, we aim to construct a detailed evaluation 
framework that not only quantifies the models' performance but also provides qualitative 
insights into the behavioral strategies adopted by the drones under different neural network 
configurations. 

5. Results 

Graphical representations of the training process for the DQN model, as shown in Figure 4, reveal 
distinct patterns in the average reward values across different activation functions. Notably, the 
Sigmoid function demonstrated a remarkable performance from 300,000 to 600,000 steps, where 
a sharp increase in the average reward value was observed. This surge, followed by a steep 
decline, suggests a temporary optimization that did not significantly affect the overall 
performance, as evidenced by the slight increase in the average reward for Sigmoid -5.666 
compared to Tanh -6.982. Despite this, Sigmoid led in terms of the lowest "Percentage of Full 
Stops" 0.626% and a relatively low "Percentage of Turning Actions" 59.983%, coupled with the 
highest average speed 4.984, indicating a more efficient navigation strategy compared to other 
activation functions within the DQN framework. 

In contrast, the PPO model's performance significantly, as shown in Figure 5, favored the Tanh 
activation function, with an average reward of 88.527, nearly double that of the next best 
function, ReLU. This was mirrored in the "Average Steps per Episode" and "Average Distance per 
Episode," both approximately twice as high as those recorded for other functions. Interestingly, 
ReLU and Leaky ReLU scored the lowest in "Percentage of Full Stops," highlighting their 
propensity for continuous movement. However, the Sigmoid function exhibited the weakest 
overall performance except in "Average Steps per Episode."  

The values of all evaluation metrics for DQN and PPO are detailed in Tables 1 and 2, 
respectively. 

When comparing DQN and PPO models, PPO unequivocally outperformed DQN across all 
metrics, with even PPO's weakest results surpassing the best of DQN's, indicating a superior 
navigation and obstacle avoidance capability. 
 

 
Figure 4: Average reward for DQN 



 
Figure 5: Average reward for PPO 
 

The comparative analysis suggests that bounded activation functions (Sigmoid and Tanh) 
generally yielded better results than their unbounded counterparts (ReLU and Leaky ReLU), 
though Sigmoid underperformed in the PPO model compared to ReLU and Leaky ReLU. This 
discrepancy underscores the complexity of applying a one-size-fits-all approach to activation 
function selection for specific tasks, indicating that the optimal choice may vary depending on the 
learning algorithm and the nature of the task. 

Further investigation into the models' navigational strategies, particularly in obstacle-rich 
environments, highlighted significant differences in approach. The DQN model consistently 
sought to navigate through corridors between obstacles. In contrast, the PPO model preferred to 
avoid obstacles altogether, moving towards areas with more open space. 
This behavior was evident in environments both with and without obstacles, where DQN 
exhibited a tendency to maneuver closely between obstacles, increasing the risk of collision and 
consequently resulting in a lower average reward compared to PPO, which opted for safer, open 
areas, thus explaining the marked difference in performance metrics. 

Navigation for behavior DQN and PPO are shown in Figures 6 and 7, respectively. 
The results underscore the distinct navigational preferences and risk management strategies 

of DQN and PPO models in UAV obstacle avoidance, with PPO demonstrating superior 
performance and efficiency across various metrics. The choice of activation function plays a 
significant role in model behavior and performance, with no single family of functions emerging 
as universally superior. 

 
Table 1 
Evaluation metrics values for DQN 

Activation 
function 

Avg steps per 
episode 

Percentage of 
full stops 

Percentage 
of turning 
actions 

Avg 
distance 
per 
episode 

Avg 
speed 

Avg reward 

Tanh 159.434 1.497 62.558 649.456 4.318 -6.982 
Sigmoid 211.367 0.626 59.983 797.7136 4.984 -5.666 
ReLU 205.576 3.881 67.722 761.555 3.993 -7.616 
Leaky ReLU 209.794 2.216 67.46 772.307 4.103 -7.406 

 
 



Table 2 
Evaluation metrics values for PPO 

Activation 
function 

Avg steps 
per episode 

Percentage of 
full stops 

Percentage 
of turning 
actions 

Avg 
distance 
per 
episode 

Avg 
speed 

Avg reward 

Tanh 2727.577 0.13 50.839 12781.262 4.2 88.527 
Sigmoid 1538.434 0.149 60.723 5535.878 3.428 31.117 
ReLU 1730.587 0.074 51.748 8023.028 4.12 43.598 
Leaky ReLU 1444.961 0.088 51.174 6546.359 4.269 33.8 

 

 

 

 
Figure 6: DQN navigational strategy   

 

 

 

 
Figure 7: PPO navigational strategy   

6. Discussions 

Given the comparative analysis of DQN and PPO algorithms for UAV obstacle avoidance in 2D 
simulations, this discussion synthesizes findings, contextualizes them within broader research, 
and identifies future directions. The study demonstrates PPO's performance advantage over DQN 
in 2D environments for UAV obstacle avoidance. However, research [6] in 3D spaces shows DQN 
outperforming PPO, indicating the algorithm's efficacy may depend on the operational 
environment's dimensionality. This discrepancy underscores the complexity of autonomous UAV 
navigation system design and the importance of algorithm selection tailored to environmental 
characteristics. In 2D simulations, PPO's ability to balance exploration and exploitation 
contributes to its superiority, a benefit not as pronounced in 3D environments where DQN may 
offer better adaptability. 



The study also highlights the impact of activation functions on learning dynamics, with 
bounded functions like Sigmoid and Tanh outperforming unbounded ones due to their gradient 
flow properties, facilitating stable learning. These insights suggest development of UAV 
navigation systems should consider both the algorithm's suitability for the environment's 
dimensionality and the choice of activation functions. The contrasting effectiveness of DQN and 
PPO across spatial dimensions underscores the need for a nuanced approach in algorithm 
selection. 

Furthermore, this study revealed significant differences in how drones navigate when using 
DQN versus PPO algorithms. DQN drones were more agile, easily weaving through tight spaces 
and obstacles in enclosed areas. This agility suggests DQN's focus on immediate rewards equips 
drones with the ability to quickly adapt their paths for effective tight-space navigation. On the 
other hand, drones using PPO prefer safer, open areas, avoiding the riskier task of navigating 
through narrow spaces between obstacles. This cautious behavior stems from PPO's strategy of 
gradual policy updates and a careful balance between exploring new paths and exploiting known 
ones, aiming to avoid mistakes that could lead to collisions. This observation underscores the 
importance of choosing the right algorithm for a drone's mission, especially in environments 
where tight maneuvering is critical. Drones tasked with operating in complex, obstacle-dense 
areas might benefit from the adaptability of DQN, while those in less cluttered spaces could 
leverage PPO's emphasis on safety. Understanding these navigational tendencies is crucial for 
designing UAV systems that meet specific operational needs, providing insights into which 
reinforcement learning algorithms are best suited for various navigation challenges. 

Future research could explore more complex 3D environments, a broader spectrum of 
reinforcement learning algorithms, and a wider range of activation functions. 

7. Conclusions 

This research compared DQN and PPO algorithms to understand their performance in UAV 
obstacle avoidance in a 2D simulation. The study found that PPO outperforms DQN in navigating 
complex environments, attributed to PPO's efficient policy updates and balance between 
exploration and exploitation. Additionally, bounded activation functions, such as Sigmoid and 
Tanh, were more effective than unbounded ones, highlighting the importance of selecting suitable 
activation functions for improved model performance. 

Analysis revealed DQN drones navigate tighter spaces effectively, leveraging immediate 
reward strategies, while PPO drones opt for open areas, prioritizing safety through cautious 
policy updates. This distinction underscores the importance of aligning the algorithm with UAV 
operational needs, guiding system design for specific navigational challenges. 

Given these insights, while PPO generally excels in complex environments, DQN's 
maneuverability in confined spaces presents a compelling case for scenario-specific algorithm 
selection. This nuanced understanding encourages a balanced approach to choosing algorithms 
and activation functions, tailored to the UAV's mission profile. Future research should explore 
broader algorithm applications, integrate diverse inputs, and test these findings in realistic 
settings to advance UAV navigation capabilities. 
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