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Abstract
This paper presents the design and development of a fog-IoT/AI asthma exacerbation system with full functionality. The
system was developed using open-source platforms that monitor real-time medical data. Users administer the Asthma Control
Test (ACT) to determine the likelihood of asthma exacerbations. The asthma data set comprises panel data from 10 individuals,
with 1010 ACT scores as the desired output. ACT scores 19 reflect uncontrolled asthma; >19 reflect well controlled asthma.
This paper proposes a federated learning-based asthma exacerbation prediction system named FELAE. Specifically, the
FELAE system protects data privacy through local learning, in which devices benefit from the knowledge of their peers by
sharing only updates from their model with an aggregation fog layer that produces an enhanced prediction model. The
results demonstrate that the FL approach outperforms the classic or centralized versions of machine learning (non-federated
learning). Moreover, using the essential performance indicators, namely, accuracy, precision, f1score, and recall, the proposed
model detects asthma exacerbations with the highest accuracy of 97.02%.
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1. Introduction
Healthcare Internet of Things (HIoT) refers to the appli-
cation of Internet of Things (IoT) devices and sensors in
the healthcare area. Connected to the internet and able to
collect, transmit, and analyze data in real time [1]. In ad-
dition, H-IoT devices enable healthcare providers to more
efficiently monitor and manage patients’ health condi-
tions in an optimal manner. More specifically, it seeks
to improve patient outcomes, the quality of care, and
healthcare costs. Thus, healthcare applications include
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telemedicine, smart hospitals, remote patient monitoring,
and medication management [2] [3]. Among the applica-
tions, we find the following (Figure 1):
ECG monitoring. records the heart’s electrical activity
over time, aiding in diagnosing cardiac conditions like
arrhythmias and heart disease. It’s utilized in hospitals,
clinics, and with devices like Holter monitors, event mon-
itors, and loop recorders.
Temperaturemonitoring. Health IoT devices like wear-
able sensors and smart thermometers offer real-time
body temperature data, transmitted to healthcare sys-
tems. Analysis of this data detects temperature trends or
abnormalities for early intervention, benefiting patients
and caregivers. Additionally, these devices aid in mon-
itoring the health of vulnerable individuals, notifying
caregivers of potential health concerns.
BP monitoring. Blood pressure monitoring assesses

arterial force during circulation, vital for cardiovascu-
lar health and detecting conditions like hypertension. A
sphygmomanometer, with cuff, gauge, and stethoscope,
measures systolic (during heartbeats) and diastolic (be-
tween beats) pressures. These two numbers reveal cru-
cial information about an individual’s blood pressure and
overall well-being.
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Figure 1: The classification of HIoT applications.

Oxygen saturation monitoring. Achieved through
non-invasive devices like pulse oximeters, assesses the
oxygen levels carried by red blood cells, aiding in res-
piratory function evaluation. This crucial process helps
detect issues like hypoxia or respiratory failure by mea-
suring SpO2, expressed as a percentage. Using light ab-
sorption, sensors on the fingertip or earlobe accurately
determine peripheral oxygen saturation, making it a valu-
able health assessment tool.
Medication management. Encompasses safe and ef-
fective medication use, including prescribing, patient
education, and monitoring for side effects. It plays a
crucial role in optimizing patient health outcomes and
minimizing adverse drug events. Effective medication
management is essential for patient well-being.
Glucose level monitoring. is vital for diabetes manage-
ment through various methods like blood glucose meters,
CGM systems, or lab tests. Frequency and targets depend
on individual needs. Mood monitoring. Utilizing tools
like mood diaries or apps, aids in tracking and recording
emotional states. It assists those with mental health con-
ditions by revealing patterns, identifying triggers, and
guiding treatment decisions, commonly used for depres-
sion, anxiety, or bipolar disorder.
Wheelchair management. Encompasses assessing mo-
bility needs, choosing the right wheelchair, and ensuring
its safe and effective utilization. It enhances indepen-
dence and well-being while preventing complications
and improving functional outcomes for those with mo-
bility impairments.
Asthma monitoring. Asthma control tests, peak flow
meters, spirometry, and electronic health records are
used to track an individual’s asthma symptom diaries,

night waking up, activity limitation, lung function, and
medication usage over time. It is a critical tool for asthma
management, changing treatment programs, and lower-
ing the risk of asthma exacerbations. Individuals who
have effective asthma monitoring may attain optimum
asthma management and enhance their quality of life.
The symptoms of asthma can vary in severity and may
include:

• Wheezing: A whistling sound when breathing
out;

• Wheezing: A whistling sound when breathing
out;

• Chest tightness: A feeling of tightness or pressure
in the chest;

• Shortness of breath: Difficult breathing, espe-
cially during physical activity [4].

In this paper, we discuss the latest achievements in the
tackled field by focusing on different asthma care ap-
proaches as well as describing some relevant healthcare
applications to our system. The impact of meteorological
conditions on people with asthma is characterized by
distinct and unique patterns, which may be attributed
to the intrinsic diversity in lung function found among
asthmatic patients. The extent of this diversity is depen-
dent on demographic characteristics, such as age and
gender. In addition, the geographic location adds an addi-
tional level of complication since the connection between
meteorological conditions and the symptoms of asthma
demonstrates inconsistency across various climatic zones.
Moreover, asthma systems are data-hungry, and data is
scattered over several hospitals with privacy limitations
in place. Traditional ML solutions need centralized data
collection and processing, which is becoming more im-
practical due to efficiency challenges and growing data
privacy concerns [5]. As an outcome of these limitations,
in 2017, Google introduced the federated learning (FL)
approach, where the objective is to train a high-quality
centralized model using training data dispersed over a
large number of clients, each with unreliable and gener-
ally sluggish network connections. As a result of these
features and inspiration from the previous federated sys-
tems, FL is a hot research topic in smart HIoT. For exam-
ple, the data of several hospitals is segregated and forms
"data islands." Due to each data island’s size and approx-
imation constraints, a single hospital may not be able
to train a high-quality model with excellent prediction
accuracy for a particular application. In addition, regu-
lations cannot force hospitals to provide data in many
cases. However, hospitals participating in FL can benefit
from it, e.g., with higher model accuracy. A challenging
problem is designing a fair incentive mechanism to allow
the contributing entity to benefit from FL. The rest of the
paper is organized as follows: Section 2 briefly surveys
the related works. Sections 3 and 4 provide the materials



and methods used in this study, as well as the results of
the comparative study and the performance evaluation.
Finally, Section 5 concludes the paper and outlines the
perspectives for future work.

2. Related works
In this section, we present and review recent research
works on IoT-based asthma exacerbation prediction sys-
tems that investigate the most recent developments and
challenges in this field. By analyzing these studies, we
hope to provide insights and recommendations for future
IoT-based asthma prediction system research directions.
Raherison-Semjen et. al [6] addressed asthma manage-
ment during pregnancy and the influence of environmen-
tal factors on asthma. It emphasizes the significance of
taking risk factors and prospective comorbidities into
account in asthma management and individualized man-
agement plans for asthma patients. Oletic and Bilas [7]
described a method for detecting asthmatic wheezing
noises using compressive sensing and machine learning
techniques to analyze respiratory sound spectra. Us-
ing a digital stethoscope, the authors acquired respira-
tory sound data from asthmatic and non-asthmatic sub-
jects. The proposed method detects asthmatic wheezing
sounds with high accuracy and has potential applications
in portable and non-invasive asthma monitoring devices.
Using computer science (CS) and ML techniques, the
study presents a promising strategy for the development
of an automated and accurate asthmatic wheezing detec-
tion system. Anan et. al [8] described the creation of an
IoT-based remote health monitoring system for asthmatic
patients. The system consists of an Android application,
a website, and multiple sensors to collect health-related
data and facilitate communication between physicians
and patients. The system was determined to be accu-
rate and affordable for low-income asthma patients after
being tested on actual human subjects. Tsang et. al [9] re-
viewed the use of machine learning algorithms in mobile
health for asthma management. The review highlighted
the potential of machine learning to improve asthma
management but also noted the need for larger sample
sizes and external validation of algorithms before they
can be used in clinical practice. The article discussed var-
ious studies on the use of machine learning algorithms
for asthma management, including activity detection and
breathing monitoring. A fog-driven IoT e-Health surveil-
lance and control framework for asthma exacerbations
is proposed by Maach et al. [10]. The framework gathers
physiological data from asthma patients using ubiqui-
tous sensors, then processes the data using fog nodes
and cloud computation. By providing personalized and
timely interventions, the proposed framework is scalable
and has the potential to enhance asthma patients’ qual-

ity of life. The effectiveness of the proposed framework
for monitoring and regulating asthma exacerbations is
demonstrated through a case study. The previous dis-
cussion made it evident that there are some gaps in the
literature, including privacy concerns, computational is-
sues, and accuracy limitations for centralized models, all
of which must be successfully addressed to secure smart
HIoT data. This paper presents the FELAE framework to
solve these challenges. Sharing patient electronic health
information across hospitals may not be possible due to
the sensitive nature of healthcare data. In such cases,
FELAE offers a viable approach, enabling the creation
of a collaborative learning model for asthma data. The
main contributions of this paper are as follows:

• The design and development of a low-cost IoT/AI
asthma exacerbation system.

• We investigate the implementation of three
deep learning classifiers: deep neural networks
(DNNs), convolutional neural networks (CNNs),
and long short-term memory recurrent networks
(LSTMs) architectures.

• In addition, we present a comprehensive perfor-
mance evaluation and comparison between the
FL approach and centralized learning models.

3. Materials and methods
The IoT platform architecture, as shown in Figure 2, has
been proposed to collect, transmit, and process the phys-
ical parameters (temperature, humidity, O2, air flow) of
patients along with the weather forecast information to
manage the decision of asthma exacerbation. In our study,
it is necessary to transform pressure readings into airflow.
We convert the values obtained from the MPX5010 sensor
to kilopascals (kPa), utilizing a scale ranging from 0 to 40
kPa. As depicted in Figure 2, the network component of
our platform is supplied via multi-hop communication
between box A (the data collection layer) and box B (the
gateway node or fog layer) in order to deploy classifica-
tion and prediction models. We have used the NRF24L01+
(i.e., 2.4Ghz radio) module for wireless communication
and the Atmega328P (with Arduino bootloader) as micro-
controllers, as well as Raspberry Pi 3 B+ as a fog layer.
Data is stored closely in the fog layer, so doctors can
rapidly access data during interventions. In addition,
asthma data is accessible even if the internet connection
is temporarily lost. Processing and validating data at the
fog level reduces the data transmitted to the cloud and
conserves the energy consumption and global network
bandwidth. In a centralized learning configuration, as
illustrated in Figure 3, every client uploads his data to a
centralized deep learning server to train the prediction
model. In contrast, with the FELAE framework, the en-
tire process is adapted from the basic and widely used



Table 1
Summary of Studies on Asthma Monitoring

Ref. Studies Measurements Sensors Used CL FL Low Cost
[6] This study covers the diag-

nosis and management of
asthma...

Several measurements includ-
ing FeNO, PEFR, FEV1, etc.

Various diagnostic tests,
Spirometry, Chemilumines-
cence or Electrochemical
Analyzer, Peak flow meter

No No No

[7] The article describes a
method for detecting asth-
matic wheezing sounds...

Respiratory sound measure-
ments using auscultation,
STFT for spectrograms

Wearable wireless acoustic
sensor and smartphone sys-
tem

Yes No No

[8] The paper describes the de-
velopment of an IoT-based re-
mote health monitoring sys-
tem...

Tested on real human test
subjects, sensors include
MAX30100, MLX90614,
DHT11, MQ-135

Body temperature, Pulse rate,
Humidity, Temperature, Air
quality, Blood pressure

No No No

[9] This paper reviews the use of
machine learning algorithms
in mobile health for asthma
management...

Use of machine learning algo-
rithms for monitoring breath-
ing sounds, lung function, ac-
tivity, etc.

Various wearable sensors,
smartwatches, portable sleep
diagnostic devices, electronic
nose, peak flow meters,
spirometers

Yes No No

[10] Authors propose a fog-driven
IoT e-Health framework for
monitoring and controlling
asthma exacerbation...

Air temperature, air pollution
measurements using wireless
sensors

Wireless sensors Yes No No

Our Study The study presents the design
and development of a low-cost
and full-featured fog-IoT/AI
asthma exacerbation system...

Air temperature, Air humid-
ity, Airflow, Heart rate, Oxy-
gen saturation

DHT22, Max30100, MPX5010 Yes Yes Yes

framework of Federated Averaging (FedAvg) [5] [11]. In
particular, instead of training and assessing the model on
a single machine, all the clients train their local models
sharing the same structure, but with distinct and indi-
vidual datasets. Subsequently, the trained local models
are submitted to the aggregation server that combines
all the models to produce a single global model with
optimized parameters. This method allows the partici-
pants (typically the hospitals) to share knowledge while
protecting the confidentiality of their sensitive informa-
tion. Importantly, this collaborative approach eliminates
the need for a high-authorization third party, a require-
ment frequently associated with high levels of trust and
sturdiness. Such a requirement may impose financial re-
strictions that inhibit broader participation in FL-related
initiatives. The current version of our system uses four
floating values to transmit, as well as the user’s ID code.
Each floating value is encoded in 4 bytes, while the user’s
ID code is encoded in 8 bytes. Overall, we have 32 bytes
to transmit from the emitter to the receiver. NRF24L01+
modules are configured to transmit and receive 32 bytes
at a rate of 2 Mbps for real-time monitoring. However,
due to the collisions and connections lost, we have imple-
mented a mechanism for auto-restarting the module after
finishing each transmission. This feature causes a minor
delay, but it ensures the stability of the transmission over
time.

4. Results and discussion
In this section, we first detail the dataset and experi-
mental settings used in this work before assessing our
proof-of-concept FELAE scheme implementation.

4.1. Experimental setup
Our experiments were carried out using Google Colabora-
tory [12], where Python 3 served as the primary program-
ming language. The implementation of Convolutional
Neural Networks (CNNs), Deep Neural Networks (DNNs),
Long Short-Term Memory networks (LSTMs), and FL
models leveraged widely recognized libraries. Specifi-
cally, we utilized NumPy for the manipulation of multi-
dimensional arrays and matrices, as well as Pandas for
the manipulation of data structures and the utilization of
rich analytical tools.

4.2. Dataset preprocessing
Data preprocessing is the first stage in which the un-
processed input data is filled, digitized, and normalized.
Fortunately, the chosen dataset has no missing NaN
values, and the corresponding numerical data are all
digitized. In this study, we used existing datasets in the
context of the asthma dataset with the target variable
ACT score.



Figure 2: Hardware components involved on the prototype experiment, Data collection: [Legends 1: DHT22 Sensor, 2:
max30100, 3: MPX5010 differential Pressure sensor, 4: Pipe attached to the MPX5010 sensor, 5: Breadboard, 6: Arduino uno
board]; Fog layer: [Raspberry pi3, Small Oled displays], NRF24L01 module for the transmission.

ACT scores 19 reflect uncontrolled asthma; >19
reflect well controlled asthma [4]. The provided dataset
[13] [14] is divided in half at an 80:20 ratio. In other
words, 80% of the data is utilized for training, while the
remaining 20% is used for testing. Additionally, 80% of
the data from the training step is divided into K=4 clients,
each representing a hospital’s data in our example.
For the data distribution among the various clients,
we employed independent and identically distributed
(IID): Each FL client’s data distribution aligns with the
distribution of all the dataset’s data.

4.3. Performance evaluation metrics
The metrics used for evaluating the models include pre-
cision, recall, F1 score, and accuracy. They are calculated
as follows:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
(1)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

F1-score =
2 · (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4)

• True Positive (TP): reports the number of ACT
scores samples that are correctly classified as well
controlled asthma.

• False Positive (FP): reports the number of ACT
scores samples that are wrongly classified as well
controlled asthma.

• True Negative (TN): reports the number of ACT
scores samples that are correctly classified as un-
controlled asthma.

• False Negative (FN): reports the number of ACT
scores samples that are wrongly classified as un-
controlled asthma.

• Accuracy: reports the proportion of properly cate-
gorized samples to all other samples in the testing
set.

• Precision: reports the percentage of samples prop-
erly categorized for all TP and FP in the testing
set.

• Recall: the ratio of TP samples to the total number
of TP and FN samples is known as recall.

• The F1-score reports the harmonic mean between
precision and recall.

4.4. Severity of asthma classification
through centralized learning

Table 2 displays the precision, recall, accuracy, and F1-
score for binary-class classification for the centralized



Figure 3: Centralized vs. federated learning approaches.

model that used deep learning methods. It shows how
well the model performs in predicting the severity of
asthma for specific asthmatic patients (well controlled
asthma, uncontrolled asthma). In this analysis, we em-
ployed three distinct neural network architectures, CNN,
LSTM, and DNN, to forecast the severity of asthma for
specific patients in four different clients. We evaluated
the outcomes using various performance metrics, includ-
ing accuracy, F1-score, recall, and precision. To begin,
we assessed accuracy, a measure of overall correctness.

Table 2 shows that the CNN architecture consistently
achieved the highest accuracy across the clients, rang-
ing from 84.15% to 88.11%. The DNN architecture also
demonstrated respectable accuracy, ranging from 78.71%
to 90.59%. In contrast, the LSTM architecture consistently
exhibited the lowest accuracy, ranging from 72.27% to
88.61%. Next, we considered the F1-score, which balances
precision and recall. The analysis revealed that the DNN
architecture consistently had the highest F1 score across
all clients, indicating its effectiveness in classification.
The CNN architecture also displayed robust F1 scores,
while the LSTM architecture needed to catch up, sug-
gesting difficulties in achieving high precision and high
recall. Turning to recall, a measure of the model’s ability

to identify positive instances, both the CNN and DNN
architectures generally outperformed the LSTM. This in-
dicated their superior capability in identifying patients
with severe asthma, which is especially noteworthy given
the absence of sequential data patterns in this context.
Lastly, precision, which measures the model’s ability to
classify positive instances accurately, illustrated that the
DNN architecture consistently maintained higher preci-
sion in most clients, implying a lower rate of false posi-
tives. Conversely, the LSTM architecture produced more
false positives, resulting in lower precision scores. In sum-
mary, the DNN architecture emerged as the most effective
choice for predicting asthma severity across the clients,
consistently excelling in accuracy, F1 score, and preci-
sion. The CNN architecture also performed admirably,
particularly in identifying cases of severe asthma. The
DNN architecture emerged as the most effective choice
for predicting asthma severity across hospitals, consis-
tently excelling in accuracy, F1 score, and precision. The
CNN architecture also performed admirably, particularly
in identifying cases of severe asthma.



Table 2
Performance Metrics of Different Models on Various Clients

Models Clients Accuracy F1-score Recall Precision

CNN

Client 1 0.8415 0.8457 0.8415 0.8777
Client 2 0.8514 0.8554 0.8514 0.8874
Client 3 0.8762 0.8789 0.8762 0.8941
Client 4 0.8811 0.8826 0.8811 0.8870

LSTM

Client 1 0.7772 0.7820 0.7772 0.7978
Client 2 0.7227 0.7269 0.7227 0.7328
Client 3 0.8861 0.8844 0.8861 0.8852
Client 4 0.7970 0.7843 0.7970 0.7974

DNN

Client 1 0.7871 0.7929 0.7871 0.8355
Client 2 0.7821 0.7602 0.7821 0.7920
Client 3 0.8712 0.8746 0.8712 0.9024
Client 4 0.9059 0.9067 0.9059 0.9086

4.5. Severity of asthma classification
through federated learning

In this experiment, we demonstrate the feasibility of a FE-
LAE framework. This method requires the participation
of multiple clients, specifically hospitals, to share knowl-
edge while protecting the confidentiality of their sensitive
information. Importantly, this collaborative approach
eliminates the need for a high-authorization third party,
a requirement frequently associated with high levels of
trust and sturdiness. Such a requirement may impose
financial restrictions that inhibit broader participation in
FL-related initiatives. To evaluate our proposed FELAE
scheme, we have conducted a series of tests. These in-
vestigations involved the construction of a controlled FL
environment in which deep learning models (i.e., CNN,
DNN, and LSTM) were implemented on a Raspberry Pi 3
board. The figures 4, 5, and 6 show how well all four
global models worked over 10 rounds, with three different
deep-learning classifiers used for each client (hospitals).
It is worth mentioning that the FL training process is
done over 10 rounds, where each model is saved after
every round to avoid overfitting after a long period of
training. The primary conclusion drawn from this study
is the discernible improvement in precision as a function
over iterative rounds across all FL global models. This
improvement signifies the concurrent progress and mu-
tual benefits realized by all the participants due to their
participation in the global model. A notable corollary
observation is that, in certain instances, global models
have demonstrated the ability to approach or closely rival
the performance levels attained by the centralized model.
In the evaluation, we ran the FL training process for 10
rounds. However, we save the global model at each round
to avoid overfitting issues after a long training period.
Table 3 shows a full analysis of how well three different
neural network architectures CNN, DNN, and LSTM can
predict the severity levels of asthma in a dataset of pa-
tients. The CNN classifier exhibits notable proficiency in

Figure 4: Learning performances using a FedAvg-based CNN-
model.

Figure 5: Learning performances using a FedAvg-based DNN-
model.

accurately discerning patients as either ’well controlled’
or ’uncontrolled, boasting many true positives in these
categories.

Conversely, the DNN classifier accurately identifies
patients at the extremes of well-controlled and uncon-



Table 3
Comparative study performance evaluation of federated models.

Models TP TN FP FN Accuracy F1-score Recall Precision
CNN 132 64 4 2 0.9702 0.9701 0.9702 0.9702
LSTM 128 52 16 6 0.8910 0.8887 0.8910 0.8914
DNN 130 60 8 4 0.9405 0.9401 0.94059 0.9405

Figure 6: Learning performances using a FedAvg-based LSTM-
model.

trolled asthma, achieving high true positive rates. Never-
theless, it also needs help classifying ’partially controlled’
cases, as it tends to make false predictions of ’well con-
trolled’ and ’uncontrolled’. The LSTM classifier accu-
rately distinguishes between well-controlled and uncon-
trolled asthma cases, with notable true positives in these
extreme categories. According to Table 3, the CNN model
stands out as the top performer among the three evalu-
ated deep learning models, with a substantial accuracy of
97.02%. It excels at accurately categorizing patients with
varied levels of asthma severity and a substantial number
of true positives and true negatives. Notably, the F1-
score, a metric balancing precision and recall, reaches an
impressive score (i.e., 97.01%), highlighting the model’s
effectiveness in minimizing false positives while captur-
ing true positives. In contrast, the LSTM model, although
reasonably accurate with an 89.10% accuracy rate, grap-
ples more with false positives and negatives. As a result,
its F1-score and precision are lower than those of CNN, in-
dicating difficulties in striking the ideal balance between
precision and recall. Finally, DNN reports good perfor-
mances with 94.05% accuracy. Like CNN, it maintains
an effective equilibrium between precision and recall,
leading to a high F1 score (i.e., 94.01%). Furthermore, its
precision slightly outperforms CNN, which lowers the
number of false positives. As presented in Table 3, CNN
can perform better with 97.02%, 94.05% for DNN, and
89.10% for LSTM, respectively. Overall, through these
experiments, we can highlight that CNN is the more reli-
able and ranked first due to the strengths of extracting

the category features.

5. Conclusions and future trends
This research paper proposes an innovative, low-cost,
IoT-based asthma exacerbation prediction system using
the FL approach. Our proposed system aims to provide
asthma patients a user-friendly solution for monitoring
their symptoms and anticipating potential crises. The
three phases of data collection, analysis, and treatment
serve as a road map for the system’s ongoing develop-
ment. It is essential to acknowledge that there are several
perspectives for the future enhancement of this project.
As we continue our work, we plan to explore additional
features and functionalities to improve the system’s effec-
tiveness. The following recommendations summarize the
research challenges that could enhance the performance
of the proposed asthma exacerbation system:

• Using the proposed low-cost IoT/AI asthma exac-
erbation system in order to generate our dataset
for the pulmonology department at the university
hospital in Oran.

• Use teacher and student networks and knowl-
edge distillation (KD) techniques to make models
smaller, faster, and more efficient.

• Include the most specific asthmatic symptom in
respiratory sounds, such as wheezing, in our
dataset.
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