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Abstract	
This	 study	 focuses	 on	 analyzing	 tomographic	 images	 from	 the	 LiTS	 (Liver	 Tumor	 Segmentation	
Challenge)	 and	 CHAOS	 (Combined	 CT-MR	 Healthy	 Abdominal	 Organ	 Segmentation)	 datasets,	
comprising	40	patients,	half	with	hepatic	neoplasms(LiTS)	and	the	rest	healthy	liver	donors	(CHAOS).	
The	primary	aim	is	to	employ	fractal	dimension	as	a	tool	for	characterizing	hepatic	organ	morphology.	
The	first	step	of	analysis	is	a	preprocessing	11,311	images,	with	a	technique	of	pixel	intensity	weighting	
for	 effective	 liver	 segmentation.	 Binary	 classification	 categorized	 pixels,	 indirectly	 capturing	 organ	
contrast	distribution.	This	preprocessing	enriched	subsequent	fractal	dimension	analysis.	
Original	images	underwent	pixel	scanning	and	mean	calculation	for	thresholding,	this	for	transforming	
them	into	binary	images.	The	calculation	of	the	fractal	dimension	followed,	the	images	with	black	pixels	
were	filtered,	resulting	in	3,412	pathological	images	and	2,289	non-pathological	images.	
Statistical	 analysis	 revealed	 a	 significant	difference	 in	 fractal	 dimension	between	patient	 groups	 (p:	
4.965e-39),	indicating	varying	liver	morphology	in	the	groups.	A	box	plot	visually	represented	fractal	
dimension	 density,	 highlighting	 lower	 values	 for	 patients	 with	 hepatic	 pathologies	 (mean	 =	 1.25)	
compared	to	those	without	(mean	=	1.36).	
Additionally,	a	comprehensive	database	of	 images	was	compiled.	This	database	 includes	the	medical	
images	with	 the	 segmented	 liver	 as	well	 as	 their	original	 versions.	To	 facilitate	 future	 research	and	
contribute	to	diagnosis	and	classification	of	hepatic	diseases,	this	database	will	be	made	available	online	
to	the	scientific	community.	
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1. Introduction.	
According	to	the	World	Health	Organization	(WHO),	cancer	stands	as	the	second	leading	cause	of	
mortality	worldwide.	 In	 2015	 alone,	 this	 devastating	 disease	 claimed	 the	 lives	 of	 8.8	million	
individuals,	with	liver	cancer	alone	accounting	for	788	thousand	deaths.	Many	of	these	fatalities	
can	 be	 attributed	 to	 the	 lack	 of	 timely	 diagnosis	 and	 treatment,	 resulting	 in	 the	 detection	 of	
tumors	 at	 advanced	 stages.	 Consequently,	 there	 exists	 a	 pressing	 need	 to	 identify	 novel	
techniques	founded	on	biomarkers	to	aid	in	early	detection	of	this	condition.	Such	biomarkers	
not	only	encompass	clinical	blood	chemistry	analysis	but	also	encompass	the	incorporation	of	
liver	lesion	images	that	manifest	during	the	initial	stages	of	the	disease	[1].		
In	addition	to	the	profound	loss	of	human	life,	cancer	also	exacts	a	considerable	toll	on	global	

economies.	Estimations	reveal	that	the	total	cost	associated	with	cancer	in	2010	amounted	to	a	
staggering	$1.16	trillion.	Disturbingly,	as	of	2017,	merely	26%	of	low-income	countries	reported	
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the	 provision	 of	 pathology	 services	 in	 their	 public	 health	 systems,	 which	 serve	 the	 general	
population.	Comparatively,	over	90%	of	high-income	countries	deliver	cancer	treatment	services	
to	their	patients,	with	the	corresponding	figure	dwindling	to	below	30%	for	low-income	countries	
[2].	
	
Given	 the	 dire	 implications	 of	 inadequate	 cancer	 care	 and	management,	 researchers	must	

address	 the	 ongoing	 research	 problem	 of	 developing	 innovative	 techniques	 rooted	 in	 the	
identification	of	biomarkers.	It	is	imperative	that	these	biomarkers	enable	prompt	and	accurate	
diagnosis,	facilitating	effective	treatment	strategies.	Moreover,	these	biomarkers	ought	to	extend	
beyond	 conventional	 clinical	 blood	 chemistry	 analysis,	 embracing	 the	 incorporation	 of	 liver	
lesion	images	that	may	manifest	during	the	primary	stages	of	the	disease	[3].	

1.1 Liver	Lesions.	

The	liver,	a	vital	organ	located	in	the	right	hypochondrium,	stands	out	as	the	largest	viscus	
within	the	human	body.	Given	its	position	in	the	abdominal	cavity,	the	liver	plays	essential	roles	
in	the	regulation	and	maintenance	of	various	metabolic	and	physiological	processes.	 It	 is	vital	
because	 it	 not	 only	 plays	 a	 crucial	 role	 in	 digestion	 and	 nutrient	 storage	 but	 also	 actively	
participates	in	detoxifying	and	filtering	harmful	substances.	However,	the	significance	of	the	liver	
is	also	marked	by	its	susceptibility	to	a	wide	range	of	pathologies.	These	conditions	can	range	
from	 local	 disorders	 directly	 affecting	 the	 liver	 to	 systemic	 issues	 involving	 its	 function	 in	
conjunction	 with	 other	 organs	 and	 systems	 of	 the	 body.	 The	 diversity	 of	 liver	 diseases	
underscores	the	vulnerability	and	clinical	importance	of	this	organ	in	the	context	of	human	health	
[4].	Computed	tomography	is	especially	useful	for	the	analysis	and	diagnosis	of	the	organ.	This	
imaging	 method	 provides	 a	 detailed	 and	 three-dimensional	 view	 of	 the	 liver,	 allowing	 for	 a	
meticulous	exploration	of	its	anatomical	structure	and	the	detection	of	potential	alterations	or	
pathologies.	Being	non-invasive,	it	emerges	as	an	effective	tool	for	evaluating	liver	morphology	
and	function	[5],	in	addition,	it	allows	for	extensive	resolution	and	detailed	reconstruction	of	the	
relevant	 area,	 as	well	 as	 significant	 enhancement	 in	 the	 venous	 phase.	 In	 general,	 due	 to	 its	
moderate	costs	and	almost	guaranteed	accessibility	 in	our	country,	 it	 is	 the	primary	study	for	
liver	 evaluation.	 A	 hepatic	 lesion,	 also	 known	 as	 a	 focal	 lesion	 or	 space-occupying	 lesion,	 is	
characterized	by	being	a	presence	within	the	complex	hepatic	parenchyma.	This	structure,	which	
can	manifest	with	a	liquid	or	solid	nature,	is	distinguished	by	its	ability	to	displace	surrounding	
formations,	 altering	both	 the	 contour	 and,	 at	 times,	 the	 size	of	 the	 liver	 [6],	 additionally,	 it	 is	
crucial	 to	note	 that	hepatic	 lesions,	despite	 their	presence	 in	 the	organ,	do	not	always	 lead	to	
significant	structural	and	functional	alterations	in	the	hepatic	system.	In	many	cases,	these	lesions	
may	manifest	as	benign	entities,	meaning	that,	although	they	can	be	detected	through	imaging	
studies,	they	do	not	generate	substantial	adverse	impacts	on	the	integrity	or	functionality	of	the	
liver	[7].		
Within	the	spectrum	of	malignant	lesions	affecting	the	liver,	Hepatocellular	Carcinoma	stands	

out	as	an	entity	of	considerable	clinical	significance.	This	form	of	hepatic	neoplasia	ranks	sixth	
globally	in	terms	of	frequency	and	represents	the	third	leading	cause	of	cancer-related	mortality.	
In	the	Mexican	context,	a	significant	increase	of	14%	in	mortality	associated	with	this	pathology	
was	 observed	 during	 the	 period	 between	 2000	 and	 2006	 [8],	 on	 the	 other	 hand,	 metastatic	
disease	constitutes	the	most	commonly	found	hepatic	neoplasia	in	imaging	studies	[9].	

1.2 Biomarkers	and	Cancer.	

Human	 carcinogenesis,	 the	 process	 of	 cancer	 formation,	 is	 a	 complex	 phenomenon	 that	
initiates	with	a	 single	 cell	 and	 is	 characterized	by	uncontrolled	 cellular	growth.	This	 intricate	
process	 is	 a	 result	 of	 the	 interaction	 between	 external	 and	 internal	 factors,	 which	 provoke	
irreversible	changes	in	cellular	function.	External	agents,	such	as	environmental	carcinogens	and	
radiation,	 intertwine	with	internal	processes	involving	genetic	and	epigenetic	alterations.	This	
combination	of	factors	triggers	biochemical	and	molecular	events	that	drive	the	transformation	



of	 normal	 cells	 into	 cancerous	 ones,	 promoting	 unrestricted	 cell	 growth,	 which	 is	 a	 defining	
characteristic	 of	 malignant	 tumors.	 Understanding	 this	 molecular	 sequence	 is	 crucial	 for	
effectively	addressing	the	development	and	progression	of	cancer		[10].	
	
The	concentrations	of	carcinogens	or	their	metabolites	assessed	in	tissues	or	bodily	fluids	play	

a	crucial	role	as	indicators,	known	as	cancer	biomarkers.	These	biomarkers	not	only	provide	a	
direct	window	into	exposure	 to	carcinogenic	substances	but	also	serve	as	revealing	signals	of	
fundamental	biological	processes.	Among	these	biological	processes	are	xenobiotic	metabolism,	
which	 addresses	 the	 transformation	 of	 foreign	 compounds	 in	 the	 body;	 DNA	 repair,	 which	
counteracts	 genetic	 damage;	 cell	 proliferation,	 which	 regulates	 cell	 growth;	 apoptosis,	 which	
controls	programmed	cell	death;	and	the	immune	response,	which	plays	a	vital	role	in	defense	
against	abnormal	cells.	The	comprehensive	monitoring	of	these	biomarkers	provides	a	holistic	
view	of	exposure	to	carcinogens	and	associated	biological	responses,	thus	contributing	to	a	more	
complete	and	accurate	assessment	of	cancer	risk	[11]	[12].		
The	significance	of	these	biomarkers	lies	in	their	ability	to	provide	early	prognosis	regarding	

the	 likelihood	 of	 developing	 cancer.	 This	 prognosis	 becomes	 an	 invaluable	 tool	 that	 enables	
medical	professionals	to	make	informed	decisions	about	the	initiation	of	specific	treatments	or	
appropriate	interventions.	By	obtaining	early	information	through	the	assessment	of	biomarkers,	
the	door	is	opened	to	more	proactive	and	personalized	medical	strategies,	thus	optimizing	the	
effectiveness	 of	 therapeutic	 measures.	 Ultimately,	 the	 early	 identification	 of	 these	 cancer	
biomarkers	not	only	enhances	treatment	prospects	but	can	also	be	instrumental	in	prevention	or	
early	detection,	significantly	elevating	the	quality	of	healthcare	provided	to	patients.	

1.3 Fractal	Dimension	(FD).	

In	mathematics,	the	Hausdorff	dimension	is	a	measure	of	roughness	first	introduced	in	1918	
by	the	mathematician	Félix	Hausdorff.	The	Hausdorff	dimension	is	an	integer	according	to	the	
usual	sense	of	dimension,	also	known	as	topological	dimension.	Nevertheless,	formulas	have	been	
developed	to	calculate	the	dimension	of	less	simple	objects,	where,	relying	solely	on	their	scale	
and	self-similarity	properties,	it	is	concluded	that	objects,	including	fractals,	do	not	have	integer	
Hausdorff	dimensions.	Due	to	 the	significant	 technical	advances	made	by	Abram	Samoilovitch	
Besicovitch,	 allowing	 the	 calculation	 of	 dimensions	 for	 highly	 irregular	 or	 "rough"	 sets,	 this	
dimension	is	also	commonly	known	as	the	Hausdorff-Besicovitch	dimension	[13].	
The	fractal	dimension,	a	measure	characterizing	the	geometric	and	topological	complexity	of	

fractal	sets,	is	often	defined	using	the	Hausdorff-Besicovitch	dimension.	While	there	are	various	
ways	 to	 define	 the	 fractal	 dimension,	 one	 of	 the	 most	 common	 is	 precisely	 the	 Hausdorff-
Besicovitch	dimension.	The	most	popular	method	today	for	calculating	the	fractal	dimension	is	
the	 box-counting	method.	 This	method	 involves	 counting	 the	 number	 of	 boxes	N(ε)	 of	 size	 ε	
needed	to	cover	the	entire	object	in	the	image.	As	the	value	of	ε	increases,	the	number	of	boxes	
needed	to	cover	the	object	decreases.	The	fractal	dimension	is	obtained	by	calculating	the	slope	
of	the	best-fit	line	from	a	graph	of	log(N(ε))	against	log(1/ε)		[14].	
	
The	Hausdorff–Besicovitch	dimension	(D)	is	defined	for	fractal	sets	F	as	follows	

	

D =
𝐿𝑜𝑔(𝑁(ε))
log	(1 ε/ )

 
(1) 

Where:		
D:	is	the	Fractal	dimension	
N(ε):	 Is	 the	minimum	number	of	assemblies	 (ε-cover)	 required	 to	completely	cover	 fractal	
assembly	F	with	elements	of	diameter	not	greater	than	ε.		
ε:	This	is	the	size	of	the	element	of	the	ε-cover.	

	



In	simpler	terms,	the	fractal	dimension	provides	valuable	information	about	the	variation	in	
the	number	of	smaller	sets	needed	to	cover	a	fractal	set	as	the	size	of	the	covering	elements	is	
adjusted.	When	applied	to	the	analysis	of	medical	images,	this	methodology	has	proven	its	utility	
in	various	disciplines,	from	the	detailed	examination	of	coronary	branching	to	the	comprehensive	
assessment	 of	 neurodegenerative	 diseases	 and	 dementia	 through	 ultrasound	 images.	 These	
advances,	guided	by	key	dates	and	notable	achievements,	have	transformed	the	understanding	
and	application	of	the	fractal	dimension	in	various	scientific	fields	[15]	[16]	[17].	

2. Methodology	
This	study	adopted	an	observational	approach	based	on	a	series	of	cases,	utilizing	data	from	the	
LiTS	 -	 Liver	 Tumor	 Segmentation	 Challenge	 (LiTS17)	 and	 the	 CHAOS	 -	 Combined	 (CT-MR)	
Healthy	Abdominal	Organ	Segmentation	dataset.	It	included	130	computed	tomography’s	from	
pathological	patients,	with	their	corresponding	liver-segmenting	masks,	obtained	from	LiTS17,	
and	40	computed	tomography’s	from	healthy	patients,	with	20	volumes	of	masks	from	CHAOS.	
To	address	the	diversity	of	medical	formats,	the	versatile	capabilities	of	Python	were	employed	
[18],	implementing	custom	instructions	for	the	efficient	reading	of	medical	volumes	with	variable	
formats	and	procedures.	
The	datasets	were	provided	in	.nii	and	DICOM	formats,	and	to	ensure	equality	in	the	number	

of	patients	in	both	populations,	20	volumes	were	selected	from	the	first	dataset.	Subsequently,	
slices	were	extracted	from	each	volume	and	exported	to	JPG	image	files	(Figure	1).	This	approach	
allowed	for	 the	standardization	of	data,	 facilitating	consistent	comparison	and	analysis	across	
both	patient	groups.		

	
Figure	1:	Extracting	the	slices	from	the	.nii	and	DICOM	files	and	exporting	them	as	a	JPG	image.	
In	the	subsequent	phase,	we	utilized	this	set	of	images	as	input	for	a	liver	segmentation	process.	
This	procedure	involves	integrating	information	from	the	medical	images	with	the	pre-existing	
mask,	 thus	 generating	 a	 detailed	 and	 accurate	 mapping	 of	 hepatic	 regions	 in	 each	 image.	
Leveraging	the	richness	of	data	provided	by	the	original	images	and	guided	by	the	pre-existing	
mask	in	the	selected	image	set,	this	process	enables	a	more	suitable	and	detailed	delineation	of	
the	hepatic	structure	(Figure	2,	section	b)	in	the	data	from	each	slice	extracted	from	both	groups	
of	tomographic	volumes	(Figure	2,	section	a).	The	result	can	be	observed	in	section	c	of	Figure	2.	
After	this	process,	we	proceed	to	create	a	copy	of	the	original	image.	Subsequently,	we	identify	

the	coordinates	where	the	liver	mask	has	white	values,	indicating	specific	areas	of	interest.	Next,	
we	replace	the	pixels	at	these	coordinates	in	the	mask	with	the	corresponding	pixels	from	the	
original	 image.	 This	 procedure	 essentially	 involves	 overlaying	 and	 merging	 the	 information	
contained	in	the	mask	with	the	visual	information	from	the	original	tomography.	The	obtained	
result	 is	 an	 effective	 segmentation	 of	 the	 organ,	 where	 all	 its	 anatomical	 and	 structural	
characteristics	captured	by	the	tomography	are	accurately	represented.	



This	approach	of	 integrating	the	mask	and	the	original	 image	serves	as	a	robust	method	to	
precisely	highlight	and	delineate	hepatic	regions	(Figure	2,	section	d).	The	procedure	is	based	on	
the	 binary	 nature	 of	 a	 mask,	 where	 pixels	 are	 classified	 into	 two	 distinct	 categories:	 0,	
representing	the	background	or	areas	to	be	omitted,	and	1,	indicating	the	foreground	or	areas	of	
interest.	By	assigning	 these	values,	we	precisely	establish	which	regions	of	 the	original	 image	
should	be	preserved	(in	the	case	of	the	mask	with	a	value	of	1)	and	which	should	be	suppressed	
or	excluded	(when	the	mask	has	a	value	of	0).	This	approach	proves	to	be	an	efficient	method	to	
accurately	highlight	and	isolate	anatomical	structures	of	interest.	
	
	

	
Figure	2:	Masking	and	Pixel	Replacement	Process	for	Liver	Segmentation	on	the	Original	Image.		
	
With	the	set	of	JPG	images	from	each	group,	we	performed	the	mathematical	analysis	of	the	

fractal	dimension.	In	this	process,	the	first	step	involves	scanning	the	pixels	and	calculating	the	
mean	to	use	as	a	threshold	in	the	transformation	from	original	to	binary	images.	The	binarization	
threshold	is	crucial	because	pixels	are	classified	into	two	categories:	those	belonging	to	the	object	
of	interest	and	those	that	do	not	(Table	1,	column	2).	As	a	second	step,	the	fractal	dimension	is	
calculated	on	that	binarized	image,	and	each	dimension	is	stored	in	a	list	for	each	group	of	images.	
	
The	algorithm	we	used	to	compute	the	fractal	dimension	is	the	following.	

	
1. Initialization:	

• Start	with	a	binary	image	representing	the	fractal	set.	In	this	case,	the	image	is	a	
matrix	of	zeros	and	ones,	where	ones	indicate	the	presence	of	the	fractal	set,	and	
zeros	indicate	its	absence.	

2. Initial	Box	Size	Definition	(ε):	
• Choose	an	initial	box	size,	denoted	as	ε	(epsilon).	This	size	determines	the	size	of	

the	square	boxes	that	will	be	used	to	cover	the	image.	
3. Box	Creation:	

• Create	 a	 matrix	 of	 square	 boxes,	 where	 the	 value	 at	 each	 position	 indicates	
whether	the	box	covers	the	fractal	set	or	not.	Initially,	for	this	research,	start	with	
the	pixel	size	of	the	image	(512)	(Table	1).	

4. Fractal	Set	Coverage:	
• Overlay	the	boxes	on	the	fractal	set	image.	Each	box	that	matches	the	fractal	set	is	

marked	as	"1"	in	the	box	matrix	(Figure	3).	
5. Box	Counting:	

• Count	the	number	of	boxes	that	have	at	least	one	pixel	inside	the	fractal	set.	This	
number	is	the	result	of	box	counting	for	the	current	box	size	(Table	1).	

6. Box	Size	Reduction	(ε):	
• Reduce	the	box	size	(ε)	by	half	and	repeat	steps	3-5	for	the	new	box	size	(Figure	

3).	
7. Iteration:	

• Repeat	the	process	for	different	box	sizes,	usually	halving	in	each	iteration,	until	
the	box	size	is	as	small	as	desired;	in	this	research,	the	smallest	size	is	one	pixel.	



8. Result	Recording:	
• Record	 the	 number	 of	 boxes	 needed	 to	 cover	 the	 fractal	 set	 for	 each	 box	 size	

(Table	1).	
9. Logarithmic	Analysis:	

• To	analyze	the	relationship	between	box	size	and	the	number	of	boxes	needed,	
take	the	 logarithm	of	both	sides.	This	 is	done	to	visualize	the	relationship	on	a	
logarithmic	scale	(Table	1).	

10. Result	Visualization:	
• Visualize	 the	 results	 graphically,	 often	 using	 a	 log-log	 plot	 where	 the	 x-axis	

represents	the	logarithm	of	the	box	size,	and	the	y-axis	represents	the	logarithm	
of	the	number	of	boxes	needed	(Figure	3).	

11. Fractal	Dimension	Estimation:	
• The	 slope	 of	 the	 line	 in	 the	 log-log	 plot	 provides	 an	 estimate	 of	 the	 fractal	

dimension	of	the	set.	
	
Table 1. 
Box-Counting for 6 patients with a box size of one pixel (minimum possible). 
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In	Table	1,	we	can	see	the	binarization	of	images	from	some	patients,	both	pathological	and	

non-pathological.	The	Box-Counting	Chart	shows	the	log-log	plot	of	box	counting.	Each	point	on	
the	graph	represents	the	box	size	(on	the	x-axis)	and	the	total	number	of	boxes	needed	to	cover	
the	image	(on	the	y-axis).	In	this	way,	we	can	observe	a	more	homogeneous	structure	in	terms	of	
binarization	 in	 non-pathological	 patients.	 The	 above	 observation	 validates	 that	 the	 lower	
complexity	of	the	fractal	dimension	in	images	of	pathological	patients	(Table	1)	may	be	related	to	
metabolic	 alterations	 that	 would	 be	 indirectly	 observed	 using	 the	 weighted	 pixel	 intensity	
threshold.	This	could	provide	a	pathway	for	in-depth	analysis	in	future	projects.	A	healthy	liver	
tends	to	show	a	uniform	and	efficient	distribution	of	contrasts,	while	in	a	liver	affected	by	cancer,	
changes	 in	 blood	 flow	 could	 result	 in	 noticeable	 alterations	 in	 the	 uptake	 and	 dispersion	 of	
contrast,	influencing	the	interpretation	of	medical	images,	such	as	tomography	(Figures	3	and	4)		
[19].		
With	 the	 stored	 fractal	 dimensions,	 we	 filter	 out	 any	 slice	 that	 represents	 an	 image	with	

completely	black	pixels,	i.e.,	slices	from	the	tomography	where	the	liver	is	not	present,	mainly	the	
first	and	last	slices	of	the	study.	It	is	this	reduced	filtered	list	to	which	the	distribution	study	and	
the	non-parametric	test	of	mean	difference	(Mann-Whitney	U)	were	applied.	

3. Results.	
In	the	following	table	(Table	2),	we	can	see	the	summarized	analysis	of	the	images,	including	the	
selection	 of	 slices	 that	 underwent	 fractal	 dimension	 calculation.	 A	 total	 of	 20	 tomography	
volumes	were	processed	for	each	patient	group,	ensuring	a	representative	sample	from	both	sets.	
The	segmentation	of	the	tomography	slices	resulted	in	a	significant	number,	initially	extracting	
11,437	for	pathological	patients	and	2,874	for	non-pathological	ones.	This	was	derived	from	the	
size	of	 the	slices	used	as	configuration	 in	the	tomographic	equipment.	For	the	research,	 those	
slices	without	the	presence	of	the	hepatic	organ	were	eliminated,	meaning	the	masks	that	showed	
a	 completely	 black	 image,	 leaving	 us	with	 a	 final	 number	 of	 images	 of	 3,412	 for	 pathological	
patients	and	2,289	for	non-pathological	ones.	Analyzing	this	group	of	images,	we	obtained	a	mean	
DF	of	1.36	in	"Non-pathological	Patients,"	while	in	"Pathological	Patients,"	it	was	slightly	lower,	
with	a	mean	of	1.25. In	the	following	table	(Table	2),	we	can	see	the	summarized	analysis	of	the	
images,	including	the	selection	of	slices	that	underwent	fractal	dimension	calculation.		
 
Table 2. 
Data from the study. 

Study Group Volumes of 
Analyzed 
Tomography  

Extracted 
slices 

Cuts 
without 
organ to be 
segmented 

Segmented 
organ cuts 

Average 
DF 

Median  
DF 

Non-
pathological 

20 2874 585 2289 1.36 1.41 

Pathological 20 11437 8025 3412 1.25 1.32 
 
	



Now,	 these	 differences	 in	 populations	 alone	 are	 not	 sufficient	 for	 the	 classification	 of	
pathological	 and	 non-pathological	 patients,	 as	 seen	 in	 Figure	 6	 where	 there	 is	 a	 significant	
intersection	 between	 results	 for	 both	 cases	 (pathological	 and	 healthy).	 However,	 fractal	
dimension	 can	 be	 integrated	 with	 other	 clinical	 features	 and	 biomarkers	 to	 improve	 the	
robustness	 of	 classification	 models.	 This	 could	 result	 in	 more	 comprehensive	 and	 accurate	
systems	to	distinguish	between	patients	with	pathological	and	non-pathological	livers,	as	texture	
is	the	most	appropriate	descriptor	for	mass	detection	in	images	[20].		
	

	
Figure	3:	In	the	left	side	non-pathological	image	of	the	patient's	liver,	in	the	right	side	treated	
using	weighted	pixel	intensity	threshold.	

	
Figure	4:	in	the	left	side	pathological	image	of	the	patient's	liver,	in	the	right	side	treated	using	
weighted	threshold	of	pixel	intensity.	
	
	



	
Figure	5:	Density	of	the	distribution	of	the	study	populations.	
	
In	the	previous	graph	(Figure5),	the	Y-axis	shows	the	occurrence	density	of	fractal	dimension	

values,	indicating	the	concentration	of	values	in	both	study	groups	and	providing	a	general	idea	
of	how	they	are	distributed	in	amplitude,	a	part	that	shows	differences	in	the	studied	groups.	
In	the	 follow	Figure	(Figure	6),	we	can	observe	a	relative	distance	between	the	means	and	

medians	of	the	studied	data,	leading	us	to	theorize	that	by	using	fractal	dimension	as	a	variable	
for	classification	models,	a	quantitative	evaluation	of	tomographic	images	could	be	carried	out.	
This	would	allow	for	a	more	precise	characterization	of	the	complexity	and	irregularity	of	hepatic	
structures,	providing	valuable	 information	 for	diagnosis	and	 treatment.	By	quantifying	 fractal	
complexity	over	time	in	images	and	even	at	the	cellular	level,	doctors	could	gain	insights	into	the	
evolution	of	pathology	and	adjust	treatment	strategies		[21]	[22]	
	

	
Figure	6:	Box-plot	of	the	study	populations.	
	



The	above	graph	(Figure	6)	provides	a	clear	insight	into	the	behavior	of	fractal	dimensions	in	
the	analyzed	patients.	The	X-axis	contains	 the	studied	groups,	while	 the	Y-axis	represents	 the	
values	of	the	fractal	dimension,	here	is	where	we	can	observe	the	variability	of	fractal	dimensions	
among	 the	groups	and	how	 they	behave	along	 this	axis.	The	 interquartile	 range	 (IQR)	 can	be	
observed	in	the	height	of	the	boxes,	and,	in	turn,	the	whiskers	extending	from	the	boxes	upward	
and	 downward	 represent	 the	 dispersion	 of	 data	 outside	 the	 interquartile	 range,	 highlighting	
outliers,	indicated	as	points	outside	the	whiskers.	Meanwhile,	horizontal	lines	inside	the	boxes	
represent	 the	 medians	 presented	 in	 Table	 2,	 which	 are	 slightly	 distant	 from	 each	 other.	
Additionally,	a	new	feature	is	the	horizontal	lines	outside	the	boxes;	these	dashed	lines	represent	
the	mean	(Table	2)	of	the	data	in	each	group,	allowing	for	a	comparison	of	the	mean	and	median	
in	each	dataset.	
	
Mann-Whitney	U	Test	
U-Test	Statistic:	4701167.0		
p-value:	4.965716675822758e-39	
	
With	this	result,	we	conclude	that	there	is	a	significant	difference	between	the	populations,	

suggesting	a	contribution	of	this	information	derived	from	the	fractal	analysis	of	images	in	the	
future	generation	of	useful	models	in	the	classification	of	hepatic	neoplasms.	

4. Conclusions.	
This	 study	 presents	 relevant	 evidence	 concerning	 the	 description	 of	 liver	 texture	 and	
characteristics,	which	carries	significant	implications	for	the	diagnosis	and	classification	of	liver	
diseases,	particularly	in	the	context	of	cancer.	Through	the	application	of	an	innovative	approach	
utilizing	pixel	intensity	weighting	in	medical	images,	precise	segmentation	of	hepatic	regions	has	
been	achieved.	Empirical	evidence	has	shown	that	 this	methodology	 is	highly	useful,	as	 it	has	
successfully	 revealed	 significant	 differences	 in	 fractal	 dimension	 between	 patients	 with	 and	
without	liver	pathologies.	Considering	the	complex	nature	of	hepatocarcinogenesis,	the	observed	
variation	in	pixel	segmentation	among	these	groups	suggests	the	possibility	that	liver	lesions	may	
exhibit	diverse	blood	flow	patterns,	thus	influencing	the	absorption	and	distribution	of	contrast	
agents	in	imaging	studies.	Pathological	patients	demonstrate	visually	smoothed	regions	in	their	
images,	 indicating	 that	a	 less	 complex	pixel-level	 structure	 is	being	analyzed,	 as	 illustrated	 in	
Table	1.	
The	findings	of	this	study	provide	an	informative	basis	for	future	research	endeavors,	such	as	

collaboration	 with	 specialists	 to	 improve	 segmentation	 techniques	 and	 to	 undertake	 more	
diverse	 computational	 analyses.	 in	 addition	 to	 advancing	 clinical	 understanding,	 the	 image	
dataset	generated	from	this	study,	which	includes	the	segmented	organ	with	its	corresponding	
original	image	extracted	from	the	tomographic	volume,	holds	tremendous	potential	in	serving	as	
a	foundation	for	further	investigations.	This	dataset	can	facilitate	more	advanced	analyses	that	
take	into	consideration	fractal	features,	weighted	thresholds,	and	clinical	data,	potentially	leading	
to	enhanced	models	for	the	classification	of	liver	pathologies.	
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