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Abstract 
The issues related to the use of multithreshold neural units in multiclass classification are treated in the 
paper. Two models of multi-valued k-threshold neurons are considered. Online and offline modifications 
of the learning algorithm are designed to train multithreshold neuron to solve multiclass classification 
tasks using simple and fast learning techniques. The conditions are found ensuring the finiteness of the 
training. The experiment results demonstrate the performance of multithreshold multiclass classifier 
on real-world datasets compared to some popular classifiers. 
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1. Introduction 

Neural-like networks and systems have numerous applications in artificial intelligence [1] and 
intelligent data analysis [2]. They are used in modern hardware [3] and software [4] tools and 
products [5, 6]. The amazing capacities of artificial neural networks (ANN) are provided by the 
appropriate use of the network architecture [7] and related learning techniques [8, 9]. 

The synergy between the network architecture, the kind of network nodes and the network 
learning (or synthesis) procedures is very important in the practice of neural computations [10]. 
Linear neural units with threshold activation functions [11], binary inputs and output were used 
in early models [12]. This kind of computation units was inspired by the models of biological 
neurons from the brain study [11]. But both the theoretical studies and practical applications 
showed the strong limitations of the basic neuron model of McCulloch and Pitts [12, 13] as well 
as difficulties related to the learning of threshold ANN [14, 15]. In order to overcome above-
mentioned limitations and difficulties, many more complicated models of neural devices were 
proposed [11, 12]. The overall majority of these models employed two ways to increase the net-
work capacities by enhancing the power of network neurons [10]. The first is based on the use of 
more sophisticated models of the aggregation of the input signals of the neural unit instead of the 
classical weighted sum of inputs [12], e.g., polynomial threshold units [12, 13]. The second ap-
proach consists in the use of more complicated activation functions instead of the step function 
[12] from the Rosenblatt model [16, 17]. Both approaches have their pros and cons discussed in 
[10–14] 

The multithreshold models were developed under the second approach [18]. One of the ear-
liest among them was the multithreshold threshold element [19]. Binary multithreshold neuron 

with weight vector ( )1, , n

nw w= w R  and threshold vector ( )1, , k

kt t= t R  is the compu-

tation unit with n inputs 
1, , nx x  whose single binary output y is calculated by the following rule: 
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where ( )1, , n

nx x= x R  is an input vector, 
1 1 ... n nw x w x = + +w x  is the dot product of vectors w 

and x (weighted sum of inputs),  / 2k  denotes the integer part of number / 2k , 
1 2 ... kt t t   , 

 and  are additional thresholds used for convenience only. Multithreshold ele-

ments outperform single-threshold ones [18, 20], because they are activated when the sum of 
weighted inputs is within the one if given disjoint half-open intervals, which are specified by the 
ordered sequence of their thresholds [21]. 

But the increase in the recognition capability of multithreshold is not gratuitous. One must pay 
a high price for this, which consists in the difficulty of the learning of such units [7, 22], because 
the respective learning task is NP-hard even in the case of a unit with two thresholds. The 
research has two main goals: 

• The study of the model of multi-valued multithreshold neuron that should effectively use 
the advantages of multiple thresholds, be suitable for the multiclass classification and admits 
fairly simple training techniques. 
• The development of the learning algorithm for such units and the study of its fitness for 
intended applications in classification. 
The paper has the following structure. First, the works related to the topic of the study will be 

reviewed. Then, two models of multithreshold neural units will be considered: binary-valued and 
multi-valued, respectively. We will discuss its advantages and consider some downsides related 
to the complexity of their learning. In the next section two learning algorithms will be described, 
which are designed for the learning of a single k-threshold neuron. For both algorithms the 
conditions on the learning rate will be stated, which satisfy the finiteness of the learning in the 
case of their application to the learning of strongly k-separable sets. Next, the simulation results 
will be treated of the performance of trained multiclass k-threshold neural classifiers in the 
comparison with some other popular classifiers provided by Sklearn library [11]. Finally, two last 
sections contain the discussion of obtained results and conclusions. 

2. Related works 

The study of multithreshold neural units has a long history [19, 23, 24]. Multithreshold neural 
elements were introduced in the early studies in threshold logic [19, 25]. As mentioned above, 
the additional thresholds were proposed with intention to increase the capacities of basic single-
threshold element [19, 26]. Some properties of multithreshold neurons were stated in [22, 25, 
26]. These works mostly dealt with the recognition capacity of multithreshold elements [2]. 
Issues related to the synthesis of multithreshold devices remained almost untouched, because 
few algorithms for training such multithreshold units and networks had been developed [18, 24]. 
Therefore, the applications of devices using multithreshold approach were almost unknown [27] 
despite the better capabilities of multithreshold units compared to the classical linear threshold 
units [20, 26]. The hardness results from [15, 22] can explain these difficulties for the practical 
application of bithreshold systems to some extent. Nevertheless, as stated in [8, 10, 28], the lack 
of learning techniques for multithreshold systems caused the decline of interest in their study. 

But recent advances in multithreshold logic changed the situation [7, 14]. One of the reasons 
were new approaches in the synthesis ANN with hidden layers consisting of neurons with bithre-
shold activation functions [14, 20]. They were developed on the base of the generalization of the 
Baum’s synthesis algorithm [29] for threshold networks in the case of bithreshold nodes [14, 28]. 

The advance in the application of so-called bithreshold networks was stated in [1, 10], where 
such networks were considered as the effective tools, which are capable to solve typical problems 
of intellectual data processing and computational intelligence. The limitations and downsides of 
the basic bithreshold ANN from [7, 14] were stated in [28]. Hybrid models of the multiclass 
classifier with heterogenous hidden layers were proposed in [28], where other kinds of neural 
units (e.g., WTA and single-threshold) units were used in order to enhance network performance 
and reduce its drawbacks. It should be noted that bithreshold ANN can be useful not only in clas-
sifiers. Their potential applications are considerably wider [2, 6, 8, 9]. E.g., they were mentioned 

0t = − 1kt + = +



in design of powerful deep ANN providing the exponential improvement of the memorization 
capacity [16]. The bithreshold approach primary was employed for the solution of real-valued 
problems [10]. But it admits the generalization to the complex domain [14]. The complex analogs 
of bithreshold activation could be proposed [30] that extend the capacity of complex-valued 
threshold neural units. This allows the multithreshold approach in the proceeding of data in the 
complex domain [17, 28]. 

It should be noted that the above-mentioned advance in the application of multithreshold 
systems is actually related to only bithreshold models [7]. The examples of successful application 
of general multithreshold models with an arbitrary number of thresholds are unknown [14, 30]. 
It became evident that the additional study is necessary before such models can be employed in 
machine learning systems [10]. One of them was the paper [22], where general k-threshold neural 
units were treated in the case 2k  . As was observed in [22], the parity of k has the great 
influence to the properties of multithreshold neurons. Moreover, every multithreshold unit can 
be realized using a small threshold circuit, and, consequently, every multithreshold network can 
be replaced by the equivalent networks consisting solely of bithreshold and threshold nodes [30]. 
Notice also that unlike the learning of a single threshold linear unit, the learning of a multithre-
shold unit proved to be NP-hard [22] confirming the similar result of the intractability of the 
learning of a single bithreshold unit [14]. 

Notice that all mentioned applications of bithreshold and k-threshold neurons have the binary 
outputs [28]. Thus, their employment in the classifiers requires the special shape of the network 
output layer with a separate neuron for every class and the using of “one versus all” approach in 
the learning or synthesis [11]. In some cases, a single output multi-valued neuron is preferable 
[12], because its application results in the network having fewer nodes and weight coefficients. 

3. Models and methods 

3.1. Two models of multithreshold neural units 

3.1.1. Model of binary-valued k-threshold neuron 

Let us consider again a model of k-threshold binary-valued neuron with the weight vector w and 
(ordered) threshold vector t, which output is given by (1).  Note that its performance can be des-
cribed as follows:  
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Model (2) has a simple geometrical interpretation [22, 26]. The family of parallel hyperplanes 

: ,j jH t =w x   1, ...,j k  divides the space n
R  by 1k +  parts, which can be successively labeled 

by numbers 0, 1, …, k. All points belonging to “even” parts are attributed as “negative” ones. Re-
maining parts are considered as “positive” [22]. The illustration is shown in Figure 1, where the 
case 2, 3n k= =  is considered. 

Figure 1 can also illustrate the nature of difficulties related to the application of binary-valued 
multithreshold neuron. Its value can alternate many times. It ensures the great capability of the 
multithreshold unit on the one hand, but results in the hardness of its training on the other hand. 
Note that the strict proof of the NP-hardness of the learning of a single binary-valued multi-
threshold neuron can be found in [22]. 



 

Figure 1: Illustration of the performance of binary-valued 3-threshold neuron 

3.1.2. Model of multi-valued k-threshold neuron 

The multi-valued modification of the model (2) can be considered [18, 23] that keeps the 
capacity of the base model and is easier in the training [24]. This multithreshold model uses the 
same weight vector w and threshold vector t, but differs in the output range of the neuron. To be 

more precise, the range set of k-threshold multi-valued neuron is  1 0,1,,...,k k+ =Z , and the 

neuron output y satisfies the following condition: 
 

( )y f= t w x , (3) 
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Consider again the geometrical illustration, now, for the k-threshold multi-valued neuron (3), 
(4). As it is shown in Figure 2, the performance of the neuron is also defined by parallel hyper-

planes :j jH t =w x ,  1, ...,j k , which make partition of the space n
R  by 1k +  parts.  

 

Figure 2: Illustration of the performance of multi-valued 3-threshold neuron 



 
These parts also are labeled by indices 0, 1, …, k corresponding to the output value of the 

(multi-valued) neuron whose activation is given by (4). Notice that same points are used in both 
Figure 1 and Figure 2, but their partition by classes differs, because there are only two classes for 
binary-valued k-threshold neuron and 1k + —for its many-valued counterpart [22]. 

The pair (w, t) completely defines the multi-valued multithreshold neuron and is called its 

structure pair. Let A be an arbitrary set in n
R . Then every multi-valued k-threshold neuron with 

structure pair ( ),w t  performs the (ordered) partition ( )0 1, ,..., kA A A  of the set А, where: 

( ) | , 0,1,...,iA A f i i k=   = =tx w x  (5) 

This partition is called an ordered k-threshold partition of the set A, whereas sets 
0 1, ,..., kA A A  

are called strongly k-separable (compare with [22]). Note that the order matters for the strongly 
separated sets. Sets 

0 1, ,..., kA A A  are called k-separable, if there exists a permutation 
1: k + →Z  

1k+Z  such that sets ( ) ( ) ( )0 1
, ,...,

k
A A A
  

 are strongly k-separable [22]. 

3.2. Learning algorithms for multithreshold neurons 

3.2.1. Initial reduction of the task 

Let 
0 1, ,..., kA A A  be strongly k-separable finite sets. Consider the task of the search of a multi-

valued k-threshold neuron with structure pair ( ),w t  that performs the desired partition 

( )0 1, ,..., kA A A  of the set A that is the union of (disjoint) sets 
0 1, ,..., kA A A , which satisfies (5). 

Consider how one can reduce the above task to the solution of the homogenous system of 
linear inequalities in n k+  variables 

1 1,... , ,...,m kw w t t . It is possible to rewrite (3)-(5) as follows: 
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Since sets 
0 1, ,..., kA A A  are finite and strongly k-separable, system (6) has solutions, which 

compose n-dimensional convex set. If all non-strict inequalities in (6) were replaced by strict 

ones, then resulting system would also have solutions. Let ( )1 1,..., , ,...,n kw w t t= − −v ,   

( )1 1

1

,..., ( ,..., ,0,...,0,1,0,...,0).j n n

j k j

x x x x
− −
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(7) 

The chained inequality 1j jt t +  w x  is equal to the system 
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The last system can be rewritten in the following way: 
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Thus, we can reduce system (6) to the following system: 
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
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b v

b v
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where 
02 km A A A= − −  ( X  denotes the cardinality of the set X) and vectors bi are obtained 

using (7) and (8). Note that there are algorithms solving (9) in polynomial time [13]. Thus, the 
task of the learning of k-threshold multi-valued neuron (3)-(4) is not NP-complete.  

The reduction process can be described using the following pseudocode: 

ReduceSet ( )0 1, , , kA A A  

1 B  
2 for x in 

0A : 

3        add ( )1−a x  into B 

4 for i in  1,..., 1k − : 

5        for x in 
iA : 

6               add ( )ia x  into B 

7               add ( )1i+−a x  into B 

8 for x in 
kA : 

9        add ( )ka x  into B 

10 return B 

Notice that the transformation (7) is used in steps 3, 6, 7, 9 ensuring the filling of the output 
set B. 

3.2.2. Online learning algorithm 

Consider the training of the multi-valued k-threshold neural unit to separate finite strongly k-
separable sets 

0 1, ,..., kA A A . 

Let us describe the online learning algorithm for a k-threshold multi-valued neural unit that 

uses ReduceSet ( )0 1, , , kA A A  from the previous subsection and an adopted version of the relaxa-

tion algorithm from [31, 32]. The pseudocode of the algorithm is shown in the function Online-
Multithreshold: 

OnlineMultithreshold 1

0

0 )( ,, ,, , ,k rAA A v  

1 BReduceSet ( )0 1, , , kA A A  

2 0v v  

3 ( ) ( ), , 0,0,1i j err   

4 while i r  and 0err  :  
5        err 0 
6        shuffle B 
7        for b  in B: 
8               s b v  
9               if 0s  : 
10                      continue 
11               1j j +  

12               1err err +  



13               
( )

2

j s
 −v v b

b
 

14       1i i +  

15 ( )1,..., nv vw  

16 ( )1,...,n n kv v+ + − −t  

17 return ,w t  

Previous algorithm has four main parameters: 
0 1( , ,..., )kA A A — an ordered partition corres-

ponding to strongly k-separable sets, r—the number of learning epochs, 0
v — initial approxima-

tion,  —the schedule function that defines the behavior of the learning rate. The above algorithm 

uses three internal counters: i that is responsible for learning epochs, j—responsible for learning 
corrections, and err—responsible for the unit errors during the current epoch of learning. The 

goal of algorithm is the search of a vector n k+v R  such that for all Bb  the inequality 0 v b  
holds. If such vector is already found, then the learning process terminates. Otherwise, the weight 
correction occurs in step 13 at least once per epoch. Note that this correction is successful only in 

the case 0s  . Thus, a random initial approximation should be used for 0
v  to avoid the situation 

0s =  during the learning. The following proposition states conditions ensuring the successful 
completion of the online learning using above algorithm. 

Proposition 1. If 
0 1 ... kA A A A=    , sets 

0 1, ,..., kA A A  are finite and strongly k-separable, 

( ) ( )
( )

( )

j
j j

s j


 


= + , 

where j is a correction step, s(j) is the dot product obtained in step 8 before jth correction, 

( )0 2j  , ( )min max0 j       , (10) 

then there exists r  such that OnlineMultithreshold produces a structure pair ( ),w t  of multi-va-

lued k-threshold neuron, which satisfies (6) and performs desired partition of the set A. 

3.2.3. Offline learning algorithm 

Let us describe the offline approach to the learning of k-threshold multi-valued neural unit. It is 
designed using the modification of offline spectral algorithm from [32] adopted to solving the 

system (9). Let  1,..., mB = b b  be a finite subset of n k+
R , and n k+v R . We will need the following 

notations: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1
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m m
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B g B g g B g
= =

= =  = = v v v v v vs b b v b g b b s b b , (1,...,1)
n k+

=1 . 

Note that both ( )Bs  and ( )Bvs  belong to n k+
R  and vector ( )Bvs  can be considered as an 

analogs of Fourier coefficients of the function  : 1,0,1B → −vg . Consider the following algorithm: 

OfflineMultithreshold 1

0

0 )( ,, ,, , ,k rAA A v  

1 BReduceSet ( )0 1, , , kA A A  

2 0v v  
3 compute s(B) 

4 compute ( )Bvg  

5 0j   



6 while j r  and ( )B vg 1 :  

7       1j j +  

8       compute ( )Bvs  

9       
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i B B
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10       compute ( )Bvg  

11 ( )1,..., nv vw  

12 ( )1,...,n n kv v+ + − −t  

13 return ,w t  

Note that OfflineMultithreshold 1

0

0 )( ,, ,, , ,k rAA A v  has identical input parameters as its 

online counterpart from the previous subsection. 
The following proposition states conditions ensuring the successful completion of the offline 

learning using above algorithm. 

Proposition 2. If 
0 1 ... kA A A A=    , sets 

0 1, ,..., kA A A  are finite and strongly k-separable, 
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j
j j

j B B
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where j is a correction step, ( )j  and ( )j  satisfy (10), v(j) is a value of vector v after jth 

correction, then there exists r  such that OfflineMultithreshold 1

0

0 )( ,, ,, , ,k rAA A v  produces the 

structure pair ( ),w t  of a multi-valued k-threshold neuron, which performs desired k-threshold 

partition of the set A. 

Proofs of both propositions are omitted. They can be obtained using reasons similar to [32]. 

4. Experiment and results 

Consider the capability of our learning algorithms from the previous section to train a multi-
valued multithreshold-based classifier to solve the classification problems on some benchmarks. 
Let us compare their performance with well-known classification methods, such as classical per-
ceptron, nearest neighbor classifier, random forest and feed-forward ANN (multilayer percep-
tron). Classifiers were compared on the following two real-world datasets: “balance-scale” 
(Balance Scale Weight & Distance Database) and “dry-bean” (Dry Bean Dataset) [33, 34] provided 
by UC Irvine Machine Learning Repository [35]. The datasets contain 625 and 13611 learning 
instances from 3 and 7 classes, respectively [33, 35]. The first dataset has 5 features, the second 
one—16 [33]. 25% instances of every dataset were used as the test set, and the rest 75%—as the 
training set. In order to obtain consistent results [12], the repeated random subsampling valida-
tion [11, 36] was used. The learning experiments were repeated 500 times for every dataset and 
then obtained results were averaged concerning the accuracy on the training and test sets. 

Default values of parameters recommended by Scikit-Learn library were used during training 
experiments for first four classical classifiers: 5 neighbors for nearest neighbor classifier, 1000 
iterations for linear perceptron classifier, unbounded depth for random forest, one hidden layer 
with 100 nodes and 200 iterations for multilayer perceptron [36]. The constant learning rate 

2 =  was used for both MultiThreshold algorithm as well as random initial approximations 
0 0,w t . Datasets are not provided with an ordered partition into classes [35]. So, the classes were 

ordered using the alphabetical order induced by their labels. The following table contains results 
of experiments. 



Table 1 
Simulation results on two real-world datasets 

Classifier 
Accuracy on training set (in %) Accuracy on test set (in %)  

balance-scale dry-bean balance-scale dry-bean 

Perceptron 84.25 20.91 82.23 16.59 

5-Nearest Neighbor 88.07 81.07 81.85 72.34 

Random Forest 100 99.98 82.93 90.03 

MLP Classifier 95.28 53.51 92.74 49.60 

OnlineMultithreshold 88.84 57.23 83.89 51.22 

OfflineMultithreshold 88.03 66.02 82.16 59.83 

 
By analyzing data from Table 1, we can conclude that: 
• Both multithreshold algorithms performed well on the relatively easy small 3-class classi-

fication task on balance-scale dataset and the online modification had the second-best 
accuracy on the test set. 

• Classification on the dry-bean dataset was more difficult task for almost all classifiers con-
sidered during simulation. Learning for both linear perceptron and multilayer perceptron 
failed completely. Multi-valued multithreshold neuron yielded by OfflineMultithreshold 
performed better than neuron produced by online algorithm and had the best accuracy 
among all neural-like models, which were considered. But its accuracy was considerably 
worse than in the case of the use of random forest classifier. 

5. Discussions 

Two versions of the learning algorithm for multi-valued multithreshold neurons have been 
proposed. The simulation results prove that both algorithms are capable to yield networks, which 
are suitable for the solution of classification problems in the case when the number of classes is 
relatively small. But the performance of both algorithms decreases in the case when the number 
of classes increases. It seems that it is due to at least two reasons. 

The first one is the small number of parameters of the multithreshold model compared to 
other classifiers, which often use “one versus all” scheme [11, 36]. It seems that above drawback 
can be overcome by using multithreshold networks [29] or more powerful neuron models with 
multithreshold activation, e.g., polynomial neurons [23, 30, 32]. 

The second reason is caused by the nature of the datasets related to majority of classification 
problems. They contain training pairs, each of which consists of a pattern and its class label. In 
terms of the partition, we deal with an unordered partition while proposed learning algorithms 
are designed to process with strongly k-separable sets corresponding to an ordered partition. The 
question arises how to convert an unordered partition to an ordered one. The brute force is not 
effective due to fast growth of factorial. Numerous heuristics can be used in order to increase the 
performance of the multithreshold neurons. This is a problem that deserves a separate conside-
ration. 

6. Conclusions 

The problem of the application of multithreshold multi-valued neural units has been consi-
dered. These units separate the sets of patterns in n-dimensional vector space using parallel 
hyperplanes. This ability allows them to become candidates for computational nodes of multi-
class ANN classifiers. Thus, the development of learning methods for such networks is important. 

The simplest case of this learning problem has been treated, namely, issues concerning the 
learning of a single multi-valued multithreshold neuron. Two approaches to the training of multi-
threshold neuron have been developed. Both of them require the simple preliminary patterns 
transformation in order to reduce a given multiclass task to corresponding binary classification 



task. The online version of the learning algorithm is simpler and often faster. The offline modifi-
cation performs single correction during each learning epoch, usually is more expensive but often 
yield the neuron having a somewhat better accuracy of classification. The conditions have been 
stated ensuring the finiteness of the learning process in the case of application of both algorithms 
to the training of k-separable sets. 
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