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Abstract 
This paper presents an investigation into hand gesture recognition aimed at enhancing military training, 
improving human-machine interactions, and facilitating communication for individuals with 
disabilities. Through a comprehensive analysis, it explores both established computer vision 
methodologies and contemporary deep learning trends. The study examines the effectiveness of models 
utilizing 2D convolutional neural networks (2D-CNNs) and visual transformers (HGR-ViT). The research 
evaluates their performance by deploying models trained on ASL and NUS-II datasets, encompassing 
diverse sign language images, utilizing various performance metrics such as recall, precision, and the F1 
score. The analysis identifies scenarios where 2D-CNNs and visual transformers achieve superior 
accuracy while acknowledging constraints influenced by environmental variables and computational 
resources. This work contributes to advancing hand gesture recognition, particularly in contexts of 
military training and accessibility, offering insights into cutting-edge deep learning architectural 
paradigms. 
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1. Introduction 

The issue of hand gesture recognition occupies a central position in academic research in the 
fields of computer vision and deep learning. The anticipated development of virtual (VR) and 
augmented reality (AR) technologies, where gestures become a significant means of interaction, 
increases the relevance and necessity for further research. Primarily, gesture recognition systems 
have the potential to revolutionize military training, human-machine communication, and 
particularly communication methods for individuals with disabilities. 

A systematic review of the scientific literature confirms the existence of numerous methods 
and approaches proposed to address this pressing issue. From traditional image processing 
methods to modern deep learning models, many proposals have significantly contributed to 
improving the accuracy and efficiency of gesture recognition. However, significant challenges 
remain, including real-time operation, adaptation to changing conditions, and integration of 
various sensors. 

This study focuses on innovative approaches to hand gesture recognition, particularly the 
analysis of 2D convolutional neural networks and transformers. By exploring the prospects of 
these technologies and their combined use with modern sensors, we aim to contribute to 
developing reliable, efficient, and adaptive gesture recognition systems. 

The main goal of this study is to investigate and compare the effectiveness of applying 2D 
convolutional neural networks and visual transformers in hand gesture recognition tasks. 

The following research tasks were identified to achieve the stated objective: 
1.  Analyze modern approaches to hand gesture recognition using 2D convolutional neural 

networks and visual transformers. 
2.  Evaluate the accuracy of hand gesture recognition for 2D-CNN and ViT architectures. 
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3.  Investigate the effectiveness of models using each of the architectures on ASL [15] and NUS-
II [16] datasets. 

 

2. Related Works 

At the early stages of computer vision development for gesture recognition, classical methods 
were employed. These methods rely on manual feature extraction, such as color histograms, 
contours, and texture characteristics. Techniques like Canny Edge Detection, Hough Transform, 
Histogram of Oriented Gradients (HOG), and SIFT used to be popular in computer vision for object 
detection and recognition [3, 5, 7]. While effective for a limited set of tasks, these approaches 
cannot adapt well to various changing conditions, such as lighting variations, changes in 
perspective, or object shading. Additionally, manual feature extraction is time-consuming and 
usually does not adapt adequately to new, unexpected circumstances. 

With the introduction of deep learning into gesture recognition, there has been a significant 
paradigm shift. Recent research utilizing deep convolutional neural networks (CNNs) with video 
sequences has dramatically improved the accuracy of dynamic hand gestures [1, 2, 7] and action 
recognition [3, 5, 6]. CNNs are also helpful in combining multimodal data [2, 7], a proven 
technique for gesture recognition in complex lighting conditions [2, 4]. However, real-time 
dynamic hand gesture recognition systems pose numerous unresolved challenges. For instance, 
these systems receive continuous streams of unprocessed visual data, where gestures from 
known classes must be simultaneously detected and classified. Previous studies, such as [2, 7, 4], 
consider gesture segmentation and classification separately. Two classifiers, one determining 
whether a gesture occurred and the other characterizing the type of gesture, were trained 
separately, leading to limitations in system accuracy in data streams. 

One innovative approach in this area is the CNN-SPP architecture [8], which uses Spatial 
Pyramid Pooling to capture more extensive spatial information. This allowed the network to 
better adapt to different sizes and shapes of objects in the image. Another approach, based on the 
DenseNet architecture, was modified as EDenseNet [9], providing better generalization and 
object recognition. In recent research [10], a method using a regular RGB camera to determine 
21 key points on the hand was proposed. For this purpose, a network was developed and trained 
to identify these key points. At the core of this network lies the PointNet architecture, optimized 
for efficient operation directly on CPUs. 

Initially developed for machine translation, transformers were later recognized as a 
revolutionary technology in natural language processing (NLP) [11, 12]. Their unique ability to 
consider large temporal contexts makes them particularly effective for analyzing structural and 
relational information in language. 

Building on this success, numerous attempts have been made to adapt transformers for 
computer vision tasks [13]. The Vision Transformers (ViT) model [15, 17] has drawn particular 
attention. Unlike traditional computer vision models that use convolutions, ViT is entirely based 
on transformer architecture. It aligns with NLP and computer vision approaches and 
demonstrates impressive results, especially when working with large datasets. 

The article [18] introduced the Vision Transformer (ViT) model, which demonstrated 
impressive performance on image classification benchmarks by directly applying self-attention 
mechanisms to image patches. This groundbreaking work paved the way for subsequent research 
into transformer-based approaches for visual recognition tasks. 

Building upon the success of ViT, recent studies have extended visual transformers to tasks 
beyond image classification. The authors of [14] proposed the Detection Transformer (DETR), a 
transformer-based architecture for object detection. By replacing conventional convolutional 
layers with self-attention mechanisms, DETR achieved competitive results on object detection 
benchmarks while offering advantages in terms of flexibility and scalability. In [19] the 
comparative characterization of known CNN models for object recognition was carried out. The 
approaches used for image preprocessing are also actively researched and developed, e.g. 
filtering methods and skeletonization, were considered in [20-21].  



Moreover, research efforts have focused on adapting visual transformers to video-based tasks. 
[22] introduced the Video Transformer (ViT), a model capable of capturing spatial and temporal 
information in video sequences using self-attention mechanisms. ViT demonstrated promising 
results on action recognition benchmarks, highlighting the potential of visual transformers in 
video understanding tasks. 
 

3. Methods 

This section will explore two distinct approaches for hand gesture recognition: 2D Convolutional 
Neural Networks (2D CNN) and HGR-ViT (Hand Gesture Recognition Visual Transformer). 
 

3.1. 2D Convolutional Neural Networks (2D CNN) 

2D CNNs are adept at learning spatial hierarchies of features in images, making them well-suited 
for object recognition, scene understanding, and hand gesture recognition. In hand gesture 
recognition, input data typically consists of sequential frames capturing hand movements, each 
representing a 2D image. 

In mathematical terms, the forward pass of a 2D CNN can be represented as follows: 
Given an input 𝑉𝑖𝑛, of dimensions 𝐶 × 𝐻 × 𝑊, where 𝐻 and 𝑊 represent the height and width 

of the volume, respectively, and 𝐶 denotes the number of channels, the output 𝑉𝑜𝑢𝑡 is computed 
by convolving 𝑉𝑖𝑛 with a set of 2D filters 𝑊 of dimensions 𝐶𝑓 × 𝐻𝑓 × 𝑊𝑓 , where 𝐻𝑓, 𝑊𝑓 , and 𝐶𝑓 

represent the height, width, and number of filters, respectively. The convolution operation is 
followed by an activation function 𝜙 and optional pooling operations to reduce spatial 
dimensions. The output volume 𝑉𝑜𝑢𝑡  is then passed through fully connected layers for 
classification. 

The value of position (x, y, z) on the 𝑗th feature map in the 𝑖th layer is given by: 
 

𝑣𝑖𝑗
𝑥𝑦

 =  𝜙(𝑏𝑖𝑗 + ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑞𝑟

𝑣(𝑖−1)𝑚
(𝑥+𝑞)(𝑦+𝑟)

𝑊𝑓

𝑟=0

)

𝐻𝑓

𝑞=0𝑚

, 

 
(1) 

where 𝜙 is an activation function such as tanh, RELU, or any other non-linear differentiable 
function, 𝑏𝑖𝑗  is a bias term, 𝑤𝑖𝑗𝑚

𝑞𝑟
 is the (q, r)-th value of the kernel connected to the 𝑚-th feature 

map in the previous layer. 
 

 
Figure 1: 2D CNN HGR architecture 
 

Input data consists of single-frame images capturing hand gestures, each sized 120×120 pixels. 
The 2D CNN comprises convolutional layers responsible for feature extraction. Two 
convolutional layers are employed, each utilizing sizes 11×11 and 5×5 filters, respectively. These 



filters convolve over input images to detect spatial patterns and extract relevant features 
associated with hand gestures. 

Following the convolutional layers, two pooling layers with 2×2 kernels are added. Pooling 
layers serve to downsample feature maps, reducing spatial dimensions while preserving essential 
information. By aggregating features, pooling layers enhance computational efficiency and 
prevent overfitting. 

The output of the convolutional and pooling layers is fed into a fully connected layer. Here, all 
activation values from the previous layers are combined and flattened into a vectorized 
representation with 6400 components. This dense layer facilitates feature aggregation and 
prepares the network for classification. 

The Softmax layer, the final component of the network, contains output elements representing 
action classes. Softmax activation function normalizes the output probabilities, producing a 
probability distribution over the classes. This allows for probabilistic interpretation and 
facilitates inference of hand gestures. 
 

3.2. HGR-ViT 

HGR-ViT is an architecture representing Vision Transformer models designed for gesture 
recognition. In the initial stage, input images are normalized to a uniform size. Subsequently, 
these images are divided into separate patches, which are treated as sequences of pixel values. A 
linear projection layer, which can be learned, is applied to transform these sequences into a 
lower-dimensional space.  

Each image patch receives additional positional encoding to retain spatial context. Then, these 
patches are processed using Transformer encoders, allowing the model to analyze interactions 
between patches. The final stage involves passing the data through a linear projection layer and 
a Softmax activation function to determine the probabilities of belonging to specific classes. The 
model training process is based on labeled data and a loss function. 

 
Figure 2: HGR-ViT architecture 
 

To adapt hand gesture images to be segmented into 32×32 segments, they are initially resized 
to 256×256. Using high-resolution images with the same segment size increases the effective 
sequence length, improving performance. After scaling, the hand gesture images are divided into 
segments of standard size. 

They undergo a linear projection process before passing the segments to the Transformer 
encoder blocks. To represent the output classification result, a learned class embedding, similar 
to the class token in Bidirectional Encoder Representations from Transformers (BERT)[11], is 



prepended to the beginning of the sequence of embedded image segments. The following 
equation can represent the output of the linear projection process: 

 

𝑧0  =  [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1𝐸; 𝑥𝑝

2𝐸; … ; 𝑥𝑝
𝑛𝐸 ] +  𝐸𝑝𝑜𝑠, (2) 

where 𝑥𝑐𝑙𝑎𝑠𝑠 is the learned class embedding, 𝐸 is the learned embedding matrix, and 𝐸𝑝𝑜𝑠 is the 

one-dimensional spatial embedding. 
Segment embeddings serve as input data for the Transformer encoder, allowing ViT to detect 

global patterns and dependencies in the image while retaining some spatial information through 
segments. 

The Transformer encoder is a crucial part of the Transformer model. It consists of 𝐿 layers, 
each containing two sub-layers: the multi-head self-attention (MSA) layer and the position-wise 
feedforward layer, also known as the multi-layer perceptron (MLP). These sub-layers are 
arranged sequentially, where each layer's output serves as the next layer's input, as shown in 
Fig. 2. 

At each layer 𝑙, the input sequence from the previous layer is normalized using layer 
normalization (LN), which independently normalizes inputs across dimensions for each example. 
This enhances the stability of the model's representation and overall performance. The output of 
LN is passed through the MSA layer, and the resulting sequence is again normalized using LN. 
Finally, the output of the second LN passes through the MLP layer, which produces a set of 
updated segment embeddings. 

Residual connections are added to the MLP layer to address the issue of vanishing gradients, 
allowing the model to learn residual functions. The equations can represent the process flow in 
the Transformer encoder block: 

 
𝑧`

𝑙  =  𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) +  𝑧𝑙−1, (3) 

 

𝑧𝑙  =  𝑀𝐿𝑃 (𝐿𝑁(𝑧`
𝑙)) +  𝑧`

𝑙 , (4) 

where 𝑙 = 1, 𝐿̅̅̅̅̅ is the layer index, 𝑧𝑙−1  is the input sequence from the previous layer, MSA is the 
multi-head self-attention layer, LN is the normalization layer. 

The Transformer encoder utilizes self-attention mechanisms to detect global dependencies 
among input tokens and multi-layer perceptrons to process the obtained representations. 
Residual connections and layer normalization ensure effective training and improved 
performance. 

During training, the Rectified Adam optimizer and categorical cross-entropy loss function are 
used, represented by the equation: 

 

𝐿𝐶𝐸  =  − ∑ 𝑇𝑖 log (𝑆𝑖)

𝑁

𝑖=1

 
 
(5) 

where 𝑆 represents the Softmax probabilities and 𝑇 represents the labels. Early stopping and 
adaptive learning rate methods are also employed to prevent overfitting and improve model 
performance during training. 
 

4. Experiment 

In this study, two datasets were employed to investigate the performance of the proposed 
models: the American Sign Language (ASL) dataset with numbers and the National University of 
Singapore (NUS) dataset. 

The ASL dataset with numbers, as described in [15], encompasses 36 classes of hand gestures, 
encompassing letters from A to Z and numbers from 0 to 9. Before model training, the images 
were preprocessed by resizing them to a uniform size and normalizing them. It comprises 2515 
samples characterized by variations, each signed by five distinct performers. The first and second 
performers exhibited each symbol 25 times, except for the letter T, which contains 20 samples. 



Meanwhile, the third and fourth performers demonstrated the symbols five times each, and the 
last performer showcased each symbol ten times. Exemplary samples for each class are depicted 
in Fig. 3. 

 
Figure 3: Samples from ASL dataset 
 

On the other hand, the NUS-II hand gesture dataset, introduced in [16], comprises 2000 
images. This dataset incorporates 40 performers, each demonstrating gestures five times for 
every class, resulting in a cumulative total of 200 samples per class, thereby enhancing the 
diversity of hand gestures. Sample images representing each class in the dataset are illustrated in 
Fig. 4. Before model training, the images underwent preprocessing steps, including resizing and 
normalization. 

 

Figure 4: Samples from NUS-II dataset 



 
The experiments were conducted on the system with specs listed below.  
Python 3.11 was used with OpenCV 3.3 and TensorFlow on macOS Ventura, running on a 

notebook equipped with an Apple M1 Pro processor and 16 GB of RAM. The 2D CNN and ViT 
models were evaluated on the ASL [15] and NUS-II [16] datasets. 
 

5. Results 

Each model, 2D-CNN and ViT, underwent 20 epoch training. It is essential to note that 
20 iterations may not suffice to demonstrate ideal results, as observed in other studies. Still, they 
provide context crucial for assessing accuracy and effectiveness for future utilization. 

Key metrics used to measure the quality of the trained model include recall, precision, and F1-
score. In the context of gesture recognition, recall represents the proportion of individuals 
performing hand gestures in the test dataset that were correctly identified by the model and is 
determined by the formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (6) 

where 𝑇𝑃 represents the test result correctly indicating the presence of a condition or 
characteristic, and 𝐹𝑁 represents the test result incorrectly indicating the absence of a certain 
condition or characteristic. 

Precision signifies the proportion of individuals identified by the model as performing hand 
gestures who indeed perform hand gestures, defined by the formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (7) 

where 𝑇𝑃 represents the test result correctly indicating the presence of a condition or 
characteristic and 𝐹𝑃 represents the test result incorrectly indicating the presence of a certain 
condition or characteristic. 

The F1-score is calculated as the harmonic mean of precision and recall, as per formula (8). A 
higher F1 Score indicates better model performance. An ideal F1 Score of 1 signifies the model 
has perfect precision and recall. 

 

𝐹1 =  2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (8) 

where precision and recall values are calculated using formulas (6) and (7). 
Detailed results comparing subsets of gestures using 2D-CNN are presented in Table 1. 

 
Table 1 
Experiment results for subsets of characters from the used datasets with the 2D-CNN architecture 

 ASL dataset NUS dataset 

Symbol Precision Recall F1 Score Precision Recall F1 Score 

A 0.9078 0.9028 0.9053 0.9078 0.8634 0.8850 
B 0.9189 0.9142 0.9165 0.9189 0.8742 0.8960 
E 0.8757 0.6765 0.7633 0.8757 0.8526 0.8640 
G 0.8643 0.6177 0.7205 0.8643 0.8485 0.8563 
I 0.9052 0.9252 0.9151 0.9052 0.8532 0.8784 
P 0.9154 0.9165 0.9160 0.9154 0.8521 0.8826 
S 0.8843 0.8279 0.8552 0.8843 0.8378 0.8604 
Z 0.8734 0.7644 0.8153 0.8734 0.8386 0.8557 

 
The 2D-CNN demonstrated superior results for the ASL dataset, with an F1 Score averaging 

0.881536 across all characters. This can be attributed to the isolated nature of the symbols on 



which the model was trained, where the surrounding environment has less influence on the 
outcome. An average F1-score of 0.872366 was achieved on the NUS-II dataset. 

Testing conditions for ViT were identical and yielded inferior results. For the ASL dataset, the 
F1 Score reached 0.848405, and for NUS-II, it was 0.843213. Interestingly, ViT exhibited better 
results in varied environmental conditions due to the self-attention mechanism inherent in 
transformers. 

To improve ViT model performance, an additional 20 training epochs were conducted. 
Consequently, the average F1 Score across all characters increased to 0.880884. 

Detailed results comparing subsets of gestures using ViT are presented in Table 2. 
 
Table 2 
Experiment results for subsets of characters from the used datasets with the ViT architecture 

 ASL dataset NUS dataset NUS dataset w/ 20 extra 
epochs 

Symbol Precis. Recall F1 Precis. Recall F1 Precis. Recall F1 

A 0.9065 0.7989 0.8493 0.8765 0.7954 0.8340 0.9079 0.9028 0.9053 
B 0.8838 0.8075 0.8439 0.9184 0.7835 0.8456 0.9189 0.9143 0.9166 
E 0.9005 0.8073 0.8514 0.8852 0.7854 0.8323 0.8758 0.8166 0.8451 
G 0.8994 0.8123 0.8536 0.9124 0.8048 0.8552 0.8644 0.7978 0.8297 
I 0.8849 0.7978 0.8391 0.8905 0.7884 0.8364 0.9052 0.9253 0.9151 
P 0.9059 0.8084 0.8544 0.9155 0.7979 0.8527 0.9155 0.9166 0.9160 
S 0.8978 0.8043 0.8485 0.8773 0.7975 0.8355 0.8844 0.8279 0.8552 
Z 0.8838 0.8131 0.8470 0.9054 0.8080 0.8539 0.8735 0.8545 0.8639 

 
This revised section presents the results of the experiments, including metrics such as recall, 

precision, and F1-score, for ViT models. It also highlights the impact of additional training epochs 
on ViT model performance. 
 

6. Discussion 

The experimentation with the developed architectures for 2D-CNN and ViT in the context of 
gesture recognition has been conducted. Their performance based on the ASL and NUS-II datasets 
has been analyzed. The advantages and disadvantages of using these approaches for gesture 
recognition tasks have been highlighted. The superior effectiveness of 2D-CNN compared to ViT 
under limited resources has been demonstrated, with an F1-score of 0.881536 for 2D-CNN 
compared to 0.848405 for ViT, showcasing a 3.8% advantage for 2D-CNN. 

The obtained results contribute to the further development of 2D Convolutional Neural 
Network (2D-CNN) and Visual Transformer (ViT) models for deep learning in hand gesture 
recognition. By showcasing the comparative performance of these architectures on gesture 
recognition tasks, this research adds to the body of knowledge on effective deep learning 
techniques for computer vision tasks, particularly in gesture recognition. 

The practical significance of the obtained results lies in identifying advantages and drawbacks. 
The investigation of the effectiveness and efficiency of deep learning models 2D-CNN and ViT 
based on the ASL and NUS-II datasets, with the aim of further deployment in IT solutions for 
automated hand gesture recognition. By understanding the strengths and weaknesses of each 
model in the context of specific datasets, practitioners can make informed decisions about which 
architecture to choose for their particular application scenarios. Additionally, exploring these 
models' performance provides valuable insights for improving existing systems or developing 
new ones for gesture recognition applications in various fields, including human-computer 
interaction, healthcare, and augmented reality. 

Moving forward, several avenues for future research can be considered based on the findings 
of this study. Firstly, further investigation into optimizing ViT models for gesture recognition 



tasks could improve performance, potentially closing the performance gap with 2D-CNN 
architectures. Additionally, exploring larger and more diverse datasets could provide a more 
comprehensive understanding of these models' capabilities and limitations across different 
contexts and demographics. Furthermore, research into hybrid architectures that combine the 
strengths of both 2D-CNN and ViT could yield even better results, leveraging the spatial 
information captured by 2D-CNN with the self-attention mechanisms of ViT. Lastly, exploring 
real-time implementations and their performance in practical scenarios would be valuable for 
assessing the feasibility of deploying these models in real-world applications where low latency 
and high accuracy are essential. 
 

7. Conclusions 

When comparing convolutional neural network (CNN) and Vision Transformer models, 
significant differences in model size, memory requirements, accuracy, and productivity have been 
identified. CNN models are traditionally known for their compactness and efficient memory 
utilization, making them suitable for resource-constrained environments. They have 
demonstrated high effectiveness in image processing tasks and excellent accuracy in various 
computer vision domains. On the other hand, Vision Transformers offers a powerful approach for 
capturing global dependencies and contextual understanding in images, leading to improved 
performance in certain tasks. However, Vision Transformers typically have larger model sizes 
and higher memory requirements than CNNs. While they can achieve impressive accuracy, 
especially when working with large datasets, computational demands may limit their practicality 
in resource-constrained situations. 

The choice between CNN and Vision Transformer models depends on specific task 
requirements, considering available resources, dataset size, and the trade-off between model 
complexity, accuracy, and productivity. As hand gesture recognition remains relevant, further 
research and refinement of both architectures will enable researchers and practitioners to make 
more informed decisions based on specific needs and constraints. 

Continued investigation and improvement of both CNN and Vision Transformer architectures 
will empower researchers and practitioners to address evolving challenges in gesture 
recognition. Ultimately, this will advance state-of-the-art computer vision and enhance the 
practical applicability of these models in real-world scenarios. 
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