
Understanding	Block-based	Code	with	Preservice	
Mathematics	Teachers	

Elvia	R.	Ruiz	Ledezma1,	Fermín	Acosta	Magallanes2	and	Alma	R.	Villagómez	Zavala3		

1	Instituto	Politécnico	Nacional,	CECyT	11,	Av.	de	los	maestros	217,	Casco	de	Santo	Tomás,	Mexico	City,	Mexico	
2	Instituto	Politécnico	Nacional,	UPIITA,	Av.	Instituto	Politécnico	Nacional	2580,	Ticomán,	Mexico	City,	Mexico		
3	Escuela	Normal	Superior	de	México,	Hacienda	de	Sotelo	201,	El	Rosario,	Mexico	City,	Mexico		

	

Abstract	
The	present	study	shows	the	difficulties	and	achievements	presented	by	a	group	of	students	in	the	fifth	
semester	of	the	degree	in	Teaching	and	Learning	of	Mathematics	in	Secondary	Education	of	the	Escuela	
Normal	 Superior	 de	 México,	 in	 Mexico	 City,	 on	 the	 final	 design	 project.	 of	 digital	 materials	 with	
programming	in	Scratch,	the	analysis	was	carried	out	within	the	framework	of	computational	thinking	
for	science	in	its	cognitive	processes	and	the	proposed	scientific	activity.	

Keywords		
Computational	thinking,	Scratch,	STEM1	

1. Introduction	
Education	 in	 science,	 technology,	 engineering,	 and	 mathematics	 (STEM)	 has	 become	 an	
increasingly	 important	 educational	 perspective,	 gaining	 great	 attention	 around	 the	world	 [1],	
with	the	objective:	to	train	new	talents	with	21st	century	skills,	developing	the	computational,	
critical,	 and	 creative	 thinking	 [2].	 Therefore,	 coding	has	been	proposed	as	 an	 integral	 part	 of	
STEM	Education,	 allowing	 interdisciplinary	 connections	 in	 relation	 to	 computational	 thinking	
(CT)	 to	 address	 problems	 in	 everyday	 life	 and	 face	 challenges.	 Thus	 block-based	 coding	
languages,	 such	 as	 Scratch,	 have	 become	 popular	 due	 to	 the	 use	 of	 drag	 code	 commands,	
simplifying	the	text	syntax	used	in	other	programs	[3].	However,	in	a	first	approach,	subjects	have	
difficulty	processing	nested	structures,	that	is,	placing	one	control	structure	inside	another,	as	
well	as	algorithm	sequences	and	the	interaction	between	blocks	of	code,	because	not	all	students	
They	are	at	the	same	level	of	handling	a	computer	equipment.	
Our	work	aims	to	show	the	difficulties	and	achievements	presented	by	a	group	of	students	in	

the	5th	semester	of	the	bachelor’s	degree	in	teaching	and	Learning	of	Mathematics	in	Secondary	
Education	 of	 the	 Escuela	 Normal	 Superior	 de	 Mexico,	 when	 covering	 the	 study	 program	
"Mathematics	in	Science	and	Technology”	(MST),	having	as	its	final	project	the	design	of	digital	
materials	with	programming	in	Scratch.	
This	paper	is	divided	into	five	sections	in	addition	to	this	space	where	we	show:	the	theoretical	

perspective,	 the	 interpretation	 of	 the	 study	 program,	 the	 methodological	 process,	 the	 most	
relevant	findings,	conclusions,	and	references.	
	
	
	

	
CITIE	2023:	International	Congress	on	Education	and	Technology	in	Sciences,	December	04–06,	2023,	Zacatecas,	
Mexico	
	ruizelvia@hotmail.com	(E.R.	Ruiz);	ferminacosta66@hotmail.com	(F.	Acosta);	amyy_0214@hotmail.com	(A.	R.	

Villagómez)		
	0000-0001-9528-4146	(E.	R.	Ruiz);	0000-0003-1471-5376	(F.	Acosta);	0000-0003-0021-8977	(A.	R.	Villagómez)	

	
©	2023	Copyright	for	this	paper	by	its	authors.	
Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).	
	 CEUR	Workshop	Proceedings	(CEUR-WS.org)		

	

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/

2. Theoretical	framework	
The	 cognitive	 processes	 employed	 in	 interactions	with	 computational	 tools	 are	 an	 important	
aspect	of	computational	thinking	as	originally	conceptualized	by	Papert	and	are	crucial	to	CT-S.	
That	is,	preparing	students	for	the	increasingly	computational	nature	of	science.	It	is	essential	to	
develop	students'	abilities	to	think	about	the	functionality	and	position	of	computational	tools	
within	an	activity	[4].	
Cuny,	 Snyder	 and	 Wing,	 defined	 [5],	 “Computational	 thinking	 is	 the	 thinking	 processes	

involved	in	formulating	problems	and	their	solutions,	so	that	the	solutions	are	represented	in	a	
form	that	can	be	carried	out	effectively	by	an	information	processing	agent”	(p.	1).	

2.1. Computational	thinking	for	science	framework	

Our	 research	 through	 the	 conceptual	 framework	 that	 describes	 CT-S	 takes	 an	 evidence-
centered	approach,	a	model	of	cognition	[6],	to	identify	the	types	of	cognitive	processes	that	are	
already	being	leveraged	in	classrooms	that	reflect	CT-S.	Such	a	framework	will	allow	us	to	(a)	
delineate	 subconstructs	 that	 specify	 the	 cognitive	 processes	 characteristic	 of	 CT-S	 and	 (b)	
operationalize	the	subconstructs	of	CT-S	to	develop	performance	tasks	that	can	elicit	CT-S.	That	
is,	beyond	knowing	what	activities	are	likely	to	engage	students	in	CT-S,	a	testable	model	of	how	
those	practices	 engage	 students	 in	 CT-S	 is	 necessary.	Additionally,	 identifying	which	 of	 those	
activities’	students	are	likely	to	participate	in.	
The	framework	is	a	table	of	four	rows	and	three	columns,	which	creates	12	cells	(Table	1).	The	

rows	represent	four	categories	of	science	activity	(data	collection,	data	processing,	modeling,	and	
problem	solving)	where	computational	tools	are	likely	to	be	leveraged	in	science	learning.	The	
columns	 represent	 three	 interactions	 with	 computational	 tools	 (Reflective	 use,	 Design,	 and	
Evaluation	 of	 computational	 tools)	 that	 involve	 the	 cognitive	 processes	 characteristic	 of	
computational	thinking	[4].	Each	cell	within	the	frame	represents	the	CT-S	as	the	intersection	of	
a	row	with	a	column.	That	is,	every	time	a	person	participates	in	a	science	learning	experience	
that	 can	 be	 categorized	 by	 one	 or	more	 of	 the	 cells	 of	 the	 framework,	 they	 are	 engaging	 in	
computational	thinking	for	science.	
	

Table 1
The computational thinking for science framework

 Cognitive Processes
Science Activity Reflective Use Design Evaluation
Data Collection How can symbology

be used to design the
diagram for effective
coding?

How can
diagram
instructions be
translated with
block
structures?

The pseudocode allows for
efficient block allocation.
Under what conditions does it
work or under what
conditions does it fail?

Data Processing What software
features can help
identify the
relationship between
scripts?

What would be
needed from
software to help
find patterns
related to
specialized
commands?

The software is being used to
create a visualization of
structures. What are the
possibilities or limitations that
help communicate them?

Modeling How can you use the
three sections of the
software to predict
the actions in it?

What rules need
to be included in
the organization
of sequences?

Which aspects of this digital
model accurately reflect the
selection, and which do not?

Problem-Solving How can screen
reading software be
used to ensure that
the procedure is
communicated
correctly?

How can you
create an
algorithm to
evaluate the
claims and
reasoning of the
respective
arguments?

How should I test it and how
will I know I've tested it
enough?

3. Interpretation	of	the	study	program	
The	MST	program	aims	to	ensure	that	heuristic	experiences	foster	creativity	and	ingenuity,	with	
an	 approach	where	 digital	 technology	 is	 closely	 linked	 to	 science	 and	 favors	 the	 creation	 of	
development	 projects.	 of	 materials	 and	 activities	 that	 contribute	 to	 the	 generation	 of	
mathematical	knowledge,	the	strengthening	of	mathematical	skills	and	thus	the	development	of	
professional	and	disciplinary	competencies.		
As	 well	 as	 the	 development	 of	 creativity	 and	 technological	 innovation	 skills,	 both	 in	 the	

management	of	electronic	devices	and	their	programming.	The	contents	of	the	MST	program	are	
organized	into	two	blocks.	In	one	block,	it	is	expected	to	recover	the	historical	understanding	of	
the	emergence	of	mathematics	as	a	response	to	a	need	for	communication,	systematization,	and	
modeling.	 In	 two	block	 the	 link	between	science,	mathematics	and	 technology	 is	 emphasized,	
from	Scratch	programming	and	the	development	of	didactic,	technological,	and	digital	materials.	
	

4. The	methodological	process	
Eleven	normal	students	from	the	fifth	semester	of	the	bachelor’s	degree	in	teaching	and	Learning	
of	Mathematics	in	Secondary	Education	in	Mexico	City	participated	(Figure	1).	
Our	 research	 is	 a	 descriptive	 explanatory	 work	 that	 describes	 structured	 situations	 that	

provide	a	sense	of	understanding	of	the	phenomenon	referred	to	[7].	
Three	 phases	 were	 considered,	 according	 to	 the	 CT-S	 framework,	 adapted	 to	 the	 use	 of	

programming	in	Scratch.	
• Reflective	use	of	programming.	
• Designing	with	a	programming	language.	
• Evaluating	programming	with	a	computational	tool.	

4.1. Reflective	use	of	programming	

We	started	with	the	design	of	the	algorithm,	using	a	structured	programming	technique	that	
also	 served	 for	 programming,	 helping	 to	 document	 the	 programs.	 There	 are	 three	 ways	 to	
represent	 algorithms:	written,	 graphical	 and	 auxiliary.	 The	MST	 study	 program	proposes	 the	
graphic	form	of	diagrams.	To	design	them,	certain	symbols	or	figures	are	used	that	represent	an	
action	within	the	procedure.	The	symbols	are	joined	with	arrows	called	flow	lines	that	indicate	
the	order	in	which	the	steps	must	be	executed	and	the	pseudocodes	that	are	the	descriptions	or	
instructions	 of	 the	 flow	 chart.	 For	 programs,	 variables	 are	 needed,	which	 can	 be	 numeric	 or	
characters.	
	
	

	
Figure	1.	Students	working	on	their	project	

4.2. Designing	with	a	programming	language	

Learning	Scratch	offers	students	in	training	great	possibilities	due	to	its	applications,	it	allows	
them	 to	 promote	 creativity	 and	 thinking	 skills,	 learning	 basic	 concepts	 of	 computing	 and	
mathematics,	as	well	as	promoting	interpersonal	communication	and	a	sense	of	collaboration.	
This	 program	 is	 extremely	 intuitive,	 without	 requiring	 memorization	 of	 commands	 for	 its	
mastery.	It	 is	available	for	various	operating	systems.	The	Scratch	screen	is	divided	into	three	
sections.	On	the	right	the	commands	that	make	up	the	routines	of	this	language	are	added	one	by	
one,	in	the	center	the	commands	that	each	of	the	ten	categories	of	actions	have	been	presented	
and	on	the	left	the	block	of	commands	is	executed	through	a	click.	Actions	are	linked	by	means	of	
labels	 or	 blocks.	 In	 this	 phase,	 the	 student	 began	 his	 design	with	 the	 use	 of	 a	 flowchart	 and	
pseudocode	since	it	is	crucial	to	plan	and	visualize	the	flow	of	actions	in	Scratch	programming	
and	 represent	 the	 logical	 sequences	 of	 commands	 to	 be	 executed	 in	 a	 concrete	 way.	 Basic	
exercises	were	then	carried	out	to	help	in	understanding	the	use	of	the	blocks,	thus	the	difficulty	
was	increased	according	to	their	progress.	

4.3. Evaluating	programming	with	a	computational	tool	

We	 included	 the	 generation	 of	 educational	 programs	 and	 considered	 that	 the	 project	was	
finished,	 that	 it	 had	an	optimized	design,	 that	 it	 had	been	 completely	developed	and	 that	 the	

minimum	 functionality	 tests	 were	 covered	 with	 the	 analysis	 of	 system	 requirements,	 the	
evaluation	was	based	on	rubrics	(Table	2).	

4.4. The	application	scenario	

Every	time	a	subject	participates	in	a	science	learning	experience	that	can	be	categorized	by	
one	or	more	of	the	cells	of	the	framework,	he	or	she	is	engaging	in	computational	thinking	for	
science.	For	each	cell	in	Table	1,	a	question	is	provided	that	a	subject	would	likely	need	to	engage	
in	CT-S	to	answer	successfully.	As	an	example,	the	student	who	answers	the	question	in	the	upper	
left	corner	of	the	frame	will	need	to	engage	in	the	reflective	use	of	programming	tools:	diagram	
and	pseudocode,	to	work	toward	data	collection.	Initially	you	will	use	the	elements	of	the	diagram	
and	the	specific	variables	in	the	approach	to	a	problem.	You	can	do	this	by	participating	in	the	
reflective	use	of	the	diagram	while	interacting	with	its	elements,	until	you	form	a	mental	model	
of	 the	 functionality	of	programming.	As	 the	 student	 continues	 to	 interact	with	 this	 tool,	 their	
discoveries	reinforce,	revise,	or	complement	their	developing	mental	model.	Once	the	student	has	
a	working	mental	model,	 they	 can	use	 it	 toward	 the	use	of	 commands	 contained	 in	 Scratch's	
categories	of	actions,	linked	by	blocks.	Design	can	occur	throughout	an	iterative	creation	process	
in	 which	 the	 subject	 has	 to	 repeatedly	 update	 and	 modify	 his	 or	 her	 mental	 model	 of	 the	
functionality	of	the	computational	tool	in	relation	to	a	sequence	of	commands	in	each	number	of	
cycles.		
To	participate	 in	 the	assessment,	 students	must	know	what	 the	digital	model	should	do	 in	

different	settings	to	determine	if	it	is	a	complete	and	accurate	model.	To	do	this,	they	investigate	
of	their	efficiency	running	the	program.	Once	this	evaluation	was	completed,	students	would	be	
able	to	determine	how	well	it	works.	Therefore,	each	student	will	have	built	a	mental	model	of	
the	possibilities	and	limitations	of	the	functionality	of	the	computational	tool	and	how	it	could	be	
used	in	their	activity,	so	students	are	involved	in	CT-S.	
In	phase	one	for	the	reflective	use	of	a	computational	tool	in	programming	with	Scratch,	the	

evidence	shown	by	the	students	in	relation	to	the	representation	of	the	algorithms	in	graphic	and	
written	format	with	flowcharts	and	pseudocode	was	reviewed	(Figure	2),	under	the	criteria	that	
were	 considered,	 namely,	 the	 problem	 statement	 and	 the	 project	 design	 by	 30%	 and	 70%	
respectively.	
For	phase	 two,	 the	 students,	using	 their	own	criteria,	manage	 to	 solve	 the	 rules,	using	 the	

program's	 sentences.	 At	 this	 stage,	 the	 coding	 of	 the	 project	 logic	 implemented	 in	 Scratch	 is	
prioritized	because	it	reflects	the	application	of	the	knowledge	provided	by	the	class	work.	In	this	
phase,	documentation	and	integration	formed	another	segment	to	evaluate	and	provide	feedback,	
65%	of	the	group	of	students	obtained	excellent	performance	and	60%	improved	compared	to	
the	previous	phase,	demonstrating	that	the	feedback	allowed	them	to	improve	their	performance.	
	In	 phase	 three,	 the	 implementation	 of	 the	 system,	 where	 prior	 knowledge	 and	 the	 user	

interface	 are	 involved,	 the	 results	 indicate	 that	 11.2%	 of	 the	 students	 did	 not	 complete	 the	
project,	while	88.8%	achieved	a	 finished	project	with	a	 good	design,	development	 and	 tested	
(Figure	 3).	 Thus,	 80%	 of	 the	 group	 managed	 to	 integrate	 prior	 knowledge	 and	 adequately	
complete	the	program	in	contrast	to	the	20%	who	had	problems	integrating	the	information.	
	

Table 2
Rubric established to evaluate the development of the project based on the CT-C framework

Aspects/
%assigned

Excellent Good Regular Insufficient

Data Collection (20-16%) (15-11%) (10-6%) (5-0%)
20% Can use symbology

in the design of the
diagram,
translating the
instructions into

Can use
symbology in
the design of the
diagram,
translating the

Can use
symbology in
the design of the
diagram without
translating the

 Cannot use
symbology in
diagram design.

block structures
and modifying
them according to
the needs raised.

instructions into
block structures.

instructions into
block structures.

Data
Processing

(20-16%) (15-11%) (10-6%) (5-0%)

20% Can identify the
relationship
between
specialized scripts
to find related
patterns and
modify them
according to your
needs.

Can identify the
relationship
between
specialized
scripts to find
related
patterns.

Can identify the
relationship
between
specialized
scripts without
finding related
patterns

Cannot identify
the relationship
between
specialized
scripts.

Modeling (30-21%) (20-16%) (15-11%) (10-0%)
30% Can use all three

sections of the
software,
predicting the
actions in it with
the use of rules for
sequential
organization and
modifying
according to the
stated needs.

Can use all three
sections of the
software,
predicting the
actions in it with
the use of rules
for sequential
organization.

Can use all three
sections of the
software,
predicting
actions in it
without
considering the
use of rules for
sequential
organization

Cannot use all
three sections of
the software,
predicting the
actions in it.

Problem-
Solving

(30-21%) (20-16%) (15-11%) (10-0%)

30% Can use screen
reading software
to ensure you
communicate the
procedure
correctly, creating
an algorithm to
evaluate the
respective
statements and
reasoning,
modifying
according to the
needs raised.

Can use screen
reading
software to
ensure you
communicate
the procedure
correctly,
creating an
algorithm to
evaluate the
respective
statements and
reasoning.

Can use screen
reading
software to
ensure you
communicate
the procedure
correctly,
without creating
an algorithm to
evaluate the
respective
statements and
reasoning.

Cannot use
screen reading
software to
ensure you
communicate
the procedure
correctly.

	

	
	
Figure	2.	Example	of	a	program	in	graphic	form,	prepared	by	a	student	
	
	

	
Figure	3.	Example	of	a	program	carried	out	by	one	of	the	students	
	
	
	

5. Discussion	
The	students	began	their	reflective	use,	manipulating	the	commands	of	the	Scratch	program.	By	
pressing	certain	blocks	and	observing	the	results	of	their	actions,	they	subsequently	reflected	on	
their	manipulations	and	began	to	form	a	mental	model	of	the	functionality	of	this	language.	As	
the	students	continued	to	interact,	their	discoveries	reinforced,	revised,	or	complemented	their	
developing	mental	model.	We	were	 able	 to	 observe	 that	 reflective	 use	 is	 bidirectional	 in	 the	
transfer	of	information.	Once	the	student	had	a	mental	model,	he	was	able	to	use	language	more	
intentionally	to	process	the	algorithms	previously	contained	in	the	flowchart,	so	that	he	could	
analyze	to	learn	how	to	translate	them.	
Reflective	 use	 can	 also	 occur	 when	 the	 student	 begins	 his	 activity	 with	 an	 incomplete	 or	

inaccurate	mental	model	of	 the	 functionality	of	a	program,	allowing	him	to	re-investigate	and	
modify	his	mental	model	already	with	 the	use	of	 the	programming	 language,	 testing	with	 the	
computational	tool,	choosing	the	commands	that	lead	you	to	the	design	of	your	program.	

6. Conclusions	
The	CT-S	model	and	its	cognitive	framework	allowed	us	to	review	the	bidirectional	interactions	
between	the	student	and	the	programming	design	of	the	prepared	materials.	
In	phase	two,	one	of	the	problems	that	arose	is	that	not	everyone	has	a	good	understanding	of	

mathematical	logic	to	be	able	to	visualize	the	logical	sequences	of	the	algorithm.	
The	 most	 complicated	 procedures	 to	 teach	 were	 loops,	 conditionals,	 and	 manipulation	

between	variables,	because	they	are	abstract	procedures.	
Using	diagrams	is	crucial	to	plan	and	visualize	the	flow	of	actions	in	Scratch	programming,	

these	 represent	 the	 logical	 sequences	 of	 commands	 to	 be	 executed	 in	 a	 concrete	 way	 to	
understand.	
At	first,	it	is	common	to	make	mistakes	such	as	not	connecting	blocks	correctly,	forgetting	the	

loop	blocks	or	necessary	conditions,	not	fully	understanding	how	Scratch	variables	and	events	
work.	
It	 is	 important	 to	start	with	basic	exercises	 that	help	understand	the	use	of	 the	blocks	and	

increase	the	difficulty	according	to	the	progress	of	the	group.			

References	

[1] Denning,	 P.	 J.	 Computational	 thinking	 in	 science.	 American	 Scientist,	 2017,	 (1),	 13–17.	
https://doi.org/10.1511/2017.124.13	

[2] Guzdial,	M.	 Learner-centered	 design	 of	 computing	 education:	 Research	 on	 computing	 for	
everyone.	 Synthesis	 Lectures	 on	 Human-Centered	 Informatics,	 2015,	 8(6),	 1–165.	
https://doi.org/10.2200/S00684ED1V01Y201511HCI033	

[3] Weintrop,	D.	Block-based	programming	in	computer	science	education.	Communications	of	
the	ACM,	2019,	62(8),	22–25.	https://doi.org/10.1145/3341221S.		

[4] Hurt,	T.,	Greenwald,	E.,	Allan,	S.		The	computational	thinking	for	science	(CT-S)	framework:	
operationalizing	 CT-S	 for	 K–12science	 education	 researchers	 and	 educators.	 2023.	
https://doi.org/10.1186/s40594-022-00391-7	

[5] Cuny,	 J.,	 Snyder,	 L.,	&	Wing,	 J.	M.	Demystifying	 computational	 thinking	 for	 non-computer	
scientists.	 2010,	 Unpublished	 manuscript	 referenced	 in	
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdfD.		

[6] Brown,	N.	 J.,	&	Wilson,	M.	A	model	 of	 cognition:	 The	missing	 cornerstone	 of	 assessment.	
Educational	 Psychology	 Review,	 2011,	 23(2),	 221–234.	 https://doi.org/10.1007/s10648-
011-9161-z	

[7] Hernández,	R.	Fernández,	C.,	y	Baptista,	L.	Fundamentos	de	metodología	de	la	investigación.		
2007.	México:	McGraw-Hill.	
	

