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Abstract
The explosive expansion of online platforms has generated an abundance of information and choices, underscoring the
significance of personalized recommendations in improving the user experience and overall satisfaction. In this paper,
our primary emphasis lies in the domain of session-based recommender systems (SBRSs), where we aim to offer precise
recommendations by taking into account users’ sequential behaviour and short-term preferences. To achieve this goal, we
leverage the capabilities of Graph Convolutional Networks (GCNs), known for their extraordinary potential in modelling
intricate user-item associations and capturing the underlying patterns within user sessions. The proposed GCN-based SBRS
model’s effectiveness is rigorously assessed across three publicly available real-world datasets. The experimental results
demonstrate the superior performance of our model compared to several established baselines and other architectures in the
field of SBRS.
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1. Introduction
Recommender Systems (RSs) have been the subject of
extensive research over the past decade and have proven
to be valuable in numerous contexts. In the age of the
Internet and e-commerce, businesses are increasingly
turning to RSs as a means to enhance their sales per-
formance. RSs offer predictions of items that users may
find appealing for consumption [1]. Many algorithms
designed for this purpose primarily concentrate on deliv-
ering recommendations tailored to the user’s preferences
[2].

Session-based recommender systems (SBRSs) are a
type of recommender systems that make recommenda-
tions based on users’ short-term interests and preferences
[3]. They are becoming popular in several domains such
as e-commerce, music streaming, and news recommenda-
tion. SBRSs are challenging to build due to issues such as
data accuracy, sparsity, short-term user behaviour, and
the lack of explicit user feedback.
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This paper aims to handle the accuracy challenge by
improving recommendation results by leveraging the
power of Graph Convolutional Networks (GCNs) [4],
which have shown remarkable potential in modelling
complex user-item relationships and capturing the latent
patterns within sessions. The remainder of this paper
is structured as follows: in Section II, we provide an
overview of SBRS and GCN. Section III discusses related
work. Section IV presents a detailed description of our
GCN-based Model for predicting the next item in SBRSs.
Section V outlines the methodology used to experiment
with the proposed model. In Section VI, we present and
discuss the obtained results. Finally, Section VII con-
cludes this paper and introduces our future research.

2. Fundamentals

2.1. What is a session?
A session denotes a sequence of user interactions with
an application or website occurring within a short time
frame. These interactions encompass a variety of ac-
tions, including clicks, views, purchases, searches, and
others. Each session is associated with distinct session
attributes, such as the items viewed, the duration spent
on each item, the sequence of item views, and the time
intervals between consecutive interactions. While a ses-
sion typically represents a user’s present preference, it’s
important to note that a user’s intention within a session
can sometimes undergo local shifts. [5].
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Figure 1: An SBRS example on Movies Watched.

2.2. Session-Based Recommender Systems
As illustrated in Figure 1, the session-based recommen-
dation is a specialized task that focuses on predicting
the next item a user is likely to choose based on their
recent interactions within a single session. This task is
distinctive due to the sequential nature of user behaviour
within a session, the potential for repeated interactions
with specific items, and the necessity for providing rec-
ommendations in a timely manner. This approach is
particularly relevant in applications like e-commerce and
media streaming. In this study, we introduce simple yet
powerful linear models tailored to understand and en-
hance session-based recommendation systems.

2.3. Graph Convolutional Network
Graph Convolutional Networks (GCNs) are a category of
deep learning models specifically designed for process-
ing graph-structured data. In contrast to conventional
neural networks, GCNs expand neural network architec-
tures to accommodate non-Euclidean domains, which are
typically represented by graphs or networks [6, 7]. The
fundamental concept behind GCNs is to adapt the idea of
convolutional layers from grid-like data, such as images,
to graph structures. In traditional convolutional neural
networks (CNNs), convolutions work with local pixel
neighbourhoods, taking advantage of the grid’s struc-
ture data. However, in GCNs, convolutions are defined
in the spectral or spatial domain of graphs, leveraging
the connectivity patterns between nodes [6, 7]. In GCNs,
they usually work within a message-passing framework,
where each node aggregates and combines information
from its neighbouring nodes. This aggregation process is
analogous to the receptive field in CNNs, allowing nodes
to gather information from their local graph neighbour-
hood. The gathered information is then used to update
the node’s representation or features. By iterative prop-
agating and aggregating information across the graph,
GCNs learn to capture the graph structure and perform
node-level or graph-level predictions [6, 7]. We can think
of GCN as analogous to the filter used in convolution,
as it represents the adaptation of convolution from the
typical grid structure to more irregular structures such as

graphs [8]. The node embeddings are updated as follows
[4]:

𝐻(𝑙+1) = 𝛿
(︁
𝐷− 1

2𝐴𝐷− 1
2𝐻𝑙𝑊 𝑙

)︁
(1)

where: 𝐻(𝑙+1) represents the embedding matrix of the 𝑙-
th layer convolution, 𝑑 is the embedding dimension. 𝐴 is
the adjacency matrix with self-loops, and 𝐷𝑖𝑖 =

∑︀
𝑗 𝐴𝑖𝑗

is the degree matrix. All these operations make sure that
all the neighbours are receiving an aggregated message
from multiple hop neighbours. The weights 𝑊 𝑙 in the
GCN are trained using gradient descent.

3. Related Work
The literature of SBRS knows a few works that are based
on GCN. In [9], the authors propose GACOforREC model
for session-based recommendation in order to handle
long-term and short-term preferences of users and pre-
serve the hierarchy of potential preferences. This model
has used convolution operations of GCN to learn the
order within the session and the spatiality within the net-
work to capture the user’s short-term preferences. For
learning long-term preferences, it applied ConvLSTM, a
variant of the LSTM network. In addition, GACOforREC
proposes a new pair adaptive attention mechanism (Long-
Attention and Short-Attention) based on GCNs to pay at-
tention to the influence of different propagation distances
of GCNs. To enhance the model’s hierarchical learning of
various preferences, ON-LSTM has been introduced, it is
a network structure that focuses more on hierarchy and
neuron ordering. This ordering is essential to the over-
all perception of the model’s user preferences for accu-
rate recommendations. Another GCN-based SBRS Model
called AUTOMATE was presented in [10], It integrates
a graph convolutional layer based on Auto-Regressive
Moving Average (ARMA) filters. It can capture complex
transformations between items through sessions mod-
elled as graph-structured data. The core principle behind
AUTOMATE revolves around leveraging the ARMAConv
layer, which allows us to merge enduring user prefer-
ences with real-time session interests to generate the
graph transfer signal. Recently, in order to capture the
complex high-order information between items in real-
world scenarios, the authors in [11] have proposed DHCN
(Dual Channel Hypergraph Convolutional Networks).
This model is based on a hypergraph using convolution
operations and integrates self-supervised learning to gen-
erate a high-quality session-based recommendation. Still
with the use of hypergraphs, the study in [12] has in-
troduced HyperS2Rec, which it takes into account both
item consistency and sequential item dependence simul-
taneously. This model leverages hypergraph-structured
data through HGCN and captures sequential information
using GRU to collectively model user preferences. In this



Figure 2: An Overview of GCN-Based SBRSs Model.

proposal, the reversed position embedding mechanism
and soft attention mechanism are combined to derive
session representations.

4. A GCN-based SBRS Model
This section presents our proposed model for an SBRS
based on GCN.

4.1. Model Architecture
Figure 2 depicts the architecture of our proposed model
which consists of three main steps: session presentation,
processing, and recommendation.

4.2. Session Representation Step
Each session sequence 𝑠 can be modelled with the ad-
jacency matrix as a directed graph G = (I ; E). In this
session graph, each node represents an item i and each
edge means that a user clicks item i1 after i2 in the ses-
sion.

4.3. Processing Step
It consists of an embedding layer, followed by two convo-
lutional layers with ReLU activation functions. The key
layers and operations in the model are:

• Embedding Layer: The self embeddings layer
maps item indices to dense vectors of hidden di-
mensions. It learns meaningful representations
for the items in the graph.

• Convolutional Layers: The model has two convo-
lutional layers: self.conv1 and self.conv2. These
layers perform 1-dimensional convolutions on
the input data. Each convolution is followed by a
Rectified Linear Unit (ReLU) activation function

(using F.relu). The convolutions help capture the
local relationships and patterns in the data.

𝑋(𝑙+1) = ReLU(Conv1d(𝑋(𝑙))) (2)

𝑋(𝑙): represents the input features at layer 𝑙.
𝑋(𝑙+1): represents the output features at the next
layer, which is obtained after applying the convo-
lution operation and ReLU activation.
Conv1d: represents the 1D convolutional opera-
tion.
ReLU: represents the Rectified Linear Unit acti-
vation function.

• Message Aggregation: After the convolutions,
the model performs message aggregation from
neighbouring nodes. The adjacency matrix is
multiplied with the output of the convolutions
(using a torch.matmul (adj, x)). This operation
combines information from connected nodes to
enrich the representation of each item.

• Mean Pooling: The model uses mean pooling to
aggregate the messages from neighbours. The
output of the message aggregation step is per-
muted, and then the mean is taken along the sec-
ond dimension (using x.mean (dim=1)). This re-
sults in a single representation for each item in
the graph.

𝑋(session) = mean(𝑋(𝐿)) (3)

4.4. Recommendation Step
The model combines the graph convolutional capabili-
ties of the GCN model with a fully connected layer and
softmax activation (log-softmax) to generate recommen-
dations.

• The fully connected layer: also known as the lin-
ear layer or dense layer is a fundamental com-
ponent in neural networks. It performs a linear



transformation on the input data, mapping it to
a different dimensional space. In the context of
the provided model, the fully connected layer
(self.fc) takes the item representations generated
by the GCN component as input. It applies a
linear transformation to these representations,
mapping them to the number of output items.
Its purpose is to learn and capture complex rela-
tionships between the input data and the desired
output. It helps them make more complex pre-
dictions by combining and weighing the input
features. Formally, the fully connected layer com-
putes the following operation:

𝑍 = Linear(𝑋mean) (Linear transformation)
(4)

• The softmax function: is applied after the fully
connected layer in the provided model. Its role is
to convert the output of the fully connected layer
into a probability distribution over the different
output classes. In the context of the recommen-
dation system, the softmax function is used to
determine the likelihood or probability of each
item being the next recommended item. It assigns
higher probabilities to items that are more likely
to be relevant or preferred by the user based on
the given input.

𝑌 = Log-Softmax(𝑍) (5)

In the following, experimentation has been conducted
on this GCN-Based model.

5. Expirements
This section outlines the essential components of the
experimentation performed on the proposed approach.

5.1. Datasets
We assess the performance of our model on three com-
monly used transaction datasets: MovieLens 100k1,
MovieLens 1M2, and YooChoose3. These datasets are pub-
licly available and exhibit differences in terms of domain,
size, and sparsity. Table I provides detailed statistics for
these datasets:

5.2. Evaluation metrics
In our experiments, we use the following widely-used
evaluation metrics: Accuracy, Recall@K and MRR@K
(by default, we set K=20).
1Dataset source: https://grouplens.org/datasets/movielens/100k/
2Dataset source: https://grouplens.org/datasets/movielens/1m/
3Dataset source: https://s3-eu-west-1.amazonaws.com/yc-rdata/
yoochoose-data.7z

Dataset Rows Train Sessions Test Sessions Avr-L
MovieLens 100k 99057 6530 1970 4.50
MovieLens 1M 994169 99360 26530 4.29
YooChoose1/64 371160 15919 2785 4.62

Table 1
Datasets Basic Informations.

1. Accuracy: Accuracy is a metric used to measure
the performance of classification models. It rep-
resents the ratio of correctly predicted instances
to the total instances in the dataset. The accuracy
formula is:

Accuracy =
Number of correct predictions
Total number of predictions

(6)
2. Recall@20: measures the percentage of test

cases in which the recommended items are cor-
rectly positioned within the top 20 in a ranking
list. In this study, Recall@20 is utilized for all
tests [10], as defined by this equation:

Recall =
Correctly recommended items

Total useful recommended items
(7)

3. MRR@20: Mean Reciprocal Rank at N (20, in
our case) assesses the quality of the ranking of
recommendation results in an evaluation of the
SBRS. If an item’s rank (𝑟𝑎𝑛𝑘𝑖) exceeds N, the
reciprocal rank is set to zero [10]. Generally, MRR
is calculated as follows:

MRR =
1

𝑁

𝑁∑︁
𝑖=1

1

rank𝑖
(8)

5.3. Baselines
Some baselines are used to evaluate our proposed GCN
model, namely:

• POP [10]:
This baseline model recommends the top-N
ranked items based on their popularity in the
training data. It serves as a straightforward and
robust baseline, especially in specific domains.

• S-POP [10]:
A variation of the baseline model that recom-
mends the top-N most frequent items in both
the entire training set and the current session.

• Item-KNN [9]:
Determine the similarity between items A and
B by first identifying all users who are directly
associated with both items and then assessing the
evaluation bias. Following this calculation, we
obtain the top k most similar items as a result.

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
https://s3-eu-west-1.amazonaws.com/yc-rdata/yoochoose-data.7z
https://s3-eu-west-1.amazonaws.com/yc-rdata/yoochoose-data.7z


• GRU4Rec [13]:
Utilizing recurrent neural networks, GRU4Rec is
designed for session-based recommendations. It
adopts a session-parallel mini-batch training pro-
cess and employs ranking-based loss functions
during training.

• SR-GNN [14]:
In this model, separate session sequences are ag-
gregated into a graph structure, and Graph Neural
Networks (GNNs) are applied to generate latent
item vectors. Each session is then represented
using a traditional attention network.

• GACOforRec [3]:
Built upon GCNs, this algorithm accounts for user
preferences in the application scenario. By incor-
porating Convolutional LSTM (ConvLSTM) and
Orthogonal LSTM (ON-LSTM), it handles long-
term and stable user preferences while preserving
preference hierarchy.

• AUTOMATE [10]:
Keyed on the ARMAConv layer, AUTOMATE
combines long-term preferences with current ses-
sion interests to obtain graph transfer signals,
resulting in personalized recommendations.

5.4. Training and Testing
In this experiment, the following implementation param-
eters are used:

• Hyper parameters At this part we used the hy-
perparameters that were explored and optimized
after using the grid search algorithm including
the hidden dimension size, learning rate, and the
number of epochs. These hyperparameters have
a significant impact on the model’s ability to cap-
ture complex patterns in the session data and
make accurate predictions.

• Loss function The NLLLoss (Negative Log Like-
lihood Loss) is a commonly used loss function in
classification tasks. It measures the negative log-
likelihood of the predicted probabilities for the
correct class. Formally, the NLLLoss is calculated
as follows:

N𝐿𝐿𝐿𝑜𝑠𝑠 = − log(𝑃 (correct_class)) (9)

• Optimizer The Adam optimizer improves neural
network training by dynamically adapting learn-
ing rates using gradient moments. It combines
adaptive learning rates with momentum, facil-
itating faster convergence and managing vary-
ing parameter magnitudes. Momentum enhances
learning by accumulating gradients.

Figure 3: Accuracy and Loss Train on Movielens 1M Dataset.

6. Results and Discussion
Table II shows the results we obtained after applying the
same Hyperprameters and loos function and optimizer
on the three datasets:

Dataset Train Accuracy/Loss Test Accuracy/Loss time
MovieLens 100k 76.43% / 1.4574 71.97% / 2.0935 2h
MovieLens 1M 67.66% / 2.5720 82.92% / 1.4095 12h
YooChoose1/64 60.01% / 1.4984 11.16% / 4.2414 3h

Table 2
The accuracy and loss results.

In Figures 3 and 4, we present the accuracy and loss
during training on the datasets Movielens 1M and 100K.
The training loss gradually decreases, indicating that the
model is improving its predictions, while the training
accuracy increases as the model becomes more accurate
in its recommendations. This visualization provides in-
sights into the model’s learning process and its conver-
gence over training epochs. The smooth curves observed
in these figures are indicative of a stable training pro-
cess. In machine learning, a smooth training curve sug-
gests that the model is gradually converging to a solution
rather than exhibiting erratic behaviour. This is generally
a positive sign, indicating that the model is learning ef-
fectively without large fluctuations in performance. The
stability can be attributed to several factors, including the
choice of optimization algorithm (Adam in this case), a
suitable learning rate, and well-behaved training data. It
is crucial to note that while smooth curves are desirable,
they should be interpreted alongside performance met-
rics to ensure the model is learning meaningful patterns
from the data.



Model Class Methods MovieLens 1M YooChoose 1/64 MovieLens 100k
Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

Standard Baseline POP 0.0646 0.0133 0.0671 0.001 0.1034 0.0209
S-POP 0.0634 0.0132 0.3044 0.002 0.0776 0.0166

Traditional Item Knn 0.0016 0.0014 0.5660 0.003 0.0045 0.0033

Neural Network GRU4Rec / 0.3041 0.6064 0.2289 / /
SR-GNN / 0.3683 0.7003 0.3008 / /

GACOforRec / / 0.6879 0.2938 / /
AUTOMATE / / 0.7015 0.3072 / /

Our Model GCN-based Model 0.7259 0.2699 0.5154 0.1396 0.44 0.19

Table 3
Performance Comparison with Some Baselines.

Figure 4: Accuracy and Loss Train onMovielens 100K Dataset.

6.1. Comparing Results with Baselines
Table III presents a comparative analysis of our model
with different recommender system models and base-
lines across various evaluation metrics for three distinct
datasets: MovieLens 1M, YooChoose 1/64, and MovieLens
100k.

As shown in Table III, our model performs very well
with both Movielens 100k and 1M even better than the
other models, but YooChoose gave us bad results and
that because of the differences between the two datasets
MovieLens and YooChoose explained in these two points:

• Data Distribution: The Movielens and YooChoose
datasets likely have different data distributions.
These differences could affect how well our model
generalizes from one to another. Models trained
on one dataset may not perform as well on a dif-
ferent dataset if the underlying data patterns are
dissimilar.

Figure 5: Comparison of MRR@20 and Recall@20 for our
model and the baselines with Movielens 100k.

Figure 6: Comparison of MRR@20 and Recall@20 for our
model and the baselines with Movielens 1M.

• Feature Engineering: The features (attributes) in
the two datasets may have distinct characteristics.
Our model might be well-suited to capturing the
patterns present in the features of the Movielens
dataset but struggle to do so with the features in
the YooChoose. dataset.

As future work, we aim to improve these results and
test our model on other popular data sets.



Furthermore, Figures 5 and 6 provide a visual repre-
sentation of the model’s performance with Movielens
100k and 1M datasets, respectively. These figures illus-
trate the model’s performance in terms of MRR@20 and
Recall@20 when compared to other baseline models.

7. Conclusion
In this work, the focus was on exploring the applica-
tion of Graph Convolutional Networks (GCN) to enable
Session-based Recommender Systems (SBRS). The re-
search was conducted in three points. At first, we have
introduced the concept of session-based recommender
systems. Then, we have provided an in-depth under-
standing of Graph Convolutional Networks, showcasing
their ability to capture graph-structured data. Lastly, we
presented the design and implementation of an SBRS
model utilizing GCN, demonstrating its effectiveness in
generating accurate and personalized recommendations
based on users’ session history.

The findings of this research highlight the potential of
leveraging GCN to enable session-based recommender
systems and improve their performance. Our future work
will be to ameliorate these results and to test them with
more baselines on other popular datasets. Also, Using
other CNN architectures including hypergraphs GCN to
enhance SBRSss is among our nearest research.
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