
7

Agile Development: The Promise, the Reality, the Opportunity

Jon W. Beard1, Veda C. Storey2, Binny Samuel3, Roman Lukyanenko4, Anna Wiedemann5,

David Schuff4, Shawn Ogunseye6, Zohra Islamzada7, Fereshta Islamzada4

1 Ivy College of Business, Iowa State University, Ames, IA 50011-2027 USA (Corresponding Author)
2 Robinson College of Business, Georgia State University, Atlanta, GA 30303 USA
3 Linder College of Business, University of Cincinnati, Cincinnati, OH 45221 USA
4 McIntire School of Commerce, University of Virginia, Charlottesville, VA 22903 USA
5 ZHAW School of Management and Law, Zurich University of Applied Sciences, 8401 Winterthur, Switzerland
6 Computer Information Systems, Bentley University, Waltham, MA 02452 USA
7 Freddie Mac, 8200 Jones Branch Dr., McLean, VA 22102 USA

Abstract
Agile Development has been an integral part of project management and product development

since its formal introduction by the Agile Manifesto in 2001. Subsequently, Agile has rapidly

gained in popularity, leading to significant improvements in on-time delivery and managing

costs, as well as successful delivery of the required scope for information systems (IS) projects.

Agile has even moved beyond the IS domain into other business applications. This success

may be tempered somewhat by the gaps in the Agile Development process that still exist, such

as a lack of complete understanding of the process or the culture changes necessary to achieve

larger benefits and the complexity of integrating Agile-developed products into existing IT

infrastructure. However, there is also great promise in extending Agile by incorporating new

tools and concepts and applying Agile development to novel and emerging problem domains.

This paper proposes a Framework for Agile Development that can be used to explore existing

results from Agile development, as well as to identify future possibilities and emphasize the

importance of teaching Agile development in order for it to have further influence on practice.

Keywords 1
Agile development, Framework for Agile Development, Agile Development Framework,

Agile teaching, Agile Manifesto, information systems, complex applications, emerging

technology, Agile analytics, conceptual modeling, DevOps

1. Introduction

Agile Development is an approach to software and information systems (IS) development that

emphasizes collaboration with users though an iterative and incremental development process [1]. Agile

was created in response to the challenges of the traditional approach, known as the Waterfall method,

which was often plan-driven and characterized as a predictive approach. The latter approach required

complete, accurate, and approved specifications before development began, and restricted design

changes as the project progressed [2].

Today, we are experiencing an expanded use of IS applications in both professional and personal

activities. Systems developers continuously strive to embrace the complexities of today’s world,

acknowledging the ever-changing technology landscape, which is being accessed by users both within

and outside their organizations. The result has made the need for, and positioning of, Agile development

even more pronounced. Since Agile has become widely adopted in practice, it is important to consider

how to research and teach this important software and information systems development approach [3].

Agil-ISE24: 3rd Intl. Workshop on Agile Methods for Information Systems Engineering, June 3, 2024, Limassol, Cyprus

EMAIL: jwbeard@iastate.edu, vstorey@gsu.edu, binny.samuel@uc.edu, romanl@virginia.edu, anna.wiedemann@zhaw.ch,
david.schuff@virginia.edu, sogunseye@bentley.edu, zzohrai28@gmail.com, acu6bg@virginia.edu

©️ 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

8

In this paper, we examine the promise of Agile as originally envisioned in the Agile Manifesto [4],

the reality and challenges of Agile being applied, and the opportunity to extend the influence of Agile

in research, teaching, and practice. To do so, we propose a Framework for Agile Development

(hereafter called the Agile Development Framework), which is intended to capture the progression of

Agile and to identify future possible research and teaching areas. Figure 1 portrays this Framework. It

is intended to provide a general and useful way to understand a phenomenon [5]. The Framework was

motivated by the experiences of Agile educators, a review of the current literature, industry reports,

consultations with Agile experts, and suggestions of emerging topics as Agile trends for future

exploration. In the sections that follow we discuss the three main categories of the Framework—the

Promise, the Reality, and the Opportunity for Agile—each of which identifies important topics that

deserve to be explored. These guide the remainder of the discussion and presentation of the concepts

required for advancing Agile Development. Given the constraints of the presentation format for this

paper and the related Workshop we explore only some of the topics in this paper. Our contribution with

this framework is to recognize new emerging technologies and increasingly important real-world and

global problems that Agile can address as we believe Agile can be applied to a wide range of challenges

today. We also seek to inspire the next generation of Agile practice (including educational settings

where individuals are trained) to ensure its continued adoption in practice.

Figure 1. Agile Development Framework

2. The Promise of Agile Development

Many aspects of the Agile approach have been in use in systems development since the 1950s and

increasingly applied in the 1990s [6]. For example, Spiral Development (1986), Rapid Application

Development (1991), the Unified Process (UP) (1994), and Extreme Programming (XP) (1996), among

others, all contained features or characteristics now attributed to Agile Development [7,8]. However,

the writing and public release of the Agile Manifesto [4] has generally been regarded as the birth of

Agile Development [9]. Prior to that time, traditional approaches to IS analysis, design, and development

were most often described as top-down decomposition, structured (i.e., sequential), highly detailed,

heavily documented, and meticulously managed, and, thus, were considered to be “predictive” and

“heavyweight.” The traditional approaches usually assumed functional requirements could be fully and

accurately articulated before design activities began [10].

In contrast, Agile development approaches are a broad framework that can be characterized as

‘lightweight’ due to their less-tightly structured development approach and their emphasis on an

evolving modular design through iterative and incremental practices. Agile encourages ongoing

collaboration with users and dynamic innovation throughout the design, development, and

implementation process. Scrum is the most popular type of Agile approach [1], with emphasis on

accomplishing the development of a project in small, usually dedicated, teams. Further, the incremental,

iterative nature of Agile specifically fosters regular self-reflection—opportunities for improved

9

collaboration, learning, and adaptation—within the team on how to improve the development process

[4, 11].

While traditional methods thrive when developers understand the problem and have a clear vision

of the solution or product to be developed, Agile is useful when it is difficult to articulate the full set of

requirements or characteristics for a product that is being developed upfront, i.e., there is a need for

ongoing product discovery [2]. Preferences and solution options change frequently, close collaboration

and rapid feedback is needed from customers, complex problems have unknown solutions, and are

ambiguous in scope. The result is the need for an incremental, iterative development process with

learning from mistakes [1]. The product’s details can be discovered through iterative design efforts with

incremental improvements that progressively add value based on user feedback. The active involvement

of the users is intended to lead to a better fit with user needs and preferences. A product design is

selected, built, and released with refinements being made based on the feedback that is received from

the users, followed by further incremental development, testing, another release to users, and future

refinement. This process of continual experimentation, feedback (i.e., failing fast), and learning should

ultimately lead to a more successful product. With the digitalization of organizations, rapid growth in

demand, and growing expectations from consumers, the need for better and faster approaches to product

discovery is continuing to grow in importance. This includes the development of novel products where

there is scant knowledge about what an ideal solution looks like. (For more detailed descriptions and

discussion of Agile, see [11, 12].)

3. The Reality of Agile Development

Agile development methods have become the status quo approach for developing business-critical

software; the transition to Agile development approaches has been very successful with reports of as

many as 95% of developers now using at least some Agile features in their digital product development

efforts [11]. Recognizing the benefits of Agile development and delivery, other IS design and

development approaches have also embraced greater flexibility. For example, in infrastructure,

microservices have risen in popularity due in part to the iterative-release nature of software (e.g.,

continuous delivery) resulting from practices such as Agile [13, 14]. Microservices provide benefits to

organizations that adopt it in terms of 1) independence in how multiple software teams can collaborate;

2) better IT alignment with the organization; and 3) flexibility in IT tools used on any given project

[15]. Thus, not only is Agile having an impact in software and IS development, its iterative and flexible

ethos are also positively impacting other areas of IS. In this section, we look at the current practice and

teaching of Agile and identify current trends, gaps, and failures in Agile based on our review of prior

research.

3.1. Agile accommodations for practice

There has been further development of Agile methods with new concepts being used in practice. As

examples, the DevOps (Development and Operations) concept and large-scale Agile methods are the

two leading efforts [16]. DevOps broadens the agile software development approach and includes

software operations and ultimately leads to integration into the larger IT infrastructure. Consequently,

the software delivery and maintenance process are now end-to-end Agile, closing the gap between

software development activities and the handover to software operations. The DevOps team is

responsible for the entire software delivery lifecycle. Typically, a DevOps team focuses on the delivery

of one or more software products, displaying a cross-functional character by incorporating a business

view (e.g., product owner), as well as software developers and operations staff. Consequently, classic

project management methods reach their limits, as DevOps teams lack a defined start and end-date and

require continuous budgeting, given that the scope now encompasses the development and provision of

a software product throughout its complete lifecycle [16, 17].

Coordinating multiple ongoing projects and teams in organizations with Agile is challenging.

Therefore, large-scale Agile extends Agile methods to multiple team settings. These frameworks are

typically utilized in large organizations involved in large projects and/or multiple programs.

Implementing large-scale agile frameworks, such as SAFe (Scaled Agile Framework for the

10

Enterprise), results in changes to organizational structures, processes, as well as cultural aspects of the

organization [18]. Consequently, organizations often aim to achieve organization-wide digital

transformations with the help of large-scale agile frameworks [19].

DevOps and large-scale Agile are just two examples of further enhancements of Agile methods.

Both methods build upon and leverage the original agile ideas. An example is continuous integration

(CI). CI aims to help software developers bridge the gap in software delivery. While this topic is not

new to the Agile way of working, the introduction of the DevOps concept allows teams to implement

CI in their software delivery lifecycle. Continuous learning and further development of Agile

development [16] need to be incorporated into how we teach these skills. One possibility is to focus on

the development of T-shaped skills because job roles are shifting from primarily being an emphasis on

a specialist toward being a combined specialist in one area plus a generalist in another area [20].

3.2. Navigating gaps and failures in an Agile environment

The Agile approach has revolutionized software development by encouraging flexibility,

collaboration, trial-and error (also called “interim mistakes” [1], and short iterative turnarounds.

However, beneath some of the beneficial principles of Agile, prior research has identified hidden gaps

that lead to miscommunication, a reduced sense of morale, and, too often, a lack of successful iterations

[21].

One main failure is the misalignment between the development teams and stakeholders [22].

Although Agile promotes constant cross communication and intentional check-ins with customers these

meetings can turn into conversations on additional requirements added to the initial task, i.e., scope

creep. With differing priorities and a lack of understanding between the business perspective and a

technical background this can cause confusion, irritation, and in turn delayed deployment dates.

Although the flexibility of an Agile environment can have many benefits (i.e., Agile teams are often

expected to adjust quickly to changes in priorities and new requirements) it can be challenging for

developers. For example, teams can be so immersed in one project, working with one programming

language and building relationships with the customer that if priorities shift or development needs

require a swift pivot in response to market demands, the developers are the ones feeling a lack of

accomplishment since they must make the largest jump to an entirely new project that includes a whole

new set of demands.

Furthermore, the rapid iterative nature of an Agile environment too often promotes unsuccessful

code deployments, especially since not all development teams have fully automated processes. While

automation can help streamline deployment processes, reduce manual overhead, and enable all

members of the team to help with testing, it is not a prerequisite to being Agile. Therefore, there can be

an incredibly large amount of variability and human error when working in any sort of technical

environment. Teams that do not have automated testing must be able to detect when a story will need

multiple peer reviews and must, therefore, set aside a substantial amount of time for this. However,

when there are deliverables and deadlines that also need to be met, it is difficult to allocate time for

every single test case before deployment. This often reduces the quality of the product being built and

released. Even when teams have the facilities and time they need, timeboxing them to sprints and

pursuing MVPs (Minimum Viable Products) may lead team members to choose easy or quick-to-

implement solutions to problems in the present that may require additional resources to address later.

This departure from the principle of delivering high-quality products initially may lead to greater

technical debt and higher overall costs in the long run.

Despite these challenges Agile can be considered an inviting, transparent, and collaborative work

environment. One significant benefit to adopting this methodology is the promotion of knowledge

sharing. Planning meetings, retrospectives, and daily standups encourage members of the team to share

and explain any issues they are having to the rest of the team. These activities promote reflection periods

and the consideration of solutions for future issues that may arise. It provides a chance for the team to

come together and learn from one another and promotes a bonding experience and a group mindset of

continuous improvement.

While Agile environments may have flaws including miscommunication, low morale, and issues

between iterations there are still many positive outcomes to adapting this methodology. There are

11

challenges but this process provides teams with the ability to collaborate, communicate, and motivate

one another to optimize workflow which can lead to long-term success.

3.3. Fostering Agile methodologies in an educational environment

The structure of a classroom cannot compare to the unpredictability and rapid change of an Agile

work environment. The transition from theoretical learning to practical application is already a

challenge. Students accustomed to the structure and predictability of academic schedules and

assignments often find themselves disoriented by the fluidity and rapid change inherent in Agile

projects [23]. Exposing students to Agile methodologies in an educational environment will encourage

students to iterate design ideas through sprints, embrace change, practice openness, increase

collaboration, and improve their ability to pivot from one project to the next. As noted in the Agile

Manifesto [4]: “Agile processes harness change for the customer’s competitive advantage.” Integrating

Agile values into the education environment will help foster students who will be better able to

acclimate to Agile practices.

While the demand for Agile developers and project managers is strong, an “active learning”

approach to the Agile methodology within a classroom setting can be challenging, especially at the

undergraduate level. Preparing students for the psychological and cultural realities of Agile is pivotal;

learning about the Agile way of working early in one’s educational career will help reduce the burden

of having to shift mindsets while starting a career. Agile is as much about mindset as methodology, so

preparation is essential for swift adoption. Breaking down conventional teaching styles and instead

enlightening students on an atypical scholar mindset of fluidity, reflection, and constant

communication. It is crucial for educational institutions to keep up with the trends to prepare students

for success.

First, the iterative nature of the Agile methodology is time-consuming and difficult to operationalize

within a single 50-to-70-minute class session. This makes conducting realistic in-class activities and

demonstrations challenging. Second, students may lack the domain knowledge required to apply Agile

methods, resulting in hands-on classroom scenarios that have limited realism. Third, employing Agile

methods requires students to assume distinct roles, such as Scrum Master, developer, project

stakeholder, and product owner; but opportunities to “act out” key roles can be limited, i.e., not

everyone may get a chance to play the Scrum Master. The result of these challenges may be a surface-

level, conceptual understanding of Agile concepts that may not capture all the nuances of being part of

an Agile project.

There are three broad areas in which Agile methodologies can be taught through an “active learning”

approach, with examples for each area from the information systems education literature. There are

several ways to accomplish this.

Strongly scoped activities can familiarize students with specific Agile concepts. These activities

may focus on some aspect of Agile development (e.g., estimation) or simplified to fit within a classroom

time limit. For example, one Scrum activity required students to perform an origami design and

development task in three iterations, including a 5-minute development sprint and a 2-minute Scrum

meeting [24]. This allowed their entire activity to be completed within 50 minutes. Although possibly

sacrificing some degree of realism, this activity addresses both classroom time limits and students’

domain knowledge limitations.

Agile as a project requirement is another way to introduce Agile concepts, without the class

session time constraints. In this scenario, students are given a group development project where

adherence to an Agile methodology is part of the assignment. For example, [25] implemented a nine-

week development project in a systems analysis and design course by using students’ knowledge from

previous courses to keep the focus on applying the Agile methodology. This approach addressed limited

student domain knowledge by relying on skills gained from prior courses and “did not require students

to learn many new skills” (p. 143). The Scrum Master Role was also rotated among team members each

sprint, enabling all students to “act out” this key role.

Integrating agile into the learning process is a third approach to teaching agile concepts. Here,

the learning process itself is organized as a series of agile sprints. In their review of the literature, [26]

note that IS education increasingly uses “Agile as the method for teaching the content” (p. 275). For

12

example, [27] had students work in Scrum teams to learn course content, such as case-related activities

and exercises, which were organized into a series of sprints. As with [25], the role of Scrum Master was

rotated among team members. Their approach also limited the importance of domain knowledge,

because agile was the means to acquire knowledge. Sprints spanned multiple days, giving students

extended exposure and practice with Agile methods.

4. The Opportunity – Using Novel Technology to Enhance Agile Development

4.1. Agile methodologies in AI and ML projects

The explosion of data and the rise of artificial intelligence (AI) and machine learning (ML) have

propelled organizations towards data-driven decision-making. This suggests a shift towards agile

methodologies which are known for their flexibility and rapid iteration. Tailoring Agile to analytics and

AI, often referred to as Agile Analytics (AA), can harness the power of Agile while drawing the benefits

from data science and AI.

Agile Analytics requires the collaboration of a diverse group of professionals who bring

specialized skills to the project, including analysts, data engineers, data scientists, and subject matter

experts. Implementing practices such as paired programming, shared code ownership, frequent team

discussions, and demonstrations are crucial for developing collective solutions [28]. The AA process

prioritizes the iterative formulation and refinement of research questions over the detailed up-front

problem identification that is typical in traditional software projects [29]. This approach allows for the

scope of inquiry to evolve based on new insights from data, aligning with Agile's flexible and adaptive

framework. However, directly applying Agile principles to data-centric initiatives can be ineffective.

Teams operating under Agile principles need autonomy and trust, enabling them to experiment,

quickly learn from failures, and share knowledge effectively, avoiding the creation of isolated expertise

areas. However, unlike in Agile software development where teams are supposed to be fully self-

organizing, the teams in AA typically need to be planned because of the specialized and unique skill

sets needed.

In an AA context, data input and processes may change drastically due to the dynamic nature of

the business problem, whereas in Agile software development, there is typically more stability around

the input and the process (program logic). Therefore, data must be made available to analysts precisely

when it is needed to address newly emerging questions. The continuous exploration of new data sources

is essential for refining analytical models. In the same vein, data scientists in AA engage in experimental

comparisons of modeling techniques, such as evaluating the effectiveness of random forests versus

neural networks, to determine the most suitable process for data analysis.

Continuous delivery in AA often involves sharing trained models or the results of data analyses

rather than the software products typical of conventional Agile projects. This approach, aimed at

providing actionable insights to stakeholders in a timely and iterative manner, exemplifies the Agile

commitment to delivering value frequently and incrementally. Early and continuous releases of tools

and models, even in their preliminary development stages, encourage stakeholder feedback and can

inform subsequent development cycles.

Despite the need for specific adaptations, Agile methodologies offer considerable advantages for

managing the uncertainties and empirical nature of data analytics and AI projects. The principles of

Agile (e.g., embracing change, facilitating rapid feedback, encouraging collaborative efforts, and

enabling flexible planning) can aid organizations in navigating the complexities of analytics and AI

initiatives, thereby enhancing the potential to derive meaningful value from these endeavors. Tailoring

Agile practices to the distinctive challenges and dynamics of data analytics and AI projects can

significantly improve project outcomes.

4.2. The potential impact of Generative AI on Agile methodologies:
Reshaping software development practices

13

The dawn of generative artificial intelligence (AI), especially the emergence of large language

models (LLMs) (e.g., ChatGPT, Bard, Midjourney), promises a transformative era for Agile

methodologies in software development [30]. These sophisticated AI models possess the remarkable

ability to generate extensive textual content from prompts, potentially revolutionizing the creative

aspects of Agile practices, such as sprint planning and backlog refinement.

At the heart of Agile lies continuous development and feedback loops, fueled by rapid prototyping

and experimentation [31]. Generative AI, with its ability to rapidly generate code snippets and design

mockups, is poised to streamline this process. [32] propose an AI-assisted Agile methodology for rapid

prototyping, highlighting its effectiveness in uncertain environments. This integration can lead to

improved product quality and efficacy by facilitating faster iteration and the exploration of diverse

design possibilities.

Generative AI's automation potential extends beyond prototyping. By efficiently generating

documentation, user stories, and even basic code snippets, it can free up valuable time for Agile team

members [33]. This shift in focus allows them to engage in more complex, strategic tasks, maximizing

their expertise and contribution to the project.

Traditionally, requirement analysis can be a time-consuming and subjective process. However,

LLMs offer the potential to streamline this process by rapidly generating detailed specifications from

minimal input [34]. This not only increases efficiency but can also enhance clarity and alignment with

stakeholder expectations, ultimately leading to the delivery of products that more closely align with

meet user needs. This opportunity is potent when organizational focused LLMs (i.e., those trained

exclusively on organizational data) are deployed.

The introduction of LLMs may empower product owners within Agile environments to extend their

abilities to coding and querying of databases. Product owners can potentially reduce their reliance on

developers and database administrators, allowing them to exert greater influence over project outcomes

[35]. This shift could reshape traditional roles and responsibilities within Agile teams fostering a more

collaborative and autonomous work environment.

While the integration of generative AI into Agile processes holds immense promise, it is crucial to

acknowledge the associated challenges. Issues like interpretability, potential biases in AI outputs, and

the need for careful validation require careful consideration [36]. Agile teams must adopt a balanced

approach to ensure that the contributions of generative AI are accurate, reliable, and ethically sound.

The incorporation of generative AI into Agile methodologies presents a significant opportunity to

reshape software development practices. By enhancing creativity, streamlining prototyping and

experimentation, automating routine tasks, refining requirement analysis, and redefining team member

roles, generative AI has the potential to boost the efficiency and effectiveness of Agile teams. Of course,

a balanced and responsible approach is necessary to address the associated challenges and ensure that

this technology delivers on its transformative promise. However, by carefully considering the ethical

implications and fostering responsible development practices, the industry should be able to unlock the

full potential of generative AI in the exciting future of Agile software development.

4.3. Conceptual Modeling in Agile development projects

Conceptual modeling emerged in the 1970s as a phase of IS development that involved

conceptualization and representation of the problem to be addressed by IS and the domain the IS sought

to represent. Since then, conceptual modeling has proven effective for facilitating and promoting mutual

understanding, communication, design, and decision making among the different parties in IS

development (e.g., developers, subject-matter experts, target users).

However, conceptual modeling has struggled to remain relevant for Agile development (recall the

values of working software over comprehensive documentation and responding to change over

following a plan enshrined in the Agile Manifesto [4]). Many Agile practitioners routinely forgo formal

conceptual modeling [37]. Research on conceptual modeling for Agile remains scarce, potentially due

to the perception that it is practically irrelevant [37, 38, 39, 40]. This is due to two key assumptions in

traditional conceptual modeling research and pedagogy that appear to be counter to Agile. First,

conceptual modeling is assumed to completely capture the domain of an IS project to guide the design

phase (e.g., code, database structures, etc.). This assumption clearly misaligns with Agile, where

14

relevant facts, requirements, and assumptions emerge over time. Second, much of conceptual modeling

assumes the specifications are (semi)formal, in that they precisely and unambiguously define the

domain’s scope and relevant domain concepts. This misaligns with Agile where clarity and consensus

emerges over time and may never be completely resolved. Furthermore, Agile is often lean, informal,

and increasingly embraces hypothesis testing when design choices are unclear [15].

 The misalignments between traditional conceptual modeling and Agile create what we call the Agile

Conceptual-Modeling Paradox. Both conceptual modeling and Agile seek to improve understanding,

communication, design, and decision-making, and both have been shown to be effective at doing so,

but they have failed to be used in tandem with one another. As a result, conceptual modeling, which

should further enhance Agile methods by facilitating team communication, shared understanding, and

process and product documentation, is not being leveraged by the Agile teams. To resolve this paradox,

we need to reconsider the traditional conceptual modeling assumptions. These assumptions result from

specific ways in which conceptual modeling has been used in the past (e.g., to guide relational database

design), and do not fully reflect the potential or the landscape of modern conceptual modeling. The

assumptions should be revisited and systematically relaxed, both when teaching conceptual modeling

and when conducting conceptual modeling research.

Conceptual modeling can better embrace the uncertainty, evolution, and incomplete nature of

domains and the virtues of informal, messy, and casual modeling. Conceptual modeling can support

Agile development in many ways. For example, it can be used to facilitate model-driven engineering.

Here, modeling is already practiced to a limited extent for rapid prototyping and can be further effective

to support cow-code development [41]. These practices can be expanded to general Agile prototyping

applications. More generally, conceptual modeling can also be used in Agile to support sense-making,

communication, document development choices, guide user interfaces, database design and application

functionality. However, the form and function of conceptual modeling probably needs to be updated.

Hence, to ensure alignment with Agile values and practices, modeling needs to promote representations

and methods that insist on few rules and embrace trial-and error. Such solutions have already been

developed, including extremely lean modeling languages and methods, informal modeling, and

automated model generation [42, 43].

These approaches can already be considered when teaching Agile. Furthermore, Agile offers an

important impetus for further research into these approaches. In particular, the systematic investigations

of the benefits and limitations of these approaches for different types of Agile development is an

important research opportunity.

Reconsidering conceptual modeling research and pedagogy may make conceptual modeling more

relevant for Agile. Conceptual modeling should become more consistent with Agile, while

accommodating the uncertain and evolving nature of modern development efforts and domains.

In sum, the increasing complexity, Agile need, and implications for how to expand Agile

Development are all in need of consideration for future development and application.

5. Conclusion and Future Outlook

This paper has proposed an Agile Development Framework to serve as a reference to understand

Agile development based on its original intent or promise, the reality of its use, and the opportunity for

its continued expansion, given increasingly complex applications, new challenges, and the need to guide

future work in this important area. Agile development has long been useful for addressing systems

development challenges. This paper has examined the past and current uses of Agile, leading to

suggestions for how it might progress and be applied in the future. The past includes the origins and

notion of Agile as a response to existing, structured methods. The reality of Agile is wide-spread

adoption while recognizing Agile-related challenges. With emerging technologies and increasingly

important real-world and global problems, there are opportunities to advance Agile for a wide range of

development topics. Finally, since Agile has become widely adopted in practice, educational

considerations for the next generation of the workforce that will use Agile is important to ensure its

continued adoption in practice.

The Framework proposed in this paper has been only partially explored. Although some aspects may

not have been fully articulated above, they all deserve further development and deeper examination

beyond what has been presented here. Further, it may be necessary to modify or expand the framework

15

itself. However, we have identified some significant implications for future research on the types of

applications to which Agile can be applied, the increasing complexity of the problem applications, and

the growing need to expand and apply Agile.

6. References

[1] Rigby, D.K., Sutherland, J., & Takeuchi, H. 2016. Embracing Agile: How to master the process

that’s transforming management, Harvard Business Review, May, 40-50.

[2] Vidgen, R., & Wang, X. 2009. Coevolving systems and the organization of Agile software

development, Information Systems Research, 20(3), 355-376.

[3] Schmidt, C., Kude, T., Tripp, J., Heinzl, A., & Spohrer, K. 2013. Team adaptability in Agile

information systems development, International Conference on Information Systems (ICIS),

Milan, Italy.

[4] Beck, A., Grenning, J., Martin, R. C., Beedle, M., Highsmith, J., Mellor, S. van Bennekum, A.,

Hunt, A. Schwaber, K. Cockburn, A. Jeffries, R., Sutherland, J., Cunningham, W. Kern, J.,

Thomas, D., Fowler, M. Marick, B. 2001. Manifesto for agile software development. Agile

Alliance. Retrieved from http://agilemanifesto.org/. (Accessed August 3, 2019).

[5] Jason, L.A., Stevens, E., Ram, D. Miller, S.A., Beasley, C.A., & Gleason, K.D. 2016. Theories in

the field of community practice, Global Journal of Community Psychology Practice, 7(2), 1-27.

[6] Tripp, J.F. & Armstrong, J.F. 2016. Agile methodologies: Organizational adoption motives,

tailoring, and performance, Journal of Computer Information Systems, 10 pgs. DOI:

10.1080/08874417.2016.1220240. Turetken, O., Stojanov, I., & Trienekens, J. J. (2017).

Assessing the adoption level of scaled Agile development: A maturity model for Scaled Agile

Framework, Journal of Software: Evolution and Process, 29(6), e1796.

[7] Boehm, B. 1988. A Spiral Model of software development and enhancement, Computer, May,

61-72.

[8] Larman, C. & Basili, V.R. 2003. Iterative and Incremental Development: A Brief History,

Computer, June, 2-11.

[9] Sacolick, I. 2022. A brief history of the Agile methodology. URL: https://www.infoworld

.com/article/3655646/a-brief-history-of-the-agile-methodology.html (Accessed April 26, 2024).

[10] Peters, L.J. & Tripp, L.L. 1976. Is software design “wicked”?, Datamation, 22, 5, May, 127-

136.

[11] Rigby, D., Elk, S., & Berez, S. 2020. Doing Agile Right: Transformation Without Chaos. Boston,

MA: Harvard Business Review Press.

[12] Sutherland, J. & Sutherland, J.J. 2014. SCRUM: The Art of Doing Twice the Work in Half the

Time, New York, NY: Currency.

[13] Costa, D. I. C., Filho, E. P. S., Da Silva, R. F., De C. Quaresma Gama, T. D., & Cortés, M. I.

2020. Microservice architecture: A tertiary study, ACM International Conference Proceeding

Series.

[14] Zhou, X., Li, S., Cao, L., Zhang, H., Jia, Z., Zhong, C., Shan, Z., & Babar, M. A. (2023).

Revisiting the practices and pains of microservice architecture in reality: An industrial inquiry.

Journal of Systems and Software, 195, 111521. URL: https://doi.org/10.1016/j.jss.2022.111521.

[15] Schwartz, M. 2017. A Seat at the Table and The Art of Business Value. IT Revolution.

[16] Fitzgerald, B., & Stol, K.-J. 2017. Continuous software engineering: A roadmap and agenda,

Journal of Systems and Software, 123, 176–189.

[17] Hemon-Hildgen, A., Rowe, F., & Monnier-Senicourt, L. 2020. Orchestrating automation and

sharing in DevOps teams: A revelatory case of job satisfaction factors, risk, and work conditions,

European journal of Information Systems, 29(5), 474-499.

[18] Turetken, O., Stojanov, I., & Trienekens, J.J.M. 2017. Assessing the adoption level of scaled agile

development: A maturity model for Scaled Agile Framework, Journal of Software Evolution and

Process, 29, e1796. DOI: 10.1002/smr.1796.

[19] Fuchs, C., and Hess, T. 2018. Becoming Agile in the digital transformation: The process of a

large-scale Agile transformation, International Conference on Information Systems, San

Francisco, USA.

16

[20] Demirkan, H., & Spohrer, J. 2015. T-shaped innovators: Identifying the right talent to support

service innovation, Research-Technology Management, 58(5), 12-15.

[21] Fitriani, W.R., Rahayu, P., & Sensuse, D.I. 2016. Challenges in Agile software development: A

systematic literature review.” ICACSSIS 2016, 155-164. URL: http://ieeexplore.ieee.org/

document/7872736/ (Accessed April 26, 2024).

[22] Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl, A. 2017. Coordination challenges in

large-scale software development: A case study of planning misalignment in hybrid settings,

IEEE Transactions on Software Engineering, 44(10), 932-950. https://doi.org/10.1109/

TSE.2017.2730870.

[23] Poza-Vilches, F., et al. 2019. A systematic review of the use of Agile methodologies in education

to foster sustainability competencies, Sustainability, 11(10), 2915-2929. URL:

https://doi.org/10.3390/su11102915.

[24] Sibona, C., Pourreza, S., & Hill, S. 2018. Origami: An active learning exercise for Scrum project

management, Journal of Information Systems Education, 29(2), 105-116.

[25] Baham, C. 2019. Teaching Tip: Implementing Scrum wholesale in the classroom, Journal of

Information Systems Education, 30(3), 141-159.

[26] Sharp, J. H., Mitchell, A., & Lang, G. 2020. Agile teaching and learning in information systems

education: An analysis and categorization of literature, Journal of Information Systems Education,

31(4), 269-281.

[27] Rush, D. E. & Connolly, A. J. 2020. An Agile framework for teaching with Scrum in the IT project

management classroom, Journal of Information Systems Education, 31(3), 196-207.

[28] Saltz, J., & Shamshurin, I. 2016. Big data team process methodologies: A literature review and

the identification of key factors for a project's success. 2016 IEEE International Conference on

Big Data (Big Data). URL: https://doi.org/10.1109/BIGDATA.2016.7840719.

[29] Cao, L., & Ramesh, B. 2008. Agile requirements engineering practices: An empirical study, IEEE

Software, 25(1), 60-67. https://doi.org/10.1109/MS.2008.1.

[30] Brown, T. B., Mann, B., Ryder, E., Subbiah, M., Kaplan, J., Dhariwal, P., ... &

Amodei,D. 2020. Language models are few-shot learners. DOI: 10.48550/arXiv.2005.14165.

[31] Beck, K. 2002. Agile Software Development: Principles, Patterns, and Practices. Boston, MA:

Addison-Wesley Professional.

[32] Cai, W., Zhang, Y., Xu, Z., Zou, W., & Zhou, M. 2021. An AI-assisted agile methodology for

rapid prototyping in uncertain environments, Information Sciences, 569, 155-172.

[33] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.&

Polosukhin, I. 2017. Attention is all you need, DOI: 10.48550arXiv.1706.03762.

[34] Sharma, N., Khandelwal, K., & Gupta, T. 2022. A review of natural language processing-based

approaches for requirements engineering in agile methodologies, International Journal of

Information Technology, 14(6), 3492-3506.

[35] Deloitte Insights 2023. Harnessing the power of generative AI: An Agile methodology for

uncertain times. URL: https://www2.deloitte.com/nl/nl/pages/risk/articles/the-power-of-

generative-ai-an-agile-methodology.html (This link has been removed as it was not a trustworthy

source).

[36] European Commission. 2019. Ethics guidelines for trustworthy AI. URL: https://commission.

europa.eu/ index_en.

[37] Michael, J., Bork, D., Wimmer, M., & Mayr, H. C. 2024. Quo vadis modeling? Findings of a

community survey, an ad-hoc bibliometric analysis, and expert interviews on data, process, and

software modeling.” Software and Systems Modeling, 23(1), 7-28.

[38] Recker, J.C., Lukyanenko, R, Jabbari, M., Samuel, B., & Castellanos, A. 2021. From

representation to mediation: A new agenda for conceptual modeling research in a digital world.”

MIS Quarterly, 45(1) 269-300.

[39] Lukyanenko, R., Storey, V., & Pastor, O. 2022. System: A core conceptual modeling construct

for capturing complexity, Data & Knowledge Engineering, 141, 102062.

[40] Storey, V.C., Lukyanenko, R., & Castellanos, A. 2023. Conceptual modeling: Topics, themes,

and technology trends, ACM Computing Surveys, 55(14s), 1-38.

[41] Lano, K., Kolahdouz-Rahimi, S., Troya, J., & Alfraihi, H. 2022. Introduction to the theme section

on Agile model-driven engineering, Software and Systems Modeling, 21(4), 1465-1467.

http://ieeexplore.ieee.org/
https://doi.org/10.1109/
https://doi.org/10.3390/su11102915

17

[42] Castellanos, A., Tremblay, M. C., Lukyanenko, R., & Samuel, B. 2020. Basic classes in

conceptual modeling: theory and practical guidelines, Journal of the Association for Information

Systems, 21(4), 3.

[43] Lukyanenko, R., Samuel, B. M., Parsons, J., Storey, V. C., & Pastor, O. 2023. Datish: A universal

conceptual modeling language to model anything by anyone, ER Forum 2023, 1–14.

