
Assembling four Open Web Search Components
TU Dresden at WOWS 2024

Linda Erben1,†, Maria Hampel1,†, Malte-Christian Kuns1,†, Vincent Melisch1,†,
Per Natzschka1,†, Wilhelm Pertsch1,†, Lina Razouk1,†, Reiner Stolle1,†,
Robert Thomas Thoss1,†, Tuan Giang Trinh1,†, Julius Gonsior2,∗ and Anja Reusch2,∗

1Technische Universität Dresden, Dresden, Germany
2Technische Universität Dresden, Dresden Database Research Group, Dresden, Germany, {first}.{last}@tu-dresden.de

Abstract
In this work, we present the submission of TU Dresden to WOWS 2024. Four student teams assembled

different approaches for Genre Classification, Text Snippet Extraction, Query Expansion, and Text

Features. Each implemented component integrates seamlessly into the open web search ecosystem. We

present each approach alongside a short evaluation of possible use cases, and hope that our submission

will contain viable building blocks for future research to be build on top.

Keywords
Information Retrieval, OpenWeb Search, Genre Classification, Text Snippet Extraction, Query Expansion,

Text Features

1. Introduction

This report describes the submission of the team at TU Dresden for the Workshop on Open Web

Search WOWS 2024 [1]. The work was conducted during a university-organized hackathon

targeted at students. Details about the setup are included in the Appendix in Sec. A. Four

teams, consisting of two to three students contributed four components for the open web search

ecosystem. We hope that with our submitted components future research on Information

Retrieval (IR) can be facilitated.

In summary, this paper is discusses the following four components: Sec. 2 reports the work

of the group Genre Classification, which categorizes web pages based on the intent of the page,

such as Discussion or Shopping. In Sec. 3 we detail our the submission for the extraction of

text snippets. Here, the goal is to divide long documents into shorter ones and return a list of

the best snippets. Sec. 4 provides details on the work of the group Query Expansion, which

employed Large Language Modelss (LLMs) to generate more related information or variants for

a given query. The results for the extraction of text features is highlighted in Sec. 5. The goal of

this component was to quantify syntactic or semantic features of natural language such as the

readability of a web page. Finally, Sec. 6 draws the conclusions of all our submissions.

WOWS’24: 1st International Workshop on Open Web Search, March 28, 2024, Glasgow, Scotland
∗Supervision of projects. Corresponding authors.
†

Equal contribution in the respective components. These authors are ordered alphabetically after their last name.
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

2. Genre Classificaion

The goal of genre classification [2] is to categorize documents into the intent of the document

itself. Objectives for a website could include: (1) making sales (like in an online store), (2)

providing information (like in a course website for a university), (3) sharing personal experiences

(like in a personal blog), etc. Genre classification facilitates effective document filtering in

ranking based on the search query in conjunction with existing query intent classifiers that

differentiate search queries as informational (e.g. "What is IR?"), transactional (e.g., "I want

to buy a PlayStation"), or navigational (e.g., "take me to log in for my university course") [3].

Relevant websites with a matching genre should be ranked higher if a query indicates an intent.

This open web search component 1 examines techniques for classifying text documents into

their respective categories, employing rule-based and machine-learning methodologies. We

compare three classification strategies with a focus on high precision.

2.1. Methods

2.1.1. Rule-Based Classifier

The rule-based classifier makes use of a vocabulary list of relevant terms per genre. Comparing

the intersection between terms in the genre-specific vocabulary lists, and the terms in the

document, the most probable category is the one with the highest intersection. We first remove

stop words and subsequently extract the 75 most frequent terms that we compare to the

vocabulary lists to classify the genre. We use Snorkel AI [4] for implementation.

The rule-based classifier can be adapted to a precision-oriented method, where the most

probable genre needs to be better than a threshold compared to the second most probable genre,

otherwise the classification result is abstain.

2.1.2. Multi-Layer Perceptron Classifier

As a typical Machine Learning based method a neural network was used for classification. As

features the web pages were converted into a tf-idf vectorspace. We use the Python library scikit-

learn [5] for the implementation of the Multi-Layer Perceptron classifier. After an empirical

hyperparameter search a neural network using a single hidden layer of 50 neurons, ReLU

activation function, stochastic gradient descent in the Adam variant using momentum for

optimizations, and a constant learning rate of 0.001 was used.

2.2. Experiments

2.2.1. Dataset

For evaluation we used the Genre-KI-04 dataset [2]. This includes vocabulary lists, and the

following classification categories: articles, discussion, download, help, link lists, portrait (non

private), portrait (private), and shop. Details about the genres can be found in the original paper.

1https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-01

3. Text Snippet Extraction

Since sophisticated neural ranking models such as cross-encoders generally require a lot of

computational effort, a customary retrieval pipeline first retrieves a number of (e.g., 1000)

documents using a fast but imprecise retrieval method and then re-ranks those documents using

a more precise weighting model [6]. Cross-encoder as introduced by Nogueira and Cho [6] are

an example for the latter, which are used to calculate scores for query-document pairs. Apart

from their comparatively high computational cost, cross-encoders have another disadvantage–

their limited input size. This weakness is typically mitigated by truncating the document once

the maximum number of input tokens is reached. The problem of this procedure is that content

which is not in the beginning of a document is not taken into account by cross-encoders. As a

result, the ranking of documents may be biased towards those that address the query early on.

In this part, we therefore present a simple method of extracting a number of snippets, i.e.,

smaller chunks of the document which fit in the cross-encoder as an additional component

in a larger retrieval pipeline. Instead of simply truncation documents after a fixed number of

tokens, we search for the most relevant passages (ranked snippets) in the document. These

ranked snippets are used for the cross-encoder with the goal of a more precise ranking. We

show the benefits of this method on two exemplary datasets which contain long documents.

3.1. Methodology

The re-ranking process with ranked snippets consists of five steps. An example of those steps

for the re-ranking of n = 3 documents (d1, d2, and d3) is shown alongside the explanation.

First, we subdivide all n documents into snippets. The maximum length of those snippets

may be chosen arbitrarily–we defaulted to 250 tokens which is the passage size used by Dalton

et al. [7]. The actual length of the snippets may vary since the division process aims to retain

context by not separating sentences. For example, we may start with three documents d1, d2,

d3. After the first step, each of these documents is divided into several snippets: s1
1
s2
1
. . . sl1

1
,

s1
2
s2
2
. . . sl2

2
, s1

3
s2
3
. . . sl3

3
where sji denotes the j-th snippet of document di for j ∈ { 1, . . . , li }

and li is the number of snippets of di.

In Step 2, we pre-rank all extracted snippets in relation to the query. To accomplish this,

we view the set of all snippets of a document as a corpus. From this corpus, we can create a

ranking for the query using one of the following weighting models: Term frequency (TF), BM25

or PL2. We do not use cross-encoder for the pre-ranking of documents, because there may be a

multitude of snippets per document depending on document length and therefore ranking all

snippets using a cross-encoder can drastically slow down the re-ranking process. After this

pre-ranking step, our example snippets might be ranked in the following way: s3
3
> s2

2
> s4

2
> s2

3

> s1
3
> s3

1
> s4

3
> s1

1
> s3

2
> s5

1
>

In Step 3, we can obtain the top k relevant snippets of each document from the pre-ranking,

which are later ranked using a cross-encoder. This step ensures that the cross-encoder only needs

to rank n · k snippets for n documents instead of all snippets. In order to reduce computational

cost, we defaulted to k = 3. In our example, this step results in the following selection:
{

s3
1
, s1

1
, s5

1

}

,
{

s2
2
, s4

2
, s3

2

}

,
{

s3
3
, s2

3
, s1

3

}

. Here, s4
3
is not selected as one of the top snippets of

d3 since it is the (k + 1)-th snippet of d3 in the ranking despite being ranked relatively high.

In Step 4, the top k snippets of all documents are ranked using a cross-encoder (CE). That

way, similar to Step 2, we can more accurately deduce which snippets best match the query–but

now the ranking is more precise since we used a CE instead of the simple weighting models

used in Step 2. An examplary ranking for our snippets might be: s4
2
> s3

3
> s2

2
> s5

1
> The

final document ranking ensues from this snippet ranking in Step 5, i.e., the document that

provided the best snippet is ranked first. Our example documents are therefore ranked in the

following way: d2 > d3 > d1. It should be noted that the goal of this section is to rank documents

with regard to a query, and not only passages. Therefore, the result is a ranking of documents.

Details on our implementation can be found in Appendix B.1.

3.2. Evaluation

In this section, we conduct tests to study the possible improvements of our cross-encoder

re-ranking of top k snippets. As baselines, we use BM25 and the dense retriever MonoT5.

All further ranking is performed on the top 20 documents retrieved by these two systems.

We evaluate the re-ranking with our TF-ranked snippets. For this, we load the previously

saved top 3 snippets for each document. To re-rank the documents, we follow the “weakest

link” principle, selecting the minimum TF score among the top 3 snippets. This results in the

methods BM25+TF-SP and MonoT5+TF-SP. We denote by +CE that the 3 snippets are further

re-ranked by a cross-encoder. In addition, we compare the performance of these systems to the

cross-encoder’s performance when only evaluating the first snippet of each document (which

resembles the naïve application of a cross-encoder). These results are denoted by BM25+CE

and MonoT5+CE.

To measure the performance of the approaches, we utilize normalized discounted cumula-

tive gain at 10 (NDCG@10) and mean reciprocal rank (MRR). We conduct our tests on the

ClueWeb12 [8] and ClueWeb09 [9] datasets, which differ in document size: ClueWeb12 has

an average document size of 5641.7 tokens, and ClueWeb09 has an average document size of

1132.6 tokens.

0 0.2 0.4 0.6

BM25
MonoT5

BM25+TF-SP
MonoT5+TF-SP

BM25+TF-SP+CE
MonoT5+TF-SP+CE

BM25+CE
MonoT5+CE

Performance

(a) ClueWeb09 (2011)

0 0.2 0.4 0.6

BM25
MonoT5

BM25+TF-SP
MonoT5+TF-SP

BM25+TF-SP+CE
MonoT5+TF-SP+CE

BM25+CE
MonoT5+CE

Performance

(b) ClueWeb12 (2013)

Figure 2: Experimental results on different datasets, blue bars denote NDCG@10, while red bars

indicate MRR.

The results for the two datasets are plotted in Fig. 2. Our approach of cross-encoder re-ranking

with TF-pre-ranked snippets achieves the best performance in both metrics across all our tested

datasets (see Appendix B.2 for diagrams of other evaluated datasets). The impact of our TF-

ranked snippet pre-selection is relatively high on ClueWeb12 with long documents, while it

is more marginal on ClueWeb09. This highlights the importance of snippet pre-selection for

longer documents. ClueWeb09 consists of approximately 6 snippets, and ClueWeb12 consists of

approximately 23 snippets per document. We assume for our naïve snippet generation approach

that information is equally spread throughout a document. A cross-encoder taking the first

snippet as input is assumed to capture more relevant information of a document with a size

that is closer to the cross-encoder input size. This also explains why MonoT5 scores better

on the shorter dataset, especially in comparison to BM25, since MonoT5 also suffers from a

limited input size. This proves that there is a need to address the problem of limited input

size, especially in large documents like those in ClueWeb12. That information is not always

equally spread over a document, like we assumed for our snippet generation, can be concluded

when comparing Figs. 4b and 4c. This raises the need of a more advanced approach for snippet

generation.

3.3. Summary

Overall, our results show that selecting top-k pre-ranked snippets is a viable approach to tackle

the problem of input size restrictions on Transformer-based retrieval systems. Especially, cross-

encoders can benefit from this approach since they are inefficient on large documents. Further

testing to edge out efficiency and reduce context loss with snippets will be required. Also,

it would be beneficial to test multiple pre-ranking systems and values of k for top-k snippet

selection. The code for this part can be found in the accompanying repository2.

4. Query Expansion and User Query Variants using Large

Language Models

Query Expansion and User Query Variants are two common methods to increase the recall of an

IR system [10, 11, 12]. Both methods are based on modifying the query to include more related

keywords, thereby causing the IR system to score relevant documents higher. In addition to

conventional techniques such as the Kullback-Leibler Divergence (KL) [13, 14] or Relevance

Model 3 (RM3) [15], recent approaches have embraced the utilization of Large Language Models

(LLMs). In this part, we employ various prompts to generate improved and expanded queries

using LLMs [16, 17], in particular, GPT-3.53, Llama2 [18] and FLAN-UL2 [19].

4.1. Methodology

LLMs have previously been in use for the task of query expansion and studies have been

conducted using various methods and language models [16, 20, 21, 22]. Wang et al. [21] employ

query2doc, a method where the LLM generates a document for a given query, which is then

used as Pseudo-Relevance Feedback (PRF). Jagerman et al. [16] follow a similar approach

but extend the experiments to include alternative LLMs and additional prompt types. All

2https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-02
3https://platform.openai.com/docs/models/gpt-3-5-turbo

Model Temperature min. Tokens max. Tokens Quantization Parameters

Llama 2 1.1 10 200 4 bit 7B

FLAN-UL2 0.5 10 200 8 bit 20B

GPT-3.5 Turbo 0.5 – 200 – 175B

Table 1

Model parameters, for GPT-3.5 the parameter min. tokens is unavailable in the API

previous work demonstrates improvements across different datasets. In order to weigh the

original query more heavily, multiple concatenations of the original query q with a single

instance of the LLM’s output may be used [16, 21]. The resulting expanded query is of the form

q′ = concat({q} ∗ n, LLMout), where n is the number of times q is concatenated with itself,

and LLMout is the LLM-generated version of q. We adopt this approach in our work with n = 5
and employ modified versions of the prompt types suggested by Jagerman et al. [16]: Chain

of Thoughts (CoT) where the model is prompted to document its thought process, Query to

Expansion with Zero-Shot prompting (Q2E/ZS) where the model should reformulate the query

directly, and Query to Expansion with Few-Shot prompting (Q2E/FS), where three examples

for the desired query format are provided to the model. For the exact prompt format used,

see Appendix C.3. It should be noted that the prompt for Q2E/ZS differs between the models.

While GPT-3.5 and FLAN were prompted to generate five similar queries, Llama was asked to

answer the query. Apart from this difference, the prompts for in all experiments are similar and

comparable.

Initially, the query, alongwith the prompt, is fed into the LLM, and its response is concatenated

with the original query (n = 5). For evaluation, the Recall@1000 metric of the original and

modified queries is compared on the given dataset using BM25. The specific LLMs in use are

GPT-3.545, Llama 2 [18] and FLAN-UL2 [19]. Llama 2 and FLAN-UL2 were run locally. Table 1

shows the model configurations that we used in our experiments. The temperature values were

chosen empirically in a way such that model outputs are roughly similar. The lower and upper

token limitations prevent generation edge cases such as empty responses or endless output,

while still allowing for expressive responses. Local models had to fit GPU memory constraints.

Hence, we had to employ the quantized versions of the models. We conducted experiments for

the prompt types presented above: CoT, Q2E/FS, and Q2E/ZS. While FLAN-UL2 and GPT-3.5 can

be prompted without further changes, Llama 2 requires the chat-prompt to follow a pre-defined

format, our version of which can be found in the project’s repository6. We utilize BM25 as the

retrieval system in the default configuration of the Tira-framework [23]. The query expansion

baselines consist of an unmodified BM25, BM25 with Kullback-Leibler Divergence (KL) and

BM25 with RM3.

Baseline CoT Q2E/FS Q2E/ZS

BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

Avg 0.66 0.67 0.69 0.68 0.67 0.69 0.66 0.67 0.67 0.67 0.67 0.68

Avgeasy 0.72 0.73 0.75 0.76 0.76 0.78 0.73 0.74 0.73 0.74 0.76 0.76

Table 2

Recall@1000 evaluation results. The best value across different configurations is bolded. Grey values

failed to outperform the best baseline effectiveness. Avg denotes the arithmetic mean scores all 18

datasets. Avgeasy excludes the cord19, longeval and medline datasets.

4.2. Evaluation

Wemeasure the recall, which is aggregated over 18 datasets per model, and per prompt type. The

datasets cover a range of diverse topics and were provided as part of TIRA [24] / TIREx [25]. The

aggregated results can be observed in Table 4.2. Avgeasy excludes evidently (cord19, longeval)

and presumably (medline) difficult datasets. This highlights the difficulties LLMs experience

on specific datasets, especially domain-specific ones: Excluding those, CoT+OpenAI GPT-3.5

Turbo (GPT) now performs 0.03 points better than baseline models. Note that the two Avg

rows cannot be compared to one another, as baseline scores have also shifted due to the

exclusion of generally low-performing datasets. Detailed results for each dataset can be found

in Appendix C.1. For our query expansion approaches, it is evident that the choice of prompt

has a large impact on recall performance. The combination of CoT and GPT consistently yields

the highest recall in absolute numbers. However, with other prompt types such as Q2E/ZS

and Q2E/FS, GPT also frequently achieves the highest recall per dataset, albeit less frequently

compared to CoT. In this regard, our results are consistent with those reported in [16]. Although

CoT generally performs the best, it exhibits poorer results than the baselines in datasets such as

cord19 or the longeval datasets. In these cases, Q2E/ZS and Q2E/FS emerge as better choices,

but are still commonly outperformed by the baseline models.

Q2E/FS exhibits less convincing effectiveness, presumably because it mimics the relatively

short responses of example queries through the Q2E/FS method, resulting in short queries with

few new keywords. Q2E/ZS behaves similarly. Although the responses of the LLMs are longer

compared to Q2E/FS, as the LLMs do not conform to the rather short examples, the generated

responses are overall less extensive than those of CoT, likely resulting in inferior effectiveness.

Considering the longeval datasets and cord19, it is evident that they contain either very general

or highly specific queries. In the case of nonspecific queries, there is a risk that they may be

muddled by the consequently more general, and in the case of CoT, extensive responses from

the LLMs. This effect might potentially be reversed by conveying the user intent to the LLM,

indicating whether, for instance, in the case of the query "car," the user intends to buy one or

have it repaired. With domain-specific queries, it is plausible that models were trained with

insufficient knowledge on the subject, resulting in subpar effectiveness.

While our main evaluation is conducted using recall@1000, we also evaluated nDCG@10.

4https://platform.openai.com/docs/models/gpt-3-5-turbo
5https://platform.openai.com/docs/api-reference/
6https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03

Name Formula

Flesch Reading Ease [29] 206.835− 1.015 ∗
(

Word Count
Sentence Count

)

− 84.6 ∗
(

Syllable Count
Word Count

)

Flesch Kincaid grade level [29] 0.39 ∗
(

Word Count
Sentence Count

)

+ 11.8 ∗
(

Syllable Count
Word Count

)

− 15.59

Gunning FOG [29, 30] 0.4 ∗
[

(

Word Count
Sentence Count

)

+ 100
(

Complex Word Count
Word Count

)]

SMOG Index [31] 1.0430 ∗
√

Complex Word Count ∗ 30

Sentence Count
+ 3.1291

Automated Readability Index [29, 32] 4.71 ∗
(

Character Count
Word Count

)

+ 0.5
(

Word Count
Sentence Count

)

− 21.43
Coleman-Liau Index [33] 5.88 ∗

(

Character Count
Word Count

)

− 29.6 ∗
(

Sentence Count
Word Count

)

− 15.8

LIX [34] Word Count
Sentence Count

+ 100 ∗
(

Long Word Count
Word Count

)

RIX [34]
Long Word Count
Sentence Count

Table 3

Implemented Text Features with the respective formulas. Syllable count and word count were imple-

mented using the provided tools by the Text Feature Libraries Textstat and spaCy.

The results for this metric are detailed in Table 4 in the appendix. Overall, our conclusions

for nDCG are similar to those for recall. The generations for each model and each prompt are

publicly available in our repository7.

4.3. Summary

In this part, we generated different versions of query expansions using three LLMs and three

prompt templates. We were able to demonstrate that LLMs are capable of improving the recall of

user queries. The combination of the prompt CoT alongside GPT proves to be themost promising,

improving recall scores by up to 15%. Future research could focus on further templates for using

the generated expansions since we only evaluated the qqqqq, response-format.

5. Text Features

Text Features are quantified metrics describing syntactic or semantic features of natural language.

An example is the readability of a text, useful for returning user-dependent search results. A

search engine targeted to school children should return results with a high readability score,

whereas a search engine with domain experts as target audience will also include texts with

low readability scores. Additionally, this could be used to filter out noisy websites.

This Open Web Search component8 incorporates two tools for computing text features,

namely Textstat [26] and textdescriptives [27] from spaCy [28]. SpaCy’s Text Feature analysis

is more comprehensive than the one in Textstat, but is less efficient. Per design of the pipeline

approach of SpaCy many things are computed in the background, from which only a few are

required for the calculation of the text features. This overhead results in a longer runtime which

should be considered. Table 3 displays the implemented text features.

7https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-03/tree/main/src/generated
8https://github.com/tira-io/workshop-on-open-web-search-tu-dresden-04

Additional contributions besides the integration of the text features components include

examining a potential correlation between text features and documents evaluated as relevant

by ranked retrieval models. For easier exploration of the document corpus we provide an

interactive Jupyter Notebook showing correlation graphs between Ranked Retrieval and Text

Features, applicable to arbitrary datasets, as well as the analysis of correlations between Ranked

Retrieval and Text Measures.

5.1. Evaluation

To verify the capability to differentiate between levels of Readability, unit tests were used.

The test data consists of multi-sentence snippets from web pages. These were categorized by

difficulty in the following categories (including the amount of test documents): children (3),

teenagers (3), academic (3), and simple language (2), depending on what demographic the source

was directed to. Initial tests involved a project member assessing the reading level of excerpts

and comparing their assessments to the classifications provided by the automated measures,

thus proving correct usage of the used text feature libraries at least for the readability scores.

Compared to human assessments, the automated Text Measures often overestimated the

reading level, possibly failing to capture the complexities of human reading abilities within

their respective indexes. Large-scale dataset computations further highlighted the discrepancies

between predicted and human-classified reading levels, corroborating these findings. Despite

the observed differences in assessment, the data suggested an inverse proportional relationship

between comprehension levels and readability measures.

5.2. Experiment Design

The experiments were run on the "antique/test" [35] dataset from the ir_datasets collection [36].

Based on TIRA [37] ranked retrieval models were used to create top-10 results.

5.2.1. Correlations between ranked retrieval and text feature readability

A primary objective of our project was to investigate whether the ranking of relevant documents

by ranked retrieval models correlates to document Readability.

5.2.2. Readability of Top 10

First we looked at the top 10 retrieved documents for all queries across multiple retrieval models,

the resulting distributions are displayed in Figure 3. The majority of results, assessed using

the Flesch Reading Ease, indicates comprehension levels at or below an eighth-grade level,

implying a high degree of readability. The high degree of readability was consistently observed

across multiple retrieval models. Compared to the overall readability across all documents in

a collection, we found that some retrieval models like SBERT or MonoT5 indeed result in a

higher readability in the retrieved documents compared to the rest of the corpora, suggesting a

potential relationship between relevancy and readability, whereas other retrieval models such

as BM25 do not share this characteristic.

7. Acknowledgments

Wewould like to express our gratitude to the Open Search Foundation for organizing theWOWS

2024 and especially Maik Fröbe, who supported us and our student teams in organizing and

conducting our Hackathon which made this submission possible.

In addition, the authors gratefully acknowledge the computing time made available to them

on the high-performance computer at the NHR Center of TU Dresden. This center is jointly

supported by the Federal Ministry of Education and Research and the state governments

participating in the NHR (www.nhr-verein.de/unsere-partner).

References

[1] S. Farzana, M. Fröbe, M. Granitzer, G. Hendriksen, D. Hiemstra, M. Potthast, S. Zerhoudi,

1st International Workshop on Open Web Search (WOWS), in: Advances in Informa-

tion Retrieval. 46th European Conference on IR Research (ECIR 2024), Lecture Notes in

Computer Science, Springer, 2024.

[2] S. Meyer zu Eissen, B. Stein, Genre classification of web pages, in: S. Biundo, T. Frühwirth,

G. Palm (Eds.), KI 2004: Advances in Artificial Intelligence, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004, pp. 256–269.

[3] A. Z. Broder, A taxonomy of web search, SIGIR Forum 36 (2002) 3–10. URL: https:

//doi.org/10.1145/792550.792552. doi:10.1145/792550.792552.

[4] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, C. Ré, Snorkel: Rapid training data

creation with weak supervision, in: Proceedings of the VLDB endowment. International

conference on very large data bases, volume 11, NIH Public Access, 2017, p. 269.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine

Learning Research 12 (2011) 2825–2830.

[6] R. Nogueira, K. Cho, Passage Re-ranking with BERT, 2020. URL: http://arxiv.org/abs/1901.

04085. doi:10.48550/arXiv.1901.04085.

[7] J. Dalton, C. Xiong, J. Callan, TREC CAsT 2019: The Conversational Assistance

Track Overview, 2020. URL: http://arxiv.org/abs/2003.13624. doi:10.48550/arXiv.2003.

13624.

[8] J. Callan, The lemur project and its clueweb12 dataset, in: Invited talk at the SIGIR 2012

Workshop on Open-Source Information Retrieval, 2012.

[9] J. Callan, M. Hoy, C. Yoo, L. Zhao, Clueweb09 data set, 2009.

[10] J. J. R. Jr., Relevance feedback in information retrieval. The SMART retrieval system:

experiments in automatic document processing (1971).

[11] R. R. Kor$age, To see, or not to see—is that the query?, in: Proceedings of the 14th

annual international ACM SIGIR conference on Research and development in information

retrieval, 1991, pp. 134–141.

[12] J. Yang, R. R. Kor$age, E. Rasmussen, Query improvement in information retrieval using

genetic algorithms–a report on the experiments of the trec project, in: Proceedings of the

Text REtrieval Conference (TREC-1), 1993, pp. 31–58.

[13] S. Kullback, R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical

Statistics 22 (1951) 79 – 86. URL: https://doi.org/10.1214/aoms/1177729694. doi:10.1214/

aoms/1177729694.

[14] F. Raiber, O. Kurland, Kullback-leibler divergence revisited, in: Proceedings of the

ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR ’17,

Association for Computing Machinery, New York, NY, USA, 2017, p. 117–124. URL: https:

//doi.org/10.1145/3121050.3121062. doi:10.1145/3121050.3121062.

[15] V. Lavrenko, W. B. Croft, Relevance-based language models, in: ACM SIGIR Forum,

volume 51, ACM New York, NY, USA, 2017, pp. 260–267.

[16] R. Jagerman, H. Zhuang, Z. Qin, X. Wang, M. Bendersky, Query expansion by prompting

large language models, 2023. arXiv:2305.03653.

[17] M. Alaofi, L. Gallagher, M. Sanderson, F. Scholer, P. Thomas, Can generative llms create

query variants for test collections? an exploratory study, in: Proceedings of the 46th Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’23, Association for Computing Machinery, New York, NY, USA, 2023, p. 1869–1873.

URL: https://doi.org/10.1145/3539618.3591960. doi:10.1145/3539618.3591960.

[18] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,

P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,

J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,

R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,

M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,

P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,

R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.

Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,

R. Stojnic, S. Edunov, T. Scialom, Llama 2: Open foundation and fine-tuned chat models,

2023. arXiv:2307.09288.

[19] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri,

T. Schuster, S. Zheng, et al., Ul2: Unifying language learning paradigms, in: The Eleventh

International Conference on Learning Representations, 2022.

[20] V. Claveau, Neural text generation for query expansion in information retrieval, in: WI-IAT

2021 - 20th IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology, Proceedings of the WI-IAT Conference, IEEE, Melbourne, Australia,

2021, pp. 1–8. URL: https://hal.science/hal-03494692. doi:10.1145/3486622.3493957.

[21] L. Wang, N. Yang, F. Wei, Query2doc: Query expansion with large language models, in:

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,

2023, pp. 9414–9423.

[22] R. Ren, Y. Qu, J. Liu, W. X. Zhao, Q. She, H. Wu, H. Wang, J.-R. Wen, Rocketqav2: A joint

training method for dense passage retrieval and passage re-ranking, in: Proceedings of

the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp.

2825–2835.

[23] M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendorff, B. Stein, M. Hagen,

M. Potthast, The information retrieval experiment platform, in: Proceedings of the

46th International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’23, ACM, 2023. URL: http://dx.doi.org/10.1145/3539618.3591888. doi:10.

1145/3539618.3591888.

[24] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein,

M. Potthast, Continuous Integration for Reproducible Shared Tasks with TIRA.io, in:

J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kr-

uschwitz, A. Caputo (Eds.), Advances in Information Retrieval. 45th European Conference

on IR Research (ECIR 2023), Lecture Notes in Computer Science, Springer, Berlin Hei-

delberg New York, 2023, pp. 236–241. URL: https://link.springer.com/chapter/10.1007/

978-3-031-28241-6_20. doi:10.1007/978-3-031-28241-6_20.

[25] M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendorff, B. Stein, M. Hagen,

M. Potthast, The Information Retrieval Experiment Platform, in: H.-H. Chen, W.-J. E.

Duh, H.-H. Huang, M. P. Kato, J. Mothe, B. Poblete (Eds.), 46th International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2023), ACM,

2023, pp. 2826–2836. URL: https://dl.acm.org/doi/10.1145/3539618.3591888. doi:10.1145/

3539618.3591888.

[26] S. Bansal, textstat, https://github.com/textstat/, 2016.

[27] L. Hansen, L. R. Olsen, K. Enevoldsen, TextDescriptives: A Python package for calculating

a large variety of metrics from text, Journal of Open Source Software 8 (2023) 5153. URL:

https://joss.theoj.org/papers/10.21105/joss.05153. doi:10.21105/joss.05153.

[28] M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, spaCy: Industrial-strength Natural

Language Processing in Python (2020). doi:10.5281/zenodo.1212303.

[29] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, B. S. Chissom, Derivation of new readability

formulas (automated readability index, fog count and flesch reading ease formula) for navy

enlisted personnel (1975).

[30] J. Bogert, In defense of the fog index, The Bulletin of the Association for Business

Communication 48 (1985) 9–12.

[31] G. H. Mc Laughlin, Smog grading-a new readability formula, Journal of reading 12 (1969)

639–646.

[32] R. Senter, E. A. Smith, Automated readability index, Technical Report, Technical report,

DTIC document, 1967.

[33] M. Coleman, T. L. Liau, A computer readability formula designed for machine scoring.,

Journal of Applied Psychology 60 (1975) 283.

[34] J. Anderson, Lix and rix: Variations on a little-known readability index, Journal of Reading

26 (1983) 490–496. URL: http://www.jstor.org/stable/40031755.

[35] H. Hashemi, M. Aliannejadi, H. Zamani, B. Croft, Antique: A non-factoid question

answering benchmark, in: ECIR, 2020.

[36] S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, N. Goharian, Simplified data

wrangling with ir_datasets, in: F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai (Eds.),

SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, Virtual Event, Canada, July 11-15, 2021, ACM, 2021, pp. 2429–2436.

URL: https://doi.org/10.1145/3404835.3463254. doi:10.1145/3404835.3463254.

[37] M. Fröbe, M. Wiegmann, N. Kolyada, B. Grahm, T. Elstner, F. Loebe, M. Hagen, B. Stein,

M. Potthast, Continuous Integration for Reproducible Shared Tasks with TIRA.io, in:

J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kr-

uschwitz, A. Caputo (Eds.), Advances in Information Retrieval. 45th European Conference

on IR Research (ECIR 2023), Lecture Notes in Computer Science, Springer, Berlin Hei-

delberg New York, 2023, pp. 236–241. URL: https://link.springer.com/chapter/10.1007/

978-3-031-28241-6_20. doi:10.1007/978-3-031-28241-6_20.

[38] I. Montani, M. Honnibal, A. Boyd, S. V. Landeghem, H. Peters, spaCy: Industrial-strength

Natural Language Processing in Python, 2023. URL: https://zenodo.org/records/10009823.

doi:10.5281/zenodo.10009823.

[39] C. Macdonald, N. Tonellotto, Declarative experimentation in information retrieval using

pyterrier, in: Proceedings of the 2020 ACM SIGIR on International Conference on Theory

of Information Retrieval, 2020, pp. 161–168.

[40] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,

S. Gugger, M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-Art Natural Language

Processing, in: Q. Liu, D. Schlangen (Eds.), Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations, Association

for Computational Linguistics, Online, 2020, pp. 38–45. URL: https://aclanthology.org/2020.

emnlp-demos.6. doi:10.18653/v1/2020.emnlp-demos.6.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style,

High-Performance Deep Learning Library, in: H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’Alché Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing

Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/

paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

A. Hackathon

The paper’s work was carried out by students from TU Dresden as part of a one-week hackathon.

The workshop was open to students in the Computer Science program and related fields, and

they could earn ECTS credit points for lab work. The hackathon was advertised on the mailing

lists of the beginner Information Retrieval courses from the past three years. Interested students

could fill a survey indicating their preferred timeframe for the hackathon.

After a date was decided, 10 students signed up for the hackathon, three from the Bachelor’s

program and seven from the Master’s program. The university supervisors prepared four topics,

which were advertised beforehand, and the students signed up for their preferred topics. The

text features topic was designated to the 3 Bachelor students. The Master students were provided

with a peer-reviewed research paper as additional material, which they were required to read

and understand before the hackathon.

On the first day of the hackathon, an invited member of the OpenWeb Search project provided

a brief introduction to the Open Web Search ecosystem and TIRA/TIREx. Following this, the

teams worked on their components, with supervisors providing guidance through daily check-

ins. On the fifth and final day of the hackathon, a short presentation from each team was held.

Following the hackathon, the students were requested to prepare a report on their work, which

served as the basis for this paper.

In retrospective, the short amount of time, one week, motivated the students to work diligently

on their project. However, at the end of the week, the students had several open ideas for future

work which they could not finish in time. Therefore, more time, even a few days more, might

be beneficial for the next iteration of the hackathon. The size of the group ranged between two

and three members. The small group size facilitated the organization within each group and

kept the management overhead small. The topics of the hackathon were aligned with the basics

gained during the Information Retrieval course, but required also reading additional literature

and research.

B. Text Snippet Extraction

B.1. Implementation

To implement the described re-ranking steps, we utilized several Python libraries, detailed

below to facilitate reproducibility. For snippet extraction in Step 1, we adapted the Spacy-

PassageChunker class from the corpus_processing package, as provided by Dalton et al. [7], to

allow for variable snippet sizes. The class requires spaCy [38]; we used version 3.3.0 for our

implementation. The snippet pre-ranking in Step 2 was implemented using PyTerrier [39],

version 0.10.0. For Step 4 we utilized ms-marco-MiniLM-L-6-v2 which has been published on

HuggingFace.co [40]. To embed the model into our project, we used the transformers library [40],

version 4.38.2, and the PyTorch library [41], version 2.2.0. The results of the preparation steps

are accessible via TIRA [24] / TIREx [25].

B.2. Results on other evaluated datasets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

E
xp
er
im

en
t

NDCG@10

MRR

(a) Clueweb09 (2009)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

E
xp
er
im

en
t

NDCG@10

MRR

(b) Clueweb09 (2010)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

E
xp
er
im

en
t

NDCG@10

MRR

(c) Clueweb09 (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BM25
MonoT5

BM25 + TF-Snippets
MonoT5 + TF-Snippets

BM25 + TF-Snippets + CE
MonoT5 + TF-Snippets + CE

BM25 + CE (naive)
MonoT5 + CE (naive)

Performance

E
xp
er
im

en
t

NDCG@10

MRR

(d) Clueweb12 (2014)

Figure 4: Experimental results on other datasets

C. Query Expansion

C.1. Detailed Results for Recall

Dataset
Baseline CoT Q2E/FS Q2E/ZS

BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

antique 0.79 0.78 0.79 0.80 0.79 0.81 0.79 0.80 0.80 0.80 0.80 0.79

argsme-2020-1 0.88 0.88 0.89 0.88 0.87 0.88 0.88 0.88 0.88 0.87 0.88 0.88

argsme-2021-1 0.94 0.95 0.95 0.95 0.95 0.96 0.94 0.94 0.94 0.96 0.95 0.96

cord19 0.43 0.41 0.44 0.38 0.31 0.33 0.41 0.42 0.43 0.41 0.36 0.42

cranfield 0.61 0.64 0.69 0.70 0.69 0.70 0.62 0.65 0.62 0.61 0.69 0.70

longeval-heldout 0.63 0.65 0.66 0.64 0.62 0.62 0.62 0.65 0.67 0.65 0.52 0.64

longeval-long-september 0.71 0.71 0.72 0.69 0.63 0.66 0.71 0.71 0.71 0.69 0.68 0.70

longeval-short-july 0.68 0.69 0.70 0.67 0.63 0.65 0.68 0.69 0.69 0.67 0.66 0.68

longeval-train 0.71 0.72 0.72 0.70 0.64 0.67 0.70 0.72 0.73 0.70 0.67 0.71

medline-2004 0.45 0.49 0.50 0.45 0.46 0.47 0.45 0.46 0.45 0.46 0.46 0.43

medline-2005 0.50 0.51 0.51 0.51 0.51 0.53 0.50 0.51 0.51 0.50 0.52 0.53

medline-2017 0.59 0.60 0.62 0.62 0.65 0.71 0.59 0.62 0.59 0.59 0.63 0.64

medline-2018 0.72 0.78 0.79 0.74 0.75 0.81 0.71 0.73 0.73 0.73 0.75 0.75

msmarco-pasage-2019 0.74 0.75 0.75 0.79 0.82 0.86 0.75 0.76 0.74 0.79 0.81 0.78

msmarco-passage-2020 0.75 0.80 0.79 0.81 0.81 0.85 0.76 0.76 0.76 0.80 0.78 0.77

nfcorpus-test 0.32 0.46 0.44 0.44 0.45 0.48 0.35 0.38 0.37 0.37 0.46 0.45

tip-of-the-tongue-dev 0.52 0.38 0.52 0.51 0.51 0.57 0.52 0.53 0.54 0.52 0.55 0.54

vaswani 0.93 0.94 0.94 0.94 0.95 0.96 0.94 0.94 0.93 0.94 0.95 0.94

Avg 0.66 0.67 0.69 0.68 0.67 0.69 0.66 0.67 0.67 0.67 0.67 0.68

Avgeasy 0.72 0.73 0.75 0.76 0.76 0.78 0.73 0.74 0.73 0.74 0.76 0.76

Table 4

Recall@1000 evaluation results. For each dataset, the best value across different configurations is

bolded. Grey values failed to outperform the best baseline performance. The arithmetic mean scores

can be found at the bottom. Avgeasy excludes the cord19, longeval and medline datasets.

C.2. Detailed Results for nDCG

Dataset
Baseline CoT Q2E/FS Q2E/ZS

BM25 KL RM3 FLAN Llama GPT FLAN Llama GPT FLAN Llama GPT

antique 0.51 0.49 0.5 0.5 0.5 0.51 0.51 0.52 0.52 0.5 0.53 0.5

argsme-2020-1 0.3 0.32 0.32 0.35 0.4 0.42 0.31 0.33 0.31 0.3 0.39 0.37

argsme-2021-1 0.51 0.52 0.54 0.55 0.56 0.56 0.51 0.51 0.52 0.53 0.57 0.56

cord19 0.59 0.52 0.61 0.38 0.42 0.5 0.49 0.58 0.57 0.53 0.48 0.5

cranfield 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

longeval-heldout 0.16 0.16 0.18 0.16 0.14 0.16 0.17 0.16 0.17 0.15 0.09 0.16

longeval-long-september 0.18 0.18 0.19 0.17 0.14 0.16 0.18 0.18 0.19 0.17 0.16 0.17

longeval-short-july 0.18 0.17 0.18 0.16 0.14 0.15 0.18 0.18 0.18 0.16 0.16 0.17

longeval-train 0.18 0.17 0.17 0.15 0.13 0.15 0.17 0.17 0.18 0.15 0.14 0.17

medline-2004 0.34 0.35 0.35 0.35 0.32 0.34 0.35 0.35 0.34 0.34 0.35 0.34

medline-2005 0.38 0.38 0.38 0.38 0.42 0.41 0.39 0.39 0.39 0.39 0.4 0.43

medline-2017 0.28 0.31 0.3 0.3 0.34 0.36 0.28 0.3 0.28 0.28 0.3 0.34

medline-2018 0.43 0.46 0.48 0.45 0.44 0.53 0.4 0.43 0.42 0.41 0.44 0.46

msmarco-passage-2019 0.48 0.52 0.51 0.58 0.57 0.63 0.5 0.5 0.48 0.55 0.6 0.52

msmarco-passage-2020 0.49 0.5 0.49 0.58 0.57 0.59 0.49 0.5 0.5 0.57 0.53 0.51

nfcorpus-test 0.27 0.27 0.28 0.28 0.29 0.29 0.27 0.28 0.27 0.27 0.28 0.28

tip-of-the-tongue-dev 0.1 0.06 0.09 0.1 0.11 0.15 0.11 0.11 0.1 0.11 0.11 0.11

vaswani 0.45 0.44 0.45 0.45 0.43 0.46 0.44 0.45 0.46 0.45 0.45 0.46

Avg 0.32 0.32 0.33 0.33 0.33 0.35 0.32 0.33 0.33 0.33 0.33 0.34

Avgeasy 0.35 0.35 0.35 0.38 0.38 0.4 0.35 0.36 0.35 0.37 0.39 0.37

Table 5

NDCG@10 evaluation results. Bold indicates the strongest score. Grey results fell below the best

baseline. Avgeasy excludes the cord19, longeval and medline datasets.

C.3. Prompts

Method Prompt

CoT

f’Answer the following query:’

f’’

f’{q}’

f’’

f’Give the rationale before answering.’

Q2E/FS

f’For every query, suggest a similar query:’

f’’

f’Original query: How to tie a windsor knot?’

f’Similar query: Instructions for tying a windsor knot’

f’’

f’Original query: How is the weather tomorrow morning?’

f’Similar query: Weather tomorrow morning’

f’’

f’Original query: Simple vegan cooking recipes’

f’Similar query: What are some delicious and simple vegan cooking recipes?’

f’’

f’Original Query: {q}’

f’Similar Query:’

Q2E/ZS

f’Suggest 5 queries that are similar to the following query:’

f’’

f’Query: {q}’

Table 6

Prompt formats used for GPT and Google Flan-UL2 (Flan).

Method Prompt

CoT

f’<s>[INST] <<SYS>>\n’

f’Be short and concise, 100 words max. Answer in full sentences,

while briefly writing down your steps towards the response.’

f’\n<</SYS>>\n\n’

f’{q}’

f’ [/INST]’

Q2E/FS

f’<s>[INST] <<SYS>>\n’

f’Be short and concise, 100 words max. Answer in full sentences,

while briefly writing down your steps towards the response.’

f’\n<</SYS>>\n\n’

f’{f’For every query, suggest a similar query:’

f’’

f’Original query: How to tie a windsor knot? [/INST]’

f’Similar query: Instructions for tying a windsor knot </s>’

f’’

f’<s>[INST] Original query: How is the weather tomorrow morning?

[/INST]’

f’Similar query: Weather tomorrow morning </s>’

f’’

f’<s>[INST] Original query: Simple vegan cooking recipes [/INST]’

f’Similar query: What are some delicious and simple vegan cooking

recipes? </s>’

f’’

f’<s>[INST] Original query: {q} [/INST]’

f’Similar query:’}’

f’ [/INST]’

Q2E/ZS

f’<s>[INST] <<SYS>>\n’

f’Answer the following query. Be short and concise, 50 words at

max. Answer in full sentences.’

f’\n<</SYS>>\n\n’

f’{q}’

f’ [/INST]’

Table 7

Prompt formats used for Meta Llama 2 7B Chat (Llama). Note the necessity for a system prompt and

the additional formatting sequences due to the instruction fine-tuning of Llama-Chat. Prompts were

modified to fit Llama’s behaviour.

