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Abstract

In the ever-evolving digital era, the profound impact of online social networks is omnipresent. Platforms like Instagram,
Facebook, and Twitter grapple persistently with the challenge of distinguishing genuine user profiles from a rising tide of
counterfeit or dormant accounts. This predicament underscores the critical need to adeptly differentiate between authentic
and misleading user profiles, particularly in light of the increasing prevalence of online deception. This research centers
on introducing an innovative approach to profile validation, highlighting the pivotal task of identifying and mitigating
the presence of fake profiles across social media platforms. The methodology employed is groundbreaking, strategically
integrating cutting-edge bio-inspired algorithms, with a specific emphasis on the application of metaheuristics. Unlike
conventional machine learning techniques, this approach navigates the intricate landscape of online social networks with
unparalleled agility and adaptability. Despite the inherent challenges posed by the nature and scarcity of datasets available on
the web, the empirical results are remarkably compelling. The approach consistently demonstrates a high level of accuracy in
classification tests, showcasing its efficacy in addressing the pervasive issue of fake profiles in the digital realm.
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1. Introduction

In the ever-evolving landscape of online social networks,
as exemplified by the behemoths Facebook and Twitter,
a remarkable surge in user engagement has occurred
over recent years. This rapid growth, however, has been
accompanied by a troubling escalation in the presence
of fake accounts and online impersonation. This issue
is not only on the rise but has also gained significant
scholarly attention, as evident in [1] report on detecting
fake profiles. The essence of these fake profiles lies in
their representation of fictitious personas or entities that
expertly mimic real users, raising pertinent concerns
within the online social network ecosystem.

One of the fundamental challenges in this domain
is the absence of robust authentication mechanisms on
many social networking platforms. These mechanisms
are instrumental in effectively distinguishing between
genuine user accounts and fraudulent counterparts. As
underscored by [2]. in their 2022 survey, the deficiencies
in these mechanisms exacerbate the proliferation of fake
accounts, thus prompting a dire need for an innovative
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and effective solution. Such a solution is essential to iden-
tify and mitigate the presence of counterfeit accounts,
ultimately ensuring the creation of a secure and trustwor-
thy environment for the multitude of users frequenting
social networking sites.

In addressing this pressing concern, the authors of this
study have embarked on a transformative journey, de-
parting from the well-trodden path of Machine Learning
(ML) methods to explore the promising realm of meta-
heuristics. Within this domain, they have harnessed the
capabilities of the Fire Hawk Optimizer (FHO), a con-
temporary bio-inspired algorithm, to address the multi-
faceted challenge of fake profile detection. This uncon-
ventional approach represents a noteworthy departure
from conventional methodologies and stands as a beacon
of innovation, poised to revolutionize the field of online
social network analysis.

The ensuing sections of this comprehensive study
delve into the foundational principles and practical im-
plications of this pioneering approach. By elucidating its
diverse facets, the study aims to underscore the transfor-
mative potential of FHO in the context of enhancing the
security and authenticity of online social networks on a
global scale. Thus, it transcends mere theoretical explo-
ration and emerges as a promising catalyst for substan-
tive change in the landscape of social network analysis
and the broader digital sphere.
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2. Related Work

This section undertakes a thorough examination of re-
cent developments in detecting fake profiles within the
domain of online social media. This investigation goes
beyond the limitations of traditional machine learning
techniques, illuminating a multifaceted landscape of in-
novative approaches and methodologies.

In addressing the escalating problem of fake profiles
on prominent online social networks such as Facebook
and Twitter, Mahammed et al. [3] propose a pioneering
solution. The paper introduces an innovative approach
to detect fake profiles by amalgamating a machine learn-
ing algorithm with a bio-inspired algorithm. This hybrid
methodology comprises two stages, with the initial stage
leveraging the Satin Bowerbird Optimization algorithm
(SBO) to identify the optimal initial centroid for the subse-
quent k-means clustering algorithm in the second stage.
The effectiveness of this approach surpasses that of es-
tablished machine learning algorithms in the realm of
fake profile detection, underscoring the paramount sig-
nificance of ensuring authenticity and security in online
social network interactions.

The authors of [4] tackle the issue of deceptive online
reviews and ratings that can mislead consumers in their
purchasing decisions. They introduce two innovative
deep-learning hybrid techniques: CNN-LSTM for identi-
fying fake online reviews and LSTM-RNN for detecting
fraudulent ratings. These models surpass existing meth-
ods and achieve high prediction accuracy, particularly
when applied to Amazon datasets.

In [5], the primary focus is on addressing privacy con-
cerns and catering to brands and marketers. The pro-
posed enhancements include expanding the prototype,
enabling bulk image processing, integrating with social
media APIs, improving the model’s recall for logo de-
tection, increasing generalizability, exploring logo local-
ization, combining textual analytics, automating model
selection and hyper-parameter tuning, and comparing
performance with existing logo detection systems.

The research conducted by [6] introduces the Multi-
Relational Graph-Based Twitter Account Detection
Benchmark (MGTAB) to advance social media user stance
and bot detection methods. MGTAB overcomes issues of
low annotation quality and incomplete user relationships
present in existing benchmarks by providing a compre-
hensive dataset comprising 1.55 million users and 130
million tweets.

[7] develops a method for identifying and verifying du-
plicate profiles in online social networks. The approach
involves using attribute and network-based similarity
measures, implementing the model with MapReduce to
reduce computational complexity, and creating a testing
dataset. The study employs parallel k-means clustering
and parallel SVM classification techniques to effectively

identify suspicious profiles within clusters containing
genuine ones.

The work by [8] introduces a novel technique named
GWODS for detecting attacker shilling profiles in recom-
mender systems. GWODS combines the K-means cluster-
ing algorithm with the Grey Wolf Optimizer (GWO) to
identify suspicious profiles. It demonstrates promising
results in experiments conducted on MovieLens datasets
and can be employed as a preprocessing step to prevent
biased recommendations in recommender systems.

In the article by [9], the core concept revolves around
the limitations faced in social media bot detection, par-
ticularly on Twitter, regarding data collection methods.
While machine learning-based algorithms exhibit near-
perfect performance on existing datasets, the study re-
veals that accuracy is often influenced by dataset-specific
factors rather than inherent differences between humans
and bots. Additionally, the use of decision trees is pre-
ferred due to their interpretability over random forest
classifiers.

Table 1 provides a comprehensive overview of the
state of research in fake profile detection, emphasizing
the need for further investigations that integrate vari-
ous techniques, improve generalization, and address the
dynamic nature of online threats in OSNs. Fake profile
detection is a critical aspect of maintaining the integrity
and security of online platforms, and these studies play
a crucial role in advancing the field.

« Diverse Research Efforts: The table underscores
a broad spectrum of research initiatives aimed
at fake profile detection, indicating a heightened
awareness of the severity of fake profiles in On-
line Social Networks (OSNs) and the urgency to
address this issue. This diversity suggests multi-
ple avenues being explored to tackle the problem.

« OSN-Specific Approaches: Several studies fo-
cus on specific OSNs like Facebook, Instagram,
and Twitter, acknowledging the unique charac-
teristics and challenges of each platform. This
prompts the question of whether a universal
model can effectively detect fake profiles across
various OSNs or if tailored solutions are neces-
sary.

« Machine Learning and Metaheuristics: Utilized
techniques range from traditional machine learn-
ing algorithms (Decision Trees, Random Forest,
Support Vector Machine, and K-means) to bio-
inspired metaheuristics (Satin Bowerbird Opti-
mization and Grey Wolf Optimizer). This mix
indicates exploration of both data-driven and
heuristic-driven approaches, warranting research
into their relative efficacy and optimal use.

+ Incorporation of Deep Learning: Some studies
incorporate deep learning methods, such as Con-



Table 1
Related work summary

Reference OSN ML Metaheuristic Other Dataset Results (acc)
[3] Facebook  SVM,NB,RF,.KNN SBO - 1244 0.98
[4] - - - CNN,LSTM,RNN 20000 0.93
[5] Instagram - - CDS 10000 0.90
[6] Twitter RF,DT,SVM - Adaboost 130 millions 0.97
[7] Facebook SVM, K-means - MapReduce 1000 0.98
[8] - k-means GWO - 6000 0.99
[9] Twitter DT,RF - - - 0.91

volutional Neural Networks, Long Short-Term
Memory, and Recurrent Neural Networks, high-
lighting the need for advanced methods to com-
bat sophisticated fake profiles employing deep
learning in their creation.

« Dataset Size and Quality: Dataset size plays a piv-
otal role, with some studies employing datasets
containing millions of instances. While larger
datasets offer more robust training, they also de-
mand greater computational resources. Addition-
ally, dataset quality is crucial, necessitating re-
search into effective collection and curation tech-
niques.

« Accuracy Achievements: Notably, some studies
achieve very high accuracy levels (e.g., 0.98 and
0.99). While promising, it’s vital to scrutinize
the generalization capabilities of these models, as
high accuracy on one dataset doesn’t guarantee
success on new, unseen data.

+ Challenges and Future Directions: Challenges
include the evolving techniques in fake profile
creation and the need for real-time or near-real-
time detection. Future research should address
these challenges and explore methods for dy-
namic model adaptation.

« Integration and Model Ensemble: Combining
strengths from different models or creating en-
semble models can potentially enhance detection
accuracy. Research in this direction could lead to
more robust solutions.

« Explainability and Interpretability: As fake profile
detection systems are deployed, there’s a grow-
ing need for interpretability and explainability in
model decisions, especially in legal and ethical
contexts.

« Scalability: Ensuring scalability of fake profile
detection methods to handle the increasing vol-
ume of data on OSNs is a significant concern.
Research should focus on algorithm efficiency in
large-scale scenarios.

From this bibliographic study, it is deduced that em-
ploying metaheuristics for detecting fake profiles on so-

cial networks proves to be a crucial approach. These op-
timization methods offer notable advantages in terms of
efficiency, computation time, and resilience to data varia-
tions—key elements in the field of fake profile detection
on social networks. Metaheuristics excel in effectively
exploring solution spaces, adapting well to complex land-
scapes. This enhanced exploration capability enables con-
vergence toward high-quality solutions, even in poorly
defined search spaces. Moreover, metaheuristics are rec-
ognized for their computational efficiency, often converg-
ing to acceptable solutions within reasonable timeframes,
making them particularly well-suited for complex prob-
lems. Furthermore, they exhibit robustness in the face
of data variations, requiring less dependence on the spe-
cific nature of the data and demonstrating adaptability
to incomplete or noisy datasets.

From this bibliographic study, it is deduced that em-
ploying metaheuristics for detecting fake profiles on so-
cial networks proves to be a promising approach for ad-
dressing challenges in artificial intelligence and machine
learning in this specific domain, offering high-quality so-
lutions, optimized computation time, and independence
from data variations.

3. Material and Methodology

3.1. Dataset

Employing distinct batches for labeling, the dataset con-
struction involved the first batch, which comprised Twit-
ter data sourced from previously banned pro-ISIS ac-
counts, serving as positive labels. Specifically, the dataset
"How ISIS Uses Twitter" was utilized ', encompassing
17,350 tweets from over 110 pro-ISIS accounts. This
dataset includes attributes (see table 2 such as Name,
Username, Description, Location, Number of followers at
the time of tweet download, Number of statuses by the
user when the tweet was downloaded, Date and times-
tamp of the tweet, and the tweet itself. To address Arabic
content, the Google Translate API was utilized for trans-
lation.

!https://www.kaggle.com/fifthtribe/how-isisuses-twitter
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Figure 1: Text classification method.

Table 2
Dataset description
Attribute Defintion
Name Name of the user
Username User’s Twitter username
Description User’s profile description
Location User’s specified location
Followers Nbr of followers at tweet download
Statuses Nbr of user’s statuses at tweet download
Timestamp Date and timestamp of the tweet
Tweet The content of the tweet

For the second batch, the Global Terrorism Database
(GTD) was employed as a negative labeled dataset [10]
[11]. The GTD contains information on over 180,000 ter-
rorist attacks worldwide since 1970. Filtering events from
2002 onwards, data was extracted from the "summary"
column, which provides summaries of each attack.

3.2. Text classification

The process of discerning information from textual input
involves three principal stages, as depicted in Figure 1.

« Natural Language Processing (NLP): This initial
phase focuses on preprocessing textual data, en-
suring a well-structured format for ease of under-
standing and processing. The analysis of textual
data unfolds in four essential steps: tagging, an-
notating, co-reference resolution, and sentiment
analysis [12].

+ Word Embedding : Embracing the N-gram lan-
guage model [13], the probability is estimated of
the last word based on preceding words. This
choice is informed by its superior performance
compared to the TF-IDF model [14].

« Classification: Post word embedding, the textual
content takes on a numerical form, making it
machine-readable. This numerical representation
is then input into a classifier, allowing the model
to effectively perform the classification task.

3.3. Preprocessing

Data preprocessing is the process of converting raw data
into a format that can be readily understood by machine

learning algorithms. As detailed in [15], the data prepa-
ration procedures for the different datasets employed in
this research are succinctly outlined below:

1. Data Scrutiny: Eliminate duplications and rectify
errors.

a) Eliminate duplications, superfluous data
points, inaccuracies, and redundant
columns (such as ’id’ and ’id-name’).

b) Omit irrelevant data points, inaccuracies,
and redundant columns (such as ’id’ and
’id-name’).

2. Address disparities, anomalies, and missing data.

3. Standardize and adapt the data through scaling.

4. Prune interrelated variables and streamline the
dataset.

3.4. Machine Learning Algorithms
3.4.1. Induction of Decision Tree

When considering decision tree induction, it is notewor-
thy that ID3 operates as a supervised learning algorithm.
This method constructs a tree based on information de-
rived from training instances, utilizing it for classifying
test data [16].

3.4.2. K-means Algorithm

A cornerstone in unsupervised learning for pattern recog-
nition and machine learning, the K-means algorithm is
renowned for its simplicity and widespread use among
iterative and hill-climbing clustering algorithms [17].

3.4.3. Hierarchical Clustering Analysis

Hierarchical clustering (HC) groups similar objects into
clusters. Starting with each object as a separate cluster,
it iteratively merges the closest clusters until forming a
single, hierarchical structure. This method is valuable for
revealing data patterns and relationships [18].

3.4.4. Nearest Neighbor Classification

Often referred to as K-nearest neighbors (KNN), this
method is grounded in the concept that the nearest pat-
terns to a target pattern, for which a label is sought, offer
valuable label information [? ].



3.4.5. Naive Bayes Classifier

Commonly known as NB, the Naive Bayes classifier is a
supervised learning algorithm rooted in Bayes’ theorem.
It operates on the simplifying assumption that attribute
values are conditionally independent when considering
the target value [19].

3.4.6. Random Forest Machine

Random forests (RF) represent an amalgamation of tree
predictors. Each tree relies on the values of a random vec-
tor, independently sampled with a uniform distribution
shared across all trees within the forest [20].

3.4.7. Support Vector Machine

The Support Vector Machine (SVM) is recognized as a
potent tool for classifier construction. SVM is purpose-
fully designed to establish a robust decision boundary
between two classes, facilitating the accurate prediction
of labels from one or more feature vectors [21].

3.5. Proposed Algorithm
3.5.1. Inspiration

Australia’s Indigenous people have a rich history of em-
ploying fire as a tool for ecosystem management. Con-
trolled burns, whether ignited intentionally or by light-
ning, play a crucial role in maintaining the balance of the
environment. However, a fascinating revelation involves
certain bird species, known as Fire Hawks, which include
whistling kites, black kites, and brown falcons. These
birds have been observed intentionally carrying burning
sticks and using them to start fires as part of their preda-
tory tactics. This behavior is strategic, as the induced
fires serve to startle and capture prey such as rodents,
snakes, and other animals, enhancing the efficiency of
their hunting endeavors.

3.5.2. Motivation to choose

This nature-inspired strategy, finely tuned over eons of
evolution, equips the Fire Hawk Optimizer (FHO) for
intricate optimization tasks. FHO excels in rapid conver-
gence, surpassing alternative methods. Its robust nature
allows effective handling of noisy and uncertain data,
contributing to enhanced solution exploration diversity.

The remarkable convergence speed of FHO is valuable
in time-sensitive or resource-constrained scenarios. It
swiftly reaches optimal solutions through iterations until
predefined criteria are met. FHO’s computational effi-
ciency is evident as it converges to the global optimum
with fewer evaluations [22].

3.5.3. Operation

The FHO algorithm, inspired by the foraging behavior of
fire hawks, operates through the following steps:

1. Initial Positioning: At the start, solution candi-
dates (X) are defined, representing the positions
of fire hawks and prey in the search space. Ran-
dom initialization places these vectors within the
search space, taking into account various param-
eters.

2. Fire Hawks and Prey: The algorithm categorizes
solution candidates into Fire Hawks and prey
based on their objective function values. Selected
Fire Hawks aim to spread fires around the prey,
with the global best solution serving as the pri-
mary fire source.

3. Determining Territories: The algorithm calcu-
lates the total distance between Fire Hawks and
prey to identify the nearest prey to each bird. This
step determines the effective territory of the Fire
Hawks for hunting. The bird with the best objec-
tive function value selects the nearest prey to its
territory, while others choose their next nearest
prey.

4. Spreading Fires: Fire Hawks collect burning sticks
from the main fire and drop them in their territo-
ries, causing the prey to flee. Some Fire Hawks
may use burning sticks from other territories, con-
tributing to position updates in the search loop.

5. Prey Movements: The prey’s movements within
Fire Hawks’ territories are considered. The al-
gorithm simulates various prey actions, such as
hiding, running, or approaching Fire Hawks, im-
pacting position updates.

6. Safe Places: Prey may move toward safe places
outside Fire Hawk territories. These movements
are also included in the position update process.

7. Territory Definition: Fire Hawk territories are
represented as circular areas, with the precise ter-
ritory determined by prey numbers and distances
from each Fire Hawk.

8. Boundary Violation and Termination: The algo-
rithm considers boundary control for violating
decision variables and employs a termination cri-
terion, such as a predefined number of objective
function evaluations or iterations, to conclude the
process.

The figure 2 provides pseudocode which offers a con-
cise overview of the FHO algorithm’s operation.
3.5.4. Transition from natural to artificial

This section is devoted to examining the shift from the
Fire Hawk’s innate behaviors in the wild to its adapted



Fire Hawk Optimizer

For i=I1:n

For g=1.r

End
End

End While return GB

Determine initial positions of solution candidates (X;) in the search space with N candidates
Evaluate fitness values for initial solution candidates

Determine the Global Best (GB) solution as the main fire

‘While Iteration < Maximum number of iterations

Generate » as a random integer number for determining the number of Fire Hawks
Determine Fire Hawks (FE) and Preys (PR) in the search space

Calculate the total distance between the Fire Hawks and the preys

Determine the territory of the Fire Hawks by dispersing the preys

Determine the new position of the Fire Hawks

Calculate the safe place under /** Fire Hawk territory
Determine the new position of the preys

Calculate the safe place outside the /** Fire Hawk territory
Determine the new position of the preys

Evaluate fitness values for the newly created Fire Hawks and preys
Determine the Global Best (GB) solution as the main fire

Figure 2: FHO Pseudocode.

Table 3
Transition from natural to artificial of FHO

Natural

Artificial

Natural Artificial Fire hawks hunting for prey in the wild

Fire hawks finding food by following the smoke signals from
wildfires

Environment

Fire hawk

Group of fire hawks

Best individual in the group of fire hassle that found the
prey

The distance between the flee hawk and its prey

Each user is classified into the most Suitable class (Real or
Fake)
Two classes (Real or Fake)

Online Social Networks (Facebook, Twitter, Instagram)
Online Social Networks User

Online Social Networks Users

The best solution in the population of solutions that meets
the objective function by the FHO (Real or Fake)

Dllc = \/(:cg — 1) + (y2 — y1) The distance between the
solution and the optimal

behaviors in an artificial environment, as detailed in the
table 4.

Table 4 delves into a captivating comparison between
the natural and artificial, spotlighting the FHO algo-
rithm’s mission of distinguishing genuine from fraud-
ulent profiles in online social networks. It intriguingly
parallels the hunting behavior of fire hawks with user
suitability assessment.

By mentioning distance calculations, it hints at the al-
gorithm’s quest for the optimal solution, equating to pre-
cise user classifications in social networks. This table is a
gateway to understanding how nature’s wisdom inspires
advanced algorithms that address real-world challenges.

It embodies the fusion of the natural and artificial
realms, demonstrating how algorithmic innovation stems
from nature’s timeless principles, resolving complex is-

sues in online social networks. Ultimately, it invites ex-
ploration of the limitless possibilities born from the fu-
sion of nature and algorithms.

3.5.5. Fitness function

The FHO rigorously employs a fitness function, as de-
picted in Figure 3, to meticulously gauge the perfor-
mance of solution candidates. This fitness function piv-
ots around the precision of a gradient boosting classifier
meticulously applied to a thoughtfully selected subset of
features sourced from a dataset.

To elaborate on the computation of the fitness value,
the function takes a solution candidate into its fold, rep-
resenting a distinct subset of features. This subset un-
dergoes scrupulous evaluation via a gradient boosting



Fitness Function

1: def fitness function(solution):

: selector fit(X, y)

BN I RV B S )

: classifier = GradientBoostingClassifier(n estimators=100, random state=42)

: selector = SelectFromMaodel(classifier)

: X selected = selector. transform(X)
: classifier.fit(X selected, y) £ Return the accuracy score on the training set

: return accuracy score(y, classifier. predict(X selected))

Figure 3: Fitness Function.

classifier, armed with precisely 100 estimators and a deter-
ministic random state fixed at 42. Notably, this classifier
undertakes the dual responsibility of feature selection
and classification.

The inner workings of the fitness function encompass
the formulation of a feature selector. This selector, entail-
ing sophisticated intricacies, leverages the classifier itself
to discern and pinpoint the paramount features based on
the classifier’s predictive capabilities. This discernment
is crucial in optimizing the classification process.

Of particular significance is the selector’s subsequent
fitting to both the input dataset and the target variable.
This preparatory phase is pivotal for the forthcoming
accuracy evaluation.

What distinguishes this fitness function is its intrinsic
capacity to bring about a transformation of the input
dataset. This transformation is rendered by carefully
cherry-picking the most pivotal features from the original
dataset. The result is a transformed dataset, which bears
the promise of enhanced accuracy. This transformed
dataset now becomes the testing ground for the classifier.
It serves as the substrate for the classifier’s extensive
training process, conducted in close tandem with the
target variable.

As the final step in this intricate dance of precision,
the fitness function introduces the crucial concept of
the accuracy score. It orchestrates a meticulous com-
parison between the true labels and the predicted labels
that emerge from the classifier’s outputs on the trans-
formed dataset. The resultant accuracy score stands as
a testament to the chosen subset of features’ ability to
effectively forecast the target variable.

Figure 4 demonstrates the pivotal role of the fitness
function in the FHO. In the third stage of the code, the fit-
ness values for each solution candidate in the population
are meticulously computed by invoking the fitness func-
tion. This function is systematically applied to every row
(axis=1) within the population array, yielding an array
replete with fitness values, which are more specifically
accuracy scores. These accuracy scores bear significance

Table 4
FHO metrics
Parameter Value
Population size 50
Iteration 100
Iteration by dataset 100

as they provide a quantitative assessment of each solution
candidate’s performance accuracy.

In essence, the fitness function operates as the core
evaluator, discerning and ranking solution candidates
based on their individual performance. In the broader
context, these fitness scores wield substantial influence
in steering the FHO’s pursuit of the optimal solution,
with the overarching goal of optimizing performance
accuracy.

3.5.6. FHO metrics

The FHO algorithm undergoes a comparative analysis
against a spectrum of established Machine Learning al-
gorithms, encompassing ID3, SVM, NB, RF, HC, KNN
with diverse K values, and K-means. This exhaustive
evaluation consists of 100 iterations for each dataset, en-
suring robustness and careful examination. Notably, the
FHO configuration parameters are as follows: the initial
population size is set at 50, and the maximum number of
iterations is capped at 100 as summarized in Table 4

4. RESULTS AND DISCUSSION

Throughout the experimental phase, a 2014 MSI GT70
gaming laptop was employed, featuring an Intel Core
17-4800MQ CPU, a Nvidia GeForce GTX 770M GPU, and
32 GB of RAM.



Fitness Function within FHO

# Determine the search space and initialize solution.

1: search space = (0, X.shape[1]) candidates

2: population = np.random.rand(self.population size, X.shape[1])

# Evaluate fitness values for initial solution candidates.

3: fitness values = np.apply along axis(fitness function, 1, population)

Figure 4: Fitness Function with FHO.

Table 5
Results classes

Class

Meaning

True Positives (TP)
False Positives (FP)
True Negatives (TN)

False Negatives (FN)

Instances where the model accurately identifies positive cases

within the dataset.

Cases in which the model incorrectly categorizes negative

instances as positives.

Cases in which the model correctly recognizes negative

instances.

Instances in which the model erroneously categorizes positive

cases as negative.

4.1. Evaluation Criteria

The detection of fake accounts can be evaluated using
various performance metrics, such as Accuracy, F-score,
Recall, precision, and entropy. These metrics provide
insights into the model’s performance and its ability to
classify profiles correctly.

In addition, the Confusion Matrix is used as a visual
representation of fake account detection, offering a com-
prehensive view of the model’s performance across dif-
ferent classes as shown in Table 5.

«+ Accuracy: This metric measures the overall accu-
racy of the model in correctly classifying profiles.

TP +TN

A =
CUrAY = TP TN+ FP+ FN

« Precision: Calculates the model’s accuracy in clas-
sifying values correctly by comparing the number
of accurately classified profiles to the total classi-
fied data points for a given class label.

TP

Precision = m

(1)

« Recall: This metric assesses the model’s ability to
correctly predict positive values, indicating how
often it correctly identifies true positives.

TP

Recall = TP+ FN

)

« Fl1-score: Which is the harmonic mean of preci-
sion and recall, balances the trade-off between
these two metrics.

2xTP
2«xTP+ FP+ FN

F1 — score = 3)

« Entropy: This metric quantifies the randomness
or disorder in a system, providing valuable infor-
mation about the data’s structure and organiza-
tion.

Entropy = log2(Precision) * (—Precision)
©

4.2. Results

Table 6 summarizes the obtained results in comparison to
the original work conducted with the same dataset [23].
So, the results presented in Table 6 showcase the per-
formance metrics of various classifiers, with a particular
emphasis on the Fire Hawk Optimizer (FHO).

FHO stands out prominently, achieving remarkable
accuracy, precision, recall, and F1-score values of 99.6%.
This outstanding performance suggests that FHO excels
in accurately classifying instances, achieving an almost
perfect balance between precision and recall. Such high
metrics underscore the effectiveness of FHO in the given
classification task, highlighting its potential as a robust
optimization algorithm.

Comparatively, traditional machine learning classi-
fiers, such as Support Vector Machine (SVM), Naive Bayes



Table 6
Obtained results.
Accuracy  Precision  Recall  F1-score
FHO 0.996 0.996 0.997 0.996
SVM 0.907 0.907 0.902 0.904
NB 0.904 0.904 0.899 0.900
LR 0.899 0.899 0.854 0.875

(NB), and Logistic Regression (LR), demonstrate competi-
tive yet comparatively lower performance. SVM, while
achieving a respectable accuracy of 90.7%, falls short of
FHO'’s exceptional accuracy. Similarly, NB and LR, with
accuracies of 90.4% and 89.9

Precision, recall, and F1-score values further empha-
size FHO’s dominance, outperforming the other classi-
fiers across all metrics. The precision of 99.6% indicates
an incredibly low false positive rate, essential for tasks
where misclassification has significant consequences.
The recall of 99.7% highlights FHO’s ability to capture
the majority of actual positives. The F1-score of 99.6%
reflects the harmonious balance between precision and
recall.

The outstanding performance of FHO positions it as
a formidable tool for classification tasks. Its ability to
achieve near-perfect accuracy and balance between pre-
cision and recall showcases its potential to outshine tra-
ditional machine learning methods in complex optimiza-
tion scenarios. This reaffirms the significance of bio-
inspired algorithms, like FHO, in pushing the boundaries
of optimization and classification tasks.

4.3. Discussion

FHO’s standout attribute is its remarkable ability to
rapidly converge towards predefined tolerance for the
global best solution. This swift convergence, coupled
with its resource-efficiency, assumes particular signifi-
cance in the context of social networks where timely pro-
file verification is crucial, and computational resources
often come at a premium.

What sets FHO apart is its innate knack for handling
the unpredictability and noise inherent in real-world data,
showcasing its robustness and adaptability in navigating
the often erratic nature of user-generated profile infor-
mation.

FHO’s penchant for diversifying the search process,
inspired by natural systems, is another remarkable trait.
By concurrently exploriFHO stands out due to its remark-
able capacity to swiftly converge toward a predefined
tolerance for the globally optimal solution. This rapid
convergence, coupled with its resource-efficient nature,
holds particular significance in the realm of social net-
works, where timely profile verification is imperative,

and computational resources are often scarce.

What distinguishes FHO is its inherent ability to navi-
gate the unpredictability and noise inherent in real-world
data, illustrating its robustness and adaptability in han-
dling the often erratic nature of user-generated profile
information.

FHO’s inclination to diversify the search process, draw-
ing inspiration from natural systems, is another notewor-
thy trait. By concurrently exploring multiple potential
solutions, it enhances the likelihood of discovering in-
novative answers, a crucial asset when dealing with the
ever-evolving strategies employed by creators of fake
profiles.

The results underscore FHO’s exceptional computa-
tional efficiency, consistently converging to the globally
optimal solution within a significantly reduced time-
frame. This efficiency proves highly relevant in situations
where time sensitivity and the conservation of compu-
tational resources are paramount. An additional notable
aspect is FHO’s ability to converge toward the globally
optimal solution in mathematical test functions while re-
quiring fewer objective function evaluations. This under-
scores its computational efficiency, highlighting its prac-
tical applicability across a spectrum of problem-solving
scenarios.ng multiple potential solutions, it enhances the
likelihood of uncovering innovative answers, a pivotal
asset when contending with the ever-evolving strategies
employed by creators of fake profiles.

The results speak to FHO’s exceptional computational
efficiency. It consistently converges to the global best
solution within a significantly reduced timeframe, allow-
ing it to swiftly identify optimal or near-optimal solu-
tions. This efficiency proves highly pertinent in situa-
tions where time sensitivity and conservation of compu-
tational resources are paramount. An additional notewor-
thy aspect is FHO’s ability to converge toward the global
best solution in mathematical test functions while requir-
ing fewer objective function evaluations. This under-
scores its computational efficiency, highlighting its prac-
tical applicability across a spectrum of problem-solving
scenarios.

5. Conclusion

Within the online social media landscape, the issue of
fake profiles has become a prominent concern, particu-
larly on major platforms such as Instagram, Facebook,
and Twitter. The widening gap between registered pro-
files and genuinely active users signals a troubling in-
crease in counterfeit or inactive accounts, posing risks
to platform credibility, security, and privacy. Academic
literature has predominantly focused on applying ma-
chine learning techniques to discern real from fraudulent
profiles by analyzing various attributes and user behav-



ior patterns. However, these traditional methods exhibit
limitations, prompting the exploration of more robust
and efficient solutions.

A transformative shift in the fight against fake profiles
has emerged, emphasizing the potential of metaheuris-
tic algorithms, specifically bio-inspired algorithms. This
shift acknowledges the constraints of conventional ma-
chine learning in handling the complexities of online
social network data. Bio-inspired algorithms, exempli-
fied by the Fire Hawk Optimizer (FHO), have shown
promise in fake profile detection, deriving computational
prowess from their inherent bio-inspired nature, drawing
inspiration from the foraging behavior of fire hawks.

The metaheuristic aspect of FHO enhances its signifi-
cance. As a member of the metaheuristics family, FHO
belongs to a class of optimization algorithms praised for
their adaptability and efficiency. FHO distinguishes it-
self by pursuing diverse solution candidates, making it
adept at addressing multifaceted challenges, particularly
in fake profile detection.

FHO’s proficiency is evident in performance results
with Instagram, Facebook, and Twitter datasets. It excels
in promptly and efficiently converging toward the global
best solution, a crucial trait in scenarios where timely
profile validation and limited computational resources
are critical. Its resilience in handling unpredictable data
and its ability to diversify the search process are valuable
assets when confronting the evolving tactics of fake pro-
file creators. Furthermore, its computational efficiency,
marked by a lower number of objective function evalu-
ations while consistently converging to the global best
solution, positions it as a computational prowess exem-
plar.

Looking ahead, refining and advancing FHO’s capa-
bilities for large datasets with heterogeneous data could
be a future perspective. Integrating FHO with other ad-
vanced techniques and exploring hybrid approaches that
leverage its strengths alongside complementary methods
for even more robust profile validation are compelling
avenues for future studies.
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