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Abstract
This paper describes our software submission for determining the health-relatedness of web pages for the 1st
International Workshop on Open Web Search [1] (WOWS’24). Determining to what degree a web page is health-
related is crucial in health information retrieval, and scaling this task to the web requires efficient methods.
We present a simple approach based on termhood scores, which determine how strongly a term is associated
with a specific domain. In previous work, we have shown that termhood scores can effectively determine the
health-relatedness of phrases and sentences. In this work, we apply them to web pages. Our software submission
efficiently computes an effective and nuanced health / medical relatedness score for a given web page.
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1. Introduction1

Consumers frequently turn to the web for health information [3]. The availability of online health infor-
mation has democratized access to health knowledge but also harbors risks. Spreading misinformation
and lacking quality of health information has raised concern among researchers and practitioners [4, 5].

Providing consumers with high-quality health information is a complex task. One of the first steps
for building a search engine for health information is determining whether a web page contains high-
quality health-related information. Previous work has focused on classifying the quality of health
information [6, 7, 8, 9], but assumes that the web page is health-related. We focus on the prior task of
determining the health-relatedness of a web page.

Determining health-relatedness at web scale requires an efficient and effective method. We propose
an efficient approach based on termhood scores. Termhood scores determine how strongly a term is
associated with a specific domain [10]. They were initially developed to automatically extract terms for
building ontologies. Previously, we have shown that termhood scores can also effectively determine
the health-relatedness of phrases and sentences [2]. In this work, we apply them to web pages and
provide an easy-to-use software submission for the 1st International Workshop on Open Web Search to
determine the health-relatedness of web pages.

2. Related Work

The impact of online health information on consumers has attracted the interest of the health sociology
research community. Information quality appears to be the most studied characteristic from a health
sociology perspective. Numerous studies systematically analyzed the quality of websites related to
specific topics such as orthodontics [11] or performance-enhancing drugs [12], but more general studies
with limitations to specific parts of the web are also common. Examples include studies of dietary advice
[13] or the misinterpretation [14] and exaggeration [15] of clinical trial results in online news. Recent
studies also targeted web search snippets [16] and social media [17], particularly health misinformation
on Twitter [18, 19].

WOWS’24: 1st International Workshop on Open Web Search, March 28, 2024, Glasgow, Scotland
$ ferdinand.schlatt@uni-jena.de (F. Schlatt)
� 0000-0002-6032-909X (F. Schlatt)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1Several parts of this paper (especially in Section 3) are copied verbatim from our previous work [2].

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ferdinand.schlatt@uni-jena.de
https://orcid.org/0000-0002-6032-909X
https://creativecommons.org/licenses/by/4.0


Experts have defined different standards for the quality of online health information [20, 21, 22].
However, a large majority of websites do not follow these criteria, and the overall quality of health
information is considered problematic by several surveys [4, 5, 23]. To aid consumers in finding high-
quality information, previous work has automated quality assessment tasks [6, 7, 8, 9]. However, most
approaches assume the web page is already health-related, and the task of determining health-relatedness
is not addressed. Some previous work has investigated classifying if a web page is health-related. For
example, medical vocabularies have been used to classify news articles [24, 25] or convolutional neural
networks to classify Reddit posts [26]. These models, however, focus on specific types of web pages
and are expensive to scale for web-scale analysis.

Instead, we use contrastive termhood scores to determine the health-relatedness of arbitrary web
pages. Contrastive termhood scores relate term frequencies from a domain corpus to frequencies
from one or more out-of-domain corpora. These include tf ·idf -inspired measures [27, 28], measures
estimating how exclusive a term is for a domain [29, 30], and combinations or extensions thereof [31, 32].
They are particularly well-suited for web-scale analysis, as they are efficient to compute and do not
require labeled training data. Contrastive termhood scores are usually applied to a set of extracted
terms. We have previously shown that they can also be effectively applied to phrases and sentences [2].
We build on our previous work by applying contrastive termhood scores to web pages.

3. Measuring Health Relatedness

Termhood scores assess to what degree a term is exclusive to a particular domain [10]. Usually,
termhood scores define a term as a nominal phrase consisting of one or multiple words, e.g., ‘breast
cancer.’ However, obtaining nominal phrases requires expensive syntactic parsing. Instead, we consider
a single word as a term. Assessing whether a word is health-related can be difficult, particularly for
homonymous (same surface form, different meaning) or polysemous (same surface form, different sense)
words. For instance, ‘cancer’ may refer to a health-related malignant tumor and the zodiac sign. The
latter is unlikely to appear in a health-related context.

Contrastive termhood scores compare the occurrence frequencies of a word from an in-domain
corpus to one or multiple out-of-domain corpora. Thereby, they determine a word’s domain exclusivity.
This section discusses three existing contrastive termhood scores and then explains how we apply them
to assessing the health-relatedness of web pages.

3.1. Existing Contrastive Termhood Scores

The termhood scores contrastive weight (CW) [27], term domain specificity (TDS) [30], and discrim-
inative weight (DW) [31] rely on a corpus 𝐻 of domain-specific texts (in our case: health-related
texts) and at least one contrastive corpus 𝐺 of general or out-of-domain texts (in our case: Wikipedia).
To score a term 𝑡, CW, TDS, and DW use occurrence frequencies: the absolute corpus occurrence
frequency freq𝐶(𝑡) (i.e., the absolute number of occurrences of 𝑡 in corpus 𝐶), the relative corpus
occurrence frequency rel𝐶(𝑡) = freq𝐶(𝑡)/|𝐶| (where |𝐶| denotes the number of words in a corpus),
and the inverse corpora frequency icf (𝑡) defined for 𝐻 and 𝐺 together as

icf (𝑡) = log

(︂
|𝐻|+ |𝐺|

freq𝐻(𝑡) + freq𝐺(𝑡)

)︂
.

The contrastive weight CW of a term 𝑡 is similar to tf ·idf but uses the corpus-oriented frequencies:

CW(𝑡) = log (freq𝐻(𝑡) + 1) · icf (𝑡) .

For the term domain specificity TDS, we unify the slightly different definitions of Ahmad et al. [29],
Park et al. [30], and Wong et al. [31] as

TDS(𝑡) = log

(︂
rel𝐻(𝑡) + 1

rel𝐺(𝑡) + 1
+ 1

)︂
.
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Figure 1: Termhood score frequencies of (a) CW, (b) TDS, and (c) DW on the PubMed corpus, and of (d) DW on
the Encyclopedia corpus. Number of words in thousands. Example words are highlighted.

Finally, the discriminative weight DW was originally defined as the product of CW and a version
of TDS that uses freq𝐶(𝑡) instead of rel𝐶(𝑡). Since the values of such an “unnormalized” TDS depend
on corpus size, we use our above corpus-agnostic normalized version but still compute DW as

DW(𝑡) = CW(𝑡) · TDS(𝑡).

3.2. Contrastive and Health Domain Corpora

We select Wikipedia2 as our contrastive general corpus 𝐺 since it covers a wide variety of domains and is
easily accessible. For health corpora 𝐻 , we provide two alternatives, each with its own (dis)advantages.
The first is a dump of over 30 million MEDLINE abstracts from PubMed3. The PubMed corpus is large-
scale, reducing noise in the termhood scores. However, it mainly contains scientific language, which may
not match the language of arbitrary consumer-oriented health-related web pages. For the second health
corpus, we crawled the entries of five consumer-oriented medical online encyclopedias.4–8 Since they
are written in layperson’s terms, we assume their language is similar to the target language distribution.
However, the number of words in the Encyclopedia corpus is about three orders of magnitude smaller
than in the PubMed corpus.

3.3. Pilot Inspection and Comparison

To get an impression of the scores and the corpus impact, we inspect the unigram termhood score
distributions in general and for some example words. Figures 1 (a–c) show the score distributions of
CW, TDS, and DW with PubMed as the domain-specific corpus 𝐻 . All scores rank the depicted example
out-of-domain words and the stop word lower than the health-related words. However, the assessment
of CW and TDS can differ substantially for specific terms. For example, ‘ward’ occurs frequently within
texts from the PubMed corpus, so CW attributes a rather high health relatedness. At the same time,
‘ward’ also occurs frequently in the general domain. The lacking “exclusiveness” leads TDS to score it
relatively low. Unsurprisingly, the product score DW amplifies the extremes of both scores.

As for the effect of different health corpora, Figures 1 (c) and (d) contrast the DW scores using
the PubMed corpus (rather scientific language) to using the Encyclopedia corpus (rather layperson
language). As an example result, the word ‘study’ has a comparably high termhood score using the
PubMed corpus, but is ranked like a non-health-related word using the Encyclopedia corpus.

3.4. Effectiveness and Efficiency Analyses

In previous work, we evaluated the effectiveness and efficiency of the termhood scores on a set of 1,000
manually labeled sentences [2]. We compared the termhood scores to two types of baseline approaches.

2Dump of all English Wikipedia articles from July 1, 2021.
3https://pubmed.ncbi.nlm.nih.gov/
4http://health.am/encyclopedia
5https://medlineplus.gov/encyclopedia.html
6https://merriam-webster.com/medical
7https://ucsfhealth.org (various subpages)
8https://www.rxlist.com/drug-medical-dictionary/article.htm

https://pubmed.ncbi.nlm.nih.gov/
http://health.am/encyclopedia
https://medlineplus.gov/encyclopedia.html
https://merriam-webster.com/medical
https://ucsfhealth.org
https://www.rxlist.com/drug-medical-dictionary/article.htm


Table 1
Effectiveness and time efficiency comparison of several baseline approaches and our termhood scores on a set of
1,000 manually labeled sentences.

(a) Effectiveness on the test set as precision (P), re-
call (R), F1, or Matthews correlation coefficient (M).
The best approach per evaluation metric is high-
lighted in bold.

Approach P R F1 M

cTakes 0.57 0.46 0.51 0.42
MetaMap 0.42 0.49 0.45 0.33
QuickUMLS 0.49 0.49 0.49 0.38
ScispaCy 0.42 0.60 0.49 0.37

BERT 0.76 0.74 0.75 0.70
SciBERT 0.64 0.66 0.65 0.57
PubMedBERT 0.87 0.57 0.69 0.66

CW 0.67 0.63 0.65 0.58
TDS 0.69 0.63 0.66 0.59
DW 0.71 0.77 0.74 0.68

(b) Run time efficiency of the different approaches.
Time per instance averaged over 10 runs, speedup
computed against BERT as the most effective ap-
proach from Table 1a.

Approach ms Speedup

cTakes 212.12 0.2
MetaMap 120.28 0.4
QuickUMLS 8.98 5.3
ScispaCy 15.96 3.0

(PubMed / Sci) BERT 47.77 1.0

CW / TDS / DW 1.02 46.8

The first type uses a medical entity linker to find mentions of medical entities. We tested four different
entity linkers: cTakes [33], MetaMap [34], QuickUMLS [35], and ScispaCy [36]. A sentence is considered
health-related if the proportion of words in a sentence that are medical entities exceeds a threshold.
The second type uses a pre-trained language model to predict the health-relatedness of a sentence. We
fine-tuned several BERT variants [37, 38, 39] to predict if a sentence came from an in-domain (PubMed
or Encyclopedia) corpus or the contrastive Wikipedia corpus. We fine-tuned hyperparameters for
each approach on a development set. The effectiveness results are shown in Table 1a. We additionally
evaluated the time efficiency of the different approaches. Results are shown in Table 1b.

Overall, we found the medical entity linkers to have both poor effectiveness and time efficiency.
The pre-trained language models were the most effective overall, with BERT achieving the highest F1
and Matthews correlation coefficient. However, the discriminative weight termhood score was only
slightly worse and about 47 times faster. The termhood scores are substantially more time efficient
because inference mostly consists of looking up precomputed occurrence frequencies in a hash table
and computing simple aggregations over these frequencies. The memory footprint of both models is
similar at around 400 MB for the model weights and occurrence frequencies, respectively. We refer to
our previous work for a more detailed discussion of the results [2].

3.5. Measuring Health Relatedness of Queries and Web Pages

Our contribution to the 1st International Workshop on Open Web Search is integrating the termhood
scores into a software submission to determine the health-relatedness of queries and web pages. Our
submission efficiently computes the discriminative weight for each word in a given text (e.g., a query or
web page) using both the PubMed and the Encyclopedia corpus. The mean and median over all words
are computed for each corpus, resulting in four nuanced termhood scores for an input text. These scores
can then be used downstream in a search engine to filter or rank health-related content.

While we validated our approach on sentences (from web pages), we expect it to generalize to
any arbitrary text, because the termhood scores are computed by aggregating word-level scores. The
distribution of words for different texts may differ, meaning the thresholds for health-relatedness may
need to be adjusted. For example, queries will usually contain fewer stop words and more nouns, which
may lead to higher average termhood scores. In addition, since the discriminative weight is sensitive to
corpus size (compare the y-axes of Figures 1 (c) and (d)), the thresholds may need to be adjusted when
using different health corpora.



3.6. Pilot Study

Table 2: Example queries
from the TREC
Web tracks.

Text Rank DW

sore throat 1 411.7
forearm pain 2 354.0
joints 3 331.5

. . .
lower heart rate 15 168.4
ct jobs 16 167.2

. . .
angular cheilitis 33 76.90
getting organized 34 74.77

. . .

Table 3: nDCG@10 for
health and
other queries.

Model HQ OQ

Dirichlet 0.27 0.25
BM25 0.24 0.19
MonoT5 3b 0.18 0.20
Splade 0.17 0.19
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Figure 2: Effect of filtering for health-relatedness on
the TREC Health Misinformation 2019 task.

To exemplify use cases of our approach and to validate its effectiveness, we conducted a small pilot
study on a sample of tasks from the TIREx benchmark [40, 41]. We note that our experiments and
methodology are by no means scientifically rigorous and only serve to give a general understanding of
how to apply our software submission. Specifically, we consider the four TREC Web tracks from 2009 to
2012 [42, 43, 44, 45] and investigate (1) what proportion of the queries are health-related and (2) how
the effectiveness of various retrieval systems differs between health-related and non-health-related
queries. We also consider the TREC Health Misinformation 2019 [46] task and investigate what effect
filtering for health-related documents has on the effectiveness of ranking models.

Table 2 shows example queries from the TREC Web tracks sorted by discriminative weight using the
Encyclopedia corpus. The top queries are certainly health-related. Queries further down in the ranking
become less health-related, with ‘ct jobs’ being the first we deem is not health-related. We assume that
in this case, ‘ct’ stands for Connecticut and not computed tomography. We then divide the queries into
two groups, the top 15 queries are grouped into a health category, and the remaining 185 are grouped
into an other category. Some false positives and negatives are present, e.g., angular cheilitis at rank 33.
However, a manual inspection of the queries showed that most are classified correctly.

Table 3 shows the nDCG@10 for two lexical and two neural-based ranking models for the two query
groups. We observe that the lexical models both achieve higher effectiveness on the health queries
compared to the other queries. The neural models, on the other hand, exhibit the exact opposite behavior
and are more effective on the other queries than the health queries. This suggests it may be beneficial
to apply different retrieval models for health-related queries.

Finally, Figure 2 shows the effect of filtering documents for health-relatedness on the TREC Health
Misinformation 2019 task. The underlying idea is to remove documents that are not related to health
and thereby improve ranking effectiveness. We took the ranking of BM25 and removed documents
below a certain mean discriminative weight threshold. Both nDCG@10 and MRR increase with an
increasing threshold up to a certain point. The optimal threshold for nDCG@10 lies at 25, improving the
effectiveness by 0.03 compared to the baseline unfiltered ranking. The effect on MRR is more pronounced.
The optimal threshold seems to lie at 30, increasing effectiveness by 0.05. An outlier at a threshold
of 45 pushes the MRR even further. This suggests that filtering documents for health-relatedness can
improve ranking effectiveness.

4. Conclusion

We presented an efficient method for determining the health-relatedness of web pages. Our method is
based on contrastive termhood scores, which compare the occurrence frequencies of a word from a



health domain corpus to one or multiple out-of-domain corpora. In previous work, we found termhood
scores can effectively determine the health-relatedness of phrases and sentences. We build on this work
and apply termhood scores to web pages. Our software submission is an easy-to-use docker container
that efficiently computes an effective and nuanced health-relatedness score for a given web page. The
score is useful for various downstream tasks, such as filtering or ranking web pages in a search engine.
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