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Abstract
We describe our software submission to the ECIR 2024Workshop on OpenWeb Search [1]. We submit the

query performance prediction toolkit qpptk that comes with 12 performance predictors to substantially

simplify the re-use of those predictors in ad-hoc retrieval experiments. Therefore, we have extended

qpptk so that it can run in TIREx and that it can process arbitrary workloads using ir_datasets and

PyTerrier indices as inputs. We execute qpptk on all 23 test collections in TIREx that have PyTerrier

indices available andmake their predictions and the Docker image publicly available. Thereby, subsequent

retrieval experiments can easily re-use the predictions by just downloading a few kilobytes, instead of

having to run the system on their machine (which is still possible, e.g., by executing the Docker image

on new or modified inputs). Our analysis on the 23 test collections highlights predictor performance

variability, emphasizing the importance of standardized baselines and evaluation methods. Openly

sharing predictions aims to enhance research accessibility, promoting broader utilization of query

performance predictors and inspiring the development of novel prediction and evaluation techniques.

1. Introduction

Query Performance Prediction (QPP) is defined as assessing the quality of the query effectiveness

in the absence of relevance judgements [2, 3]. This task is particularly important under three

major aspects. First, it allows for some form of automatic evaluation of the Information Retrieval

(IR) system, thus reducing the cost of collecting highly expensive manual relevance annotations.

Secondly, it can be used as a feature for IR tasks such as reranking, model selection [3, 4], and

rank fusion [5]. From the query perspective, it can be used to carry out query suggestion [3, 4]

or to identify particularly challenging queries, so that the system administrators can operate

failure analysis and enhance the model on those specific queries [3].

While QPP holds significant potential for enhancing IR, its progress faces a major challenge

linked to the evaluation and comparison methodologies employed. Building on discussions

from the recent QPP++ workshop [6], we assert that a fundamental issue in QPP research

lies in the lack of result reproducibility and stability. First of all, most of the traditional QPP

approaches have been designed and tested considering the Query Language Model [7] as the

underlying retrieval engine. Therefore, this might induce a general instability of the models

when considering different retrieval models, especially if they are based on a widely different

rationale, such as neural IR models [8, 9, 10]. This also reflects on the possible instability
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due to the usage of different hyper-parameters for the IR model, different implementations

of it, or different query normalization strategies, such as the stemmer used or stopping list

considered [4, 11, 12]. Secondly, QPP models are typically characterized by one or more

parameters, such as the length of the retrieved list when considering post-retrieval models.

If not properly tuned, such parameters might result in particularly ineffective predictions.

Finally, QPP models are known to operate differently on different collections [2]: using the

wrong QPP for a given collection might lead to low prediction performance and thus to a

generally weak baseline. To summarize, when experimenting with QPP, three major aspects

might substantially impact the performance of (baseline) predictors: the underlying retrieval

model, the hyperparameters of the predictor, and the collection considered. Furthermore, the

same aspects hinder the reproducibility of the QPP: it is not uncommon in the QPP scenario

to observe the same model performing differently from paper to paper. This is often due to

naturally occurring differences in the implementation, but also due to different experimental

settings (i.e., the retrieval model, and/or hyperparameters).

To alleviate these limitations and foster simplified, reproducible and stable experimentation in

QPP, we describe our approach to embed the Query Performance Prediction ToolKit (qpptk) [11,

12, 13] into TIRA [14] / TIREx [15]. This setup allows us to provide a solid and stable set of

baselines for future experiments: when carrying out new experiments, we can ensure that the

implementation and hyper-parameters of the IR models underneath remain the same as they

are archived within TIREx. Secondly, it allows us to test the same QPP over the abundance of

collections that are already available in TIREx. This, in turn, allows us to provide the research

community with a large amount of – already computed – shared baselines for future QPP

experiments. Finally, re-using cached outputs can help fast prototyping: when developing a

new QPP, the practitioner can delegate secondary aspects, such as setting up the IR system or

processing the corpus, to cached TIREx outputs, focusing exclusively on the development of

the QPP. Our implementation is publicly available.1

The remainder of the paper is organized as follows: Section 2 provides the background

on the QPP methods, and describes the main QPP models that have been implemented in

qpptk. Section 3 details how our qpptk component submitted to TIREx can be used to obtain

reproducible QPP results. Section 4 reports our experimental analysis. Finally, section 5 draws

the conclusions and outlines our future work.

2. Background

We describe here the predictors implemented within qpptk. According to the classical separation,

predictors are divided into pre- and post-retrieval.

Before introducing the predictors, we provide here the notation adopted in the remainder

of this work. Let q be a query and d a document belonging to a corpus of documents C

with |C| = N . Without loss of generality, we call s(q, d) the score assigned by an arbitrary

ranking model to the document d in response to the query q. We call D@k the list of the

top-k documents retrieved in response to the query. Additionally, given a term t, we define

ft = |{d ∈ C : t ∈ d}| the document frequency (i.e., the number of documents the term appears

1Code: https://github.com/Zendelo/QPP-EnhancedEval/tree/qpptk-dev



in), while fd,t = |{w ∈ d : w = t}| is the term frequency (i.e., the number of times the term

appear in document d).

2.1. Pre-Retrieval Predictors

Pre-retrieval predictors are those predictors that base their prediction based only on the query

tokens and the (indexed) corpus. We implemented three major categories of pre-retrieval

predictors: those based on Inverse Document Frequency (IDF), those relying on Similarity

between the query and the collection (SCQ), and those based on score variability (VAR).

Inverse Document Frequency (IDF)-based Predictors [16, 17] The IDF predictors rely

on computing the IDF for each query term:

IDF (t) = ln

(

1 +
N

ft

)

then, this predictor can be instantiated in two ways, either by computing the average IDF

over all query terms (avgIDF) or by computing the maximum IDF (maxIDF) over the query

terms. The rationale is that if the terms have high inverse document frequency, they are highly

characterizing (i.e., they are contained in a few documents and are very specific). Therefore,

it is more likely that documents containing such terms will be relevant, indicating how the

retrieval will perform.

Similarity between a Query and a Collection (SCQ)-based Predictors [16] The term-

wise SCQ score is defined as follows:

SCQ(t) = (1 + ln(fc,t)) ·

(

1 +
N

ft

)

where fc,t is the number of times the term appears in the corpus. Once the SCQ has been

computed for each term, it is possible to aggregate it either by summing the SCQ for all the

query terms (SCQ), averaging (avgSCQ), or by computing the maximum (maxSCQ).

Variability (VAR)-Based Predictors [16] To compute the VAR predictors, it is first necessary

to compute the weight wd,t of each query term t with respect to each document d as the TFIDF

score wd,t = 1+ ln(fd,t) · IDF (t). Called Dt the set of documents containing t, the prediction

weight of each term is defined as follows:

V AR(t) =
∑

t∈q

√

1

ft

∑

d∈Dt

(wd,t − wt)2

where wt is the average weight wd,t over the documents in Dt. As for the previous cases,

the VAR score is aggregated over the query terms using either the sum (sumVAR), maximum

(maxVAR), or the average (avgVAR).



2.2. Post-Retrieval Predictors

Post-retrieval predictors utilize both the query and the top-k retrieved documents to formulate

their prediction. Among post-retrieval predictors, we recognize three major classes: those based

on the coherence of the retrieved list (e.g., clarity), those based on the distribution of the scores

(e.g., NQC, WIG, SMV), and those relying on the robustness of the results – i.e., how much the

introduction of noise in the query or the collection changes the retrieved ranked list – such as

the UEF framework.

Clarity [17] This represents one of the seminal efforts in the QPP domain. The approach

consists of computing the language model for the first top-k documents, which we refer to as

θD@k. Then, this language model is compared with the language model of the entire corpus

θC . The rationale is that the language model for the first top-k is highly divergent from the

language model of the entire collection, then documents are highly coherent internally and this

hints at an effective retrieval. More in detail:

Clarity(q) =
∑

w∈V

p(w|θD@k)
p(w|θD@k)

p(w|θC)
,

where V is the vocabulary and p(w|θ) is the probability of observing the token w according to

θ the language model.

Weighted Information Gain (WIG) [18] This predictor represents one of the first efforts

in utilizing the distribution of the scores for the top-k retrieved documents to determine the

retrieval performance. More in detail, the prediction is given as the average difference between

the score of the top-k documents retrieved and the score that the entire corpus would obtain in

response to the query, which acts as a regularization component.

WIG(q) =
1

k
√

|q|

∑

d∈D@k

(s(q, d)− s(q, C)) .

Normalized Query Commitment (NQC) [19] This predictor is in line with WIG, with the

main difference that, in this case, the statistic of interest is the variance of the scores of the first

top-k documents, normalized by the score that the entire corpus would obtain in response to

the query:

NQC(q) =

√

1
k

∑

d∈D@k(s(q, d)− µ̂D@k)
2

s(q, C)
,

where µ̂D@k = 1
k
·
∑

d∈D@k s(q, d).

Score Magnitude and Variance (SMV) [20] This QPP combines NQC and WIG, by taking

into account both the magnitude of the scores, as well as their variance and it is defined as

follows:

SMV (q) =

1
k

∑

d∈D@k

(

s(q, d) ·
∣

∣

∣
ln s(q,d)

µ̂
D@k

∣

∣

∣

)

s(q, C)
.



3. Porting qpptk to TIREx for Simplified QPP Experiments

The qpptk toolkit currently implements eight pre-retrieval and four post-retrieval QPP methods.

Leveraging a PyTerrier index, the toolkit is designed with extensibility in mind, allowing for

easy integration of additional methods. You can access qpptk on GitHub.2 In this work, we

integrate qpptk into the TIREx framework [15].3 We dockerize qpptk so that it can run in the

TIRA sandbox in TIREx and adopt it so that it can use arbitrary inputs from ir_datasets [21]. To

reduce the effort of running performance predictions, we configure qpptk in TIREx so that it

uses the the PyTerrier [22] Indexer that is dockerized in TIRA as previous stage so that it runs

against prebuilt PyTerrier indices which makes its execution faster.

The incorporation of qpptk into TIREx serves multiple purposes. Firstly, it establishes a stable

and reproducible baseline for future QPP experiments. Secondly, it allows the testing of identical

QPP methods across all collections available in TIREx, contributing multiple shared baselines to

the research community. Lastly, it facilitates swift and seamless prototyping. Developers can

focus exclusively on QPP method development and evaluation, delegating secondary tasks like

setting up the IR system or processing the corpus to TIREx.

To use qpptk in TIREx, users must install the TIRA package and execute the following code:4

1 from tira.rest_api_client import Client

2 from tira.third_party_integrations import ensure_pyterrier_is_loaded

3

4 ensure_pyterrier_is_loaded()

5

6 import pyterrier as pt

7

8 tira = Client()

9

10 dataset = 'antique-test-20230107-training'

11 # load the dataset

12 pt_dataset = pt.get_dataset(f"irds:ir-benchmarks/{dataset}")

13

14 # initialize QPP transformer

15 qpp_predictions = tira.pt.transform_queries(

16 'ir-benchmarks/qpptk/all-predictors',

17 dataset)

18 # returns a DataFrame with all the predictions

19 qpp_predictions(pt_dataset.get_topics('query'))

Listing 1: Example of using qpptk within TIREx.

The code in Listing 1 demonstrates how using only a few lines of code, users can access the

TIRA API, load a dataset, and initialize a QPP transformer. The transformer then returns a

DataFrame with all the predictions. This example illustrates the ease of use and the potential of

the TIREx framework in facilitating QPP experiments.

2https://github.com/Zendelo/QPP-EnhancedEval.
3See https://www.tira.io/tirex. Accessed on 28-03-2024.
4Assuming that PyTerrier and ir_datasets are already installed.
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Figure 2: Heatmap illustrating the Kendall’s τ coefficients for the pre-retrieval QPP methods. Each cell

denotes the τ coefficient for a specific QPP method and dataset.

are employed consistently.

To further demonstrate the potential of qpptk@TIREx for the community, we conduct a com-

prehensive ANalysis Of the VAriance (ANOVA) on the pre-retrieval QPP methods, employing

10 different retrieval models (rankers) and 23 diverse datasets. The rankers include BM25, LGD,

PL2, TF-IDF, ANCE-Cosine, ColBERT, SBERT, MonoT5-3b, MonoT5-Base and DirichletLM. We

randomly sample 30 queries from each dataset, reflecting the maximum number available across

all datasets. We then compute sARE error values for each query across all datasets and rankers,6

utilizing them for the ANOVA analysis. The results, presented in Table 1, reveal that the ranker,

dataset, and QPP factors are all statistically significant, indicating that at least one of the levels

of each factor has a statistically significant effect on the prediction quality. The effect sizes are

small, with the dataset factor having the largest effect size on prediction quality. The inter-

action effects Ranker:Dataset and Dataset:QPP are also significant, with Dataset:QPP having

the most substantial effect size. This underscores the dependency of pre-retrieval QPP method

performance on the dataset, with the influence of the retrieval model being dataset-specific.

6Similarly to correlation, the values are computed per each combination of dataset, ranker, and QPP method.



Table 1

ANOVA analysis of the pre-retrieval QPP methods. The table presents the degrees of freedom (DF), sum

of squares (SS), mean square (MS), F-statistic (F), p-value (PR(>F)), and the effect size (ω2) for the ranker,

dataset, and QPP factors. Note, that ω2 is ill-defined for non-significant effects.

DF SS MS F PR(>F) ω2

Ranker 9 6.290 0.699 14.025 <0.001 0.002

Dataset 22 23.247 1.057 21.206 <0.001 0.008

QPP 7 4.260 0.609 12.214 <0.001 0.001

Ranker:Dataset 198 26.832 0.136 2.720 <0.001 0.006

Ranker:QPP 63 1.344 0.021 0.428 1.000 -0.001

Dataset:QPP 154 33.808 0.220 4.406 <0.001 0.010

Residual 52117 2596.945 0.050

The Ranker:QPP interaction, however, is not found to be significant by itself.

5. Conclusion and Future Work

This paper introduces the qpptk toolkit, encompassing a diverse array of pre-retrieval and

post-retrieval QPP methods. We present the integration of qpptk into TIREx, to simplify rapid

and efficient experimentation with QPP methods.

The integration helps to establish stable and reproducible baselines for forthcoming QPP

experiments, testing identical QPP methods across all available TIREx collections, and contribut-

ing multiple shared baselines to the research community. Currently, available QPP methods in

qpptk include eight pre-retrieval methods and four post-retrieval methods, with the potential

for further expansion. Moving forward, our future work involves expanding the qpptk toolkit

to incorporate additional QPP methods and enhancing its integration into TIREx. All code

and data used in this work are accessible on GitHub and Zenodo,7 encouraging the research

community to utilize and build upon our contributions.
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