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Abstract	
The	implementation	of	qualitative	and	quantitative	methods	in	ordinary	differential	equations,	in	both	
its	 theoretical	 and	 applied	 parts,	 requires	 the	 use	 of	 mathematical	 software	 to	 achieve	 a	 modern	
approach	with	effectiveness	in	geometric	and	numerical	analysis.	
The	present	work	was	carried	out	with	the	objective	of	analyzing	the	solution	of	mathematical	problems	
related	to	first-order	ordinary	differential	equations,	qualitatively	and	quantitatively.	For	this,	the	Maple	
software	was	used,	due	 to	 its	powerful	mathematical	machine	and	great	 symbolic	 capacity,	with	an	
interface	that	makes	it	easy	to	analyze,	explore,	visualize	and	solve	mathematical	problems	related	to	
qualitative	and	quantitative	theory	of	ordinary	differential	equations.	
First,	specific	features	of	Maple	mathematical	software	that	are	useful	for	analyzing	ordinary	differential	
equations	are	identified.	Then,	first-order	ordinary	differential	equations	are	analyzed	and	solved	with	
Maple,	considering	existence,	uniqueness,	and	stability	of	ordinary	differential	equations.	A	qualitative	
approach	to	the	study	of	first-order	ordinary	differential	equations	is	discussed,	obtaining	qualitative	
information	about	the	solutions	directly	from	the	equation,	without	the	use	of	a	formula	for	the	solution.	
In	 this	 work,	 worksheets	 have	 been	 built	 and	 developed	 in	Maple	 that	 contain	 the	 solution	 to	 the	
problems	posed	in	the	attached	data	recording	sheets,	the	same	ones	that	appear	in	the	literature	with	
the	names	Problem	Set	A:	Practice	with	Maple	and	Problem	Set	B:	First	Order	Equations.	Graphic	and	
numerical	representations	are	obtained	that	help	carry	out	a	convenient	analysis	and	interpretation	of	
the	problems	posed.	
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1. Introduction	
The	 traditional	 introduction	 of	 ordinary	 differential	 equations	 courses	 (Zill,	 2018)	 has	
concentrated	in	higher	education	a	repertoire	of	techniques	to	find	solution	formulas	for	various	
classes	of	differential	equations.	
Typically,	 the	 result	 has	 been	 the	 application	 of	 formulaic	 techniques	 without	 a	 serious	

qualitative	 understanding	 of	 fundamental	 aspects	 of	 the	 topic,	 such	 as	 stability,	 asymptotic	
analysis,	 and	 parameter	 dependence.	 These	 fundamental	 ideas	 are	 difficult	 to	 understand	
because	 they	 have	 a	 lot	 of	 geometric	 content	 and	 involve	 a	 lot	 of	 calculations.	 Modern	
mathematical	 software	 systems	 can	 help	 overcome	 these	 difficulties.	 Collantes	 et	 al.	 (2000)	
obtain	their	results	with	the	help	of	Maple.	Belyaeva	et	al.	(2021)	constructed	an	algorithm	and	a	
program	 has	 been	 developed	 in	 the	Maple	 environment	 in	 order	 to	 solve	 the	 fourth-order	
differential	equations.	For	the	use	of	qualitative	and	quantitative	methods	in	ordinary	differential	
equations,	 referring	 to	 its	 theory	 and	 applications,	 it	 is	 very	 important	 to	 have	 powerful	
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mathematical	software	that	 is	accessible	to	students	and	researchers.	A	modern	system	is	 the	
mathematical	 software	Maple,	 effective	 in	 geometric	 and	 numerical	 analysis.	 Therefore,	 it	 is	
essential,	 first	of	all,	 to	know	its	basic	commands,	as	well	as	their	use	to	perform	calculations,	
graphs,	derive	and	integrate	functions.	With	this,	a	minimum	level	of	competence	will	be	achieved	
to	allow	the	use	of	Maple	in	various	ordinary	differential	equations	topics.	
In	chapter	3:	Doing	Mathematics	with	Maple,	chapter	5:	Solutions	of	Differential	Equations	and	

chapter	 6:	 A	 Qualitative	 Approach	 to	 Differential	 Equations	 (Coombes,	 K.	 et	 al.,	 1997)	 an	
introduction	is	presented,	respectively,	in	the	first	chapter	of	them,	to	the	mathematical	software	
Maple,	 and	 in	 the	 following	 two	 chapters	 an	 analysis	 of	 the	 ordinary	 differential	 equations	
solutions	and	its	qualitative	approach,	proposing	sets	of	exercises	and	problems	called	Problem	
Set	A:	Practice	with	Maple	and	Problem	Set	B:	First	Order	Equations,	the	same	ones	that	are	solved	
in	this	investigation	in	Maple	worksheets.	
For	 many	 ordinary	 differential	 equations,	Maple's	 dsolve	 command	 produces	 its	 general	

solution,	or	the	specific	solution	to	an	associated	initial	value	problem.	

1.1. Symbolic	solutions	

Consider	the	first	order	ordinary	differential	equation	

                                                                (1) 

A	solution	to	this	equation	is	a	function  of	the	independent	variable	  that	satisfies	
. It	is	sometimes	possible	to	find	a	formula	for	the	solutions	of	(1);	we	call	such	

a	formula	a	symbolic	solution.	In	Maple,	the	command	that	finds	symbolic	solutions	is	dsolve.	To	
find	a	symbolic	solution	to	the	ordinary	differential	equation	(1),	write	and	execute:	

>dsolve(diff(y(x),x)=f(x,y(x)),y(x)).             	 	 	 	 	 											(2)	

Maple	 produces	 the	 answer	 in	 terms	of	 an	 arbitrary	 constant	 C1. For	 example,	 consider	 the	

ordinary	differential	equation: . You	can	solve	this	equation	in	Maple	by	writing	and	

executing:	

>dsolve(diff(y(x),x)=x+y(x),y(x)).                                                                                                 (3) 

The	 output	 of	 this	 command	 is	 . Specific	 solutions	 can	 be	 obtained	 by	
choosing	specific	values	for	C1.	For	example,	the	solution	satisfying	a	given	initial	condition	can	
be	obtained	by	choosing	C1	appropriately.	This	value	of	C1	can	be	found	by	imposing	the	initial	
condition	on	 the	general	 solution	and	 solving	 for	C1.	Alternatively,	 you	 can	 specify	 the	 initial	
condition	as	the	ordinary	differential	equation	when	using	dsolve.	
To	solve	the	initial	value	problem	

                                                                                                         (4) 

it	is	written	and	executed:	

>dsolve({diff(y(x),x)=f(x,y(x)),y(x0)=y0},y(x))                                                                       (5) 

The	dsolve	command	is	robust,	it	can	solve	many	ordinary	differential	equations.	In	fact,	it	can	
solve	most	ordinary	differential	equations	that	can	be	solved	with	standard	solution	methods.	
However,	 there	 are	 many	 other	 equations,	 some	 of	 which	 can	 be	 solved	 by	 more	 advanced	
solution	methods	that	Maple	cannot	solve.	
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The	 existence,	 uniqueness	 and	 stability	 of	 ordinary	 differential	 equations	 solutions	 are	
discussed	below,	topics	that	are	fundamental	in	the	theory	and	application	of	ordinary	differential	
equations.	An	understanding	of	them	helps	to	interpret	and	use	the	results	produced	by	Maple.	

1.2. Existence	and	uniqueness	

The	fundamental	existence	and	uniqueness	theorems	for	ordinary	differential	equations	(Boyce	
&	DiPrima,	2012)	guarantee	that	every	initial	condition  leads	to	a	single	solution	close	
to	 , assuming	that	the	right	side	of	the	ordinary	differential	equation	(1)	is	an	“appropriate”	
function	(to	be	specific,	assuming	that  and	  are	continuous	functions). 
Graphically,	 these	 theorems	 say	 that	 a	 solution	 curve	 exists	 through	 every	 point,	 and	 that	

solution	curves	cannot	intersect.	Thus,	initial	value	problems	have	exactly	one	solution,	but,	since	
there	are	an	infinite	number	of	initial	conditions,	ordinary	differential	equations	have	an	infinite	
number	of	solutions.	This	principle	is	implicit	in	the	results	obtained	with	dsolve.	
When	an	initial	condition	is	not	specified	the	solution	depends	on	an	arbitrary	constant;	when	

an	 initial	 condition	 is	 specified,	 the	 solution	 is	 completely	 determined.	 It	 is	 important	 to	
remember	that	the	existence	and	uniqueness	theorems	only	guarantee	the	existence	of	a	solution	
near	the	initial	point	 . 

1.3. Stability	

In	addition	to	existence	and	uniqueness,	sensitivity	to	the	initial	value	of	the	solution	of	an	initial	
value	 problem	 is	 a	 fundamental	 issue	 in	 the	 theory	 and	 application	 of	 ordinary	 differential	
equations.	
Often,	one	is	primarily	interested	in	positive	values	of	 ,	just	like	when 	corresponds	to	the	

time	in	a	physical	problem.	If	an	initial	value	problem	is	to	predict	the	future	of	a	physical	system,	
the	solution	for	positive should	be	regularly	insensitive	to	the	initial	value,	this	means	that	small	
changes	in	the	initial	value	should	lead	to	small	changes	in	the	solution	for	the	positive	time.	
To	see	the	importance	of	this	principle,	note	that	for	a	physical	system	the	initial	value 	is	

typically	not	known	exactly,	but	it	is	found	by	measurements.	When 	is	measured, generally	
only	an	approximate	value	 	is	obtained.	Then	if	  is	the	solution	corresponding	to	  and	

the	solution	is	very	sensitive	to	the	initial	value,	  will	have	little	relation	to	the	current	state	
 of	the	system	by	increasing	 .	

An	ordinary	differential	equation	whose	solution	is	regularly	insensitive	to	the	initial	value	
when	increasing is	called	stable,	however,	when	the	solution	is	very	sensitive	to	the	initial	value	
when	increasing ,	the	ordinary	differential	equation	is	called	unstable.	As	we	have	seen,	if	an	
equation	is	unstable	and	is	used	over	a	long-time	interval,	a	small	error	in	the	initial	value	can	
subsequently	 cause	 a	 large	 error.	 Caution	 should	 be	 taken	when	 using	 an	 unstable	 ordinary	
differential	equation	to	model	a	physical	problem.	
Stability	has	been	considered	as	it	increases , that	is,	stability	to	the	right.	Stability	on	the	left	

can	also	be	considered.	There	are	equations	that	are	stable	both	to	the	left	and	to	the	right	and	
there	are	others	that	are	unstable	both	to	the	left	and	to	the	right.	The	following	theorem,	which	
is	stated	without	proof,	is	often	useful	in	stability	evaluation.	

Theorem	1.	 Suppose	 that	  has	 continuous	 first-order	partial	derivatives	 in	 the	vertical	
region	  and	suppose	that	there	exist	numbers	 	and  
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0 0( ) =y x y

0x
f /¶ ¶f y

0x

x x

x

0y

0y

0y ( )y x 0y
( )y x

( )y x x

x
x

x

( , )f x y
( ){ }0 1, :  ,  ,= £ £ -¥ < <¥R x y x x x y K L

( , ) ,   ( , ) .fK x y L x y R
y
¶

£ £ " Î
¶



If	  and  are	solutions	of	  over	the	interval	  with	initial	values
 and ,	respectively,	then	

                                                (6) 

If	 	then	the	right-hand	inequality	in	(6)	shows	that	
                                                            (7) 

In	 this	way,	 the	 solutions	 differ	 by	 no	more	 than	 the	 difference	 in	 the	 initial	 values,	 and	 the	
differential	equation	is	stable.	Furthermore,	if  but	not	so	big,	and	  is	not	so	big,	then	

                                        (8) 

where	 	  is	 a	 constant	 of	moderate	 size.	 In	 this	way,	 the	 equation	 is	 only	 slightly	
sensitive	to	changes	in	the	initial	value,	and	the	equation	is	only	slightly	unstable.	On	the	other	
hand,	if  then	the	left-hand	inequality	in	(6)	shows	that	the	solution	is	sensitive	to	changes	
in	the	initial	value,	especially	over	long	intervals.	

We	can	briefly	summarize	these	results	by	saying	that	if	

                                    (9) 
then	the	differential	equation	is	stable,	but	if	

                                                                         (10) 
then	the	equation	is	unstable.	

The	right-hand	inequality	in	(6)	of	theorem	is	an	example	of	a	continuous	dependence	result;	
which	shows	that	the	solution	depends	continuously	on	the	initial	value.	

1.4. Qualitative	approach	to	an	Ordinary	Differential	Equation:	Direction	Field	

Consider	the	general	first-order	ordinary	differential	equation 

																																																																								 .																																																												(11) 

Qualitative	information	can	be	obtained	about	the	solutions	  observing (11) geometrically.	
Specifically,	this	information	can	be	obtained	from	the	direction	field	of	(11).	The	direction	field	
is	obtained	by	drawing	through	each	point	  in	the	plane 	a	small	line	segment	with	a	
slope .	Solutions,	or	integral	curves	of	(11)	have	the	property	that	at	each	of	their	points	
they	are	tangent	to	the	direction	field	at	that	point,	and	in	that	way	the	general	qualitative	nature	
of	the	solutions	can	be	determined	from	the	direction	field.	Direction	fields	can	be	drawn	by	hand	
for	 some	simple	ordinary	differential	 equations,	but	Maple	 can	draw	 them	 for	 any	 first-order	
equation.	 The	Maple	 command	 to	draw	direction	 fields	 is	dfieldplot,	 in	 the	DEtools	 package	
(Ortigoza,	G.M.,	2007a,b).	

1.5. Autonomous	Equations	

Equations	of	the	form	

                                                                                                                       (12) 
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where	the	function	  does	not	depend	on	 ,	are	called	autonomous	equations.	Such	equations	
represent	physical	systems	whose	rules	of	evolution	do	not	change	over	time	and	are	particularly	
susceptible	to	qualitative	analysis.	

2. Materials	and	Methods	
The	methodological	design	includes	the	performance	of	numerical	simulations	in	Maple,	based	
on	 the	construction	and	development	of	worksheets	 in	Maple	 that	 contain	 the	solution	 to	 the	
problems	 posed	 in	 the	 attached	 data	 recording	 sheets,	 which	 correspond	 to	 exercises	 and	
problems	contained	in	the	text	by	Boyce	&	DiPrima	(2012)	and	that	have	specifically	been	taken	
from	Coombes	et	al.	(1997)	with	the	names	Problem	Set	A:	Practice	with	Maple	and	Problem	Set	
B:	First	Order	Equations.	The	first	sheet	contains	exercises	for	using	basic	Maple	commands,	while	
the	second	sheet	contains	problems	concerning	first-order	ordinary	differential	equations.	

The	design	in	Maple	seeks	to	obtain	graphic	and	numerical	representations	that	help	to	carry	
out	a	convenient	analysis	and	interpretation	of	the	problems	posed.	
The	developed	methodology	follows	the	following	sequence:	

a) Statement	of	the	problem.	
b) Mathematical	analysis	of	the	problem.	
c) Solution	 in	 a	 Maple	 worksheet	 of	 the	 problem	 algebraically,	 numerically	 and	

graphically.	
d) Exploration,	description,	analysis	and	interpretation	of	the	model	through	the	Maple	

interface.	
	

3. Results	and	discussion	
The	results	of	the	Maple	worksheet	corresponding	to	the	solution	of	Problem	Set	B.	First	Order	
Equations	are	presented.	

3.1. Finding	the	solution	to	the	initial	value	problem:	
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Defining	this	function	in	Maple:	
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Figure	1	shows	the	solution  on	the	interval	  with	which	it	can	be	stated	that	the	
solution	close	to	 is	unbounded	and	tends	to	 . 
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             Figure	1:	Solution	to	Exercise	B.1(b)	on	the	interval	  

Figure	2	shows	the	solution  on	the	interval	 .	
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	Figure	2:	Solution	to	Exercise	B.1(b)	on	the	interval	  
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Figure	3	shows	the	solution 	on	the	interval	 , with	which	it	can	be	stated	that	
the	solution	for	large	values	of	  tends	to	0.	
 
>  
 

 
Figure	3:	Solution	to	Exercise	B.1(b)	on	the	interval	  

Finding	the	solutions  of	the	differential	equation	corresponding	to	the	initial	conditions	

 : 
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Figure	4	shows,	in	the	same	graph,	the	solutions   on	the	interval . 
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Figure	4:	Solution	to	Exercise	B.1(b)	on	the	interval	  

Figure	5	shows,	in	the	same	graph,	the	solutions  on	the	interval	 . 
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Figure	5:	Solution	to	Exercise	B.1(b)	on	the	interval	  

According	to	the	graphs,	it	can	be	stated	that	the	solutions,	except	one,	near	 ,	are	unbounded	
and	 tend	 to	 	 and	 to	 ;	 however	when	  they	 approach	 zero.	 Figure	 6	 shows	 a	
solution,	with	its	graph,	of	the	ordinary	differential	equation	without	singularity	in	  
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Figure	6:	Solution	to	Exercise	B.1(e)	on	the	interval	 ,	without	singularity	in	 	 

3.2. Finding	the	solution	to	the	initial	value	problem:	
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Figure	7	shows	on	 solutions	for	 .  
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Figure	7:	Solution	to	Exercise	B.2(b)	on	the	interval	  
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These	solutions	are	evaluated	in	 : 
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Figures	 8	 and	 9	 show,	 in	 the	 same	 graph,	 the	 five	 solutions	 on	 the	 intervals	  and 

,	respectively.	 
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Figure	8:	Solution	to	Exercise	B.2(d)	on	the	interval	 	
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Figure	9:	Solution	to	Exercise	B.2(d)	on	the	interval	  

Changes	in	the	initial	data	affect	the	solution	for	  but	do	not	affect	for	  The	five	
solutions,	 except	one,	near	 	 are	unbounded	and	 tend	 to	  and	 to ; however	when

 they	approach	the	exception:	a	straight	line.	
 

3.3. Finding	the	solution	to	the	initial	value	problem:	
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The	solutions	are	plotted	in	figure	10	for	  The	solutions	are	presented	
on	the	same	interval	between	 	and	an	appropriate	right	endpoint	 .  
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Figure	10:	Solution	to	Exercise	B.3	on	the	interval	  

The	aim	is	to	explain	the	behavior	of	the	solution	curves	for	large	values	of	 . Likewise,	discuss	
the	effect	that	small	changes	in	the	initial	data	can	have	on	the	global	behavior	of	the	solution	
curves.	
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Figure	11:	Solution	curves	(first	type)	of	Exercise	B.3	on	the	interval	  
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    Figure	12:	Solution	curve	(second	type)	of	Exercise	B.3	on	the	interval	  
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Figure	13:	Solution	curves	(third	type)	of	Exercise	B.3	on	the	interval	  

According	to	figures	11,	12	and	13,	three	types	of	behavior	are	identified	for	the	solution	curves.	
Small	changes	in	the	initial	data	do	not	affect	the	solution	curves	for	values	greater	than	and	close	
to	 ; however,	for	large	positive	values	of	  curves	of	the	first	type	tend	to	 , those	of	the	
second	type	are	bounded	and	tend	to	0,	while	those	of	the	third	type	tend	to	 . 

3.4. Finding	the	implicit	solution	to	the	ordinary	differential	equation:	
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It	is	noted	that	the	solution	is	implicitly	given	in	the	form	  

In	figure	14,	contourplot	has	been	used	to	see	what	the	solution	curves	look	like.	For	the	ranges	
of	  and	 , it	has	been	taken	 and	  
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	 Figure	14:	Solution	curves	of	Exercise	B.4(b)	with	 , ,	first	form	
Figure	15	presents	a	second	way	to	use	contourplot	to	see	what	the	solution	curves	look	like.	In	
figure	 16,	 implicitplot	 has	 been	 used	 to	 graph	 the	 solution	 satisfying	 the	 initial	 condition

The	graph	shows	two	curves,	one	of	them	is	the	solution,	which	is	showed	in	figure	17.	
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   Figure	15:	Solution	curves	of	Exercise	B.4(b)	with	 , ,	second	form 
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	 Figure	16:	Probable	solution	curves	of	Exercise	B.4(c)	with	 ,  
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Figure	17:	Solution	curve	of	Exercise	B.4(c)	with	 ,  

Given	a	value	 , to	find	  it	is	necessary	to	find	the	solution	of	  (viewed	
as	an	equation	in ) near	of	  This	can	be	done	with	the	fsolve	command.	It's	found	

 In	figure	18	these	values	are	marked	on	a	graph.	
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	 Figure	18:	Some	points	of	the	solution	curve	of	Exercise	B.4(d)	
	

3.5. Finding	the	implicit	solution	to	the	ordinary	differential	equation:	
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It	is	noted	that	the	solution	is	implicitly	given	in	the	form	 	In	figure	19,	contourplot	
has	been	used	to	see	what	the	solution	curves	look	like.	For	the	ranges	of	  and ,	it	has	been	
taken	 	and	  
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	 Figure	19:	Solution	curves	of	Exercise	B.5(b)	with	 ,	  
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In	 figure	 20,	 implicitplot	 has	 been	used	 to	 graph	 the	 solution	 satisfying	 the	 initial	 condition
	The	graph	shows	several	curves,	one	of	them	is	the	solution,	given	in	figure	21.	
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	 Figure	20:	Probable	solution	curves	of	Exercise	B.5(c)	with	 ,	  
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	 Figure	21:	Solution	curve	of	Exercise	B.5(c)	with	 ,  

Given	a	value	 ,	to	find	  it	is	necessary	to	find	the	solution	of	  (viewed	
as	an	equation	in	 )	near  This	can	be	done	with	the	fsolve	command.	It's	found	

.	In	figure	22	these	values	are	marked	on	a	graph.	
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	 Figure	22:	Some	points	of	the	solution	curve	of	Exercise	B.5(d)	
	

3.6. In	this	problem	the	continuous	dependence	of	the	solutions	with	respect	to	the	initial	
data	is	studied.	Finding	the	solution	to	the	initial	value	problem:	
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It	is	denoted	as	 	the	solution	of	the	given	problem.	In	figure	23,	for	 the	

solutions	  are	graphed	together	on	the	interval	 	Figure	24	shows	the	solution	
curve	on	the	interval	 . 
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	 Figure	23:	Solution	curves	of	Exercise	B.6(b)	on	the	interval	  
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	 Figure	24:	Solution	curve	y1 of	Exercise	B.6(b)	on	the	interval	  

Computing	 : 
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For	any	pair	of	numbers	 ,  and	 :	 
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Figure	25:	Graph	of	the	function	 from	Exercise	B.6(d)	on	the	interval	  
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According	to	figure	25	it	can	be	taken	 ,	 	and ,	 	  

5. Conclusions	
In	this	research	work,	the	production	of	two	worksheets	in	Maple	was	achieved,	which	combine	
text	with	 the	numerical,	 symbolic	 and	 graphic	 output	 of	 the	mathematical	 software.	The	 first	
sheet	contains	an	introduction	to	the	basic	Maple	commands,	and	solves	the	set	of	exercises	and	
problems	called	Problem	Set	A:	Practice	with	Maple,	allowing	to	master	the	basic	skills	necessary	
to	work	with	the	software.	With	this	set	of	problems,	a	minimum	level	of	competence	was	reached	
that	allowed	Maple	to	be	used	throughout	the	research.	
	 Through	Maple	 it	 has	 been	 possible	 to	 discuss	 the	 existence,	 uniqueness	 and	 stability	 of	
solutions	of	the	differential	equations	considered	in	the	data	record:	Problem	Set	B:	First	Order	
Equations,	topics	that	are	fundamental	in	the	theory	and	application	of	these	equations.	With	the	
help	of	Maple,	in	each	of	the	problems	solved,	it	has	been	possible	to	explore,	describe,	analyze	
and	 interpret	 solutions	 of	 each	 intervening	model,	 in	 view	 of	Maple's	 simple	 and	 interactive	
interface,	thus	prioritizing	the	analysis	of	the	concepts	involved	and	the	resulting	solutions.	
	 Through	Maple,	 it	 has	been	possible	 to	 implement	quantitative	and	qualitative	methods	 in	
first-order	ordinary	differential	equations,	visualized	algebraically,	numerically	and	graphically.	
In	particular,	a	qualitative	approach	to	the	study	of	these	equations	has	been	considered.	With	
this	approach,	qualitative	information	about	the	solutions	is	obtained	directly	from	the	equation,	
without	the	use	of	a	formula	for	the	solution.	
	 Due	to	the	great	symbolic	capacity	of	the	software,	it	is	concluded	that	Maple	is	very	powerful	
for	 the	quantitative	and	qualitative	analysis	of	 first-order	ordinary	differential	equations.	The	
Maple	 symbolic	 calculation	 software	made	 it	 possible	 to	 efficiently	 carry	out	 calculations	 and	
present	 solutions	algebraically,	numerically	and	graphically,	 so	 that	 the	 researcher	 can	 spend	
more	time	assimilating	the	concepts	and	analyzing	the	problems.	
	 The	use	of	Maple	has	contributed,	according	to	this	research	work,	to	a	better	understanding	
of	the	mathematical	models,	given	that	the	researcher	can	focus	his	attention	on	the	phases	of	
approach,	formalization	and	“concretion”	of	the	different	problems	raised.	It	is	concluded	that	the	
use	 of	Maple	 allows	 the	 resolution	 of	 numerous	 problems	 formulated	 in	 terms	 of	 first-order	
ordinary	differential	equations	and	constitutes	a	fundamental	tool	in	scientific	research.	
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