
URL Detection based on YOLO Network in Various
Conditions⋆

Leila Boussaad1,2,*,†, Aldjia Boucetta1,2,†, Aymene Zeroual3,† and Wail Ala-eddine Zeroual3,†

1Management Sciences dept., Batna1 University, Batna, 05000, Algeria
2LAMIE Laboratory, Computer science dept., Batna2 University, Batna, 05000, Algeria
3Computer Science dept., Batna2 University, Batna, 05000, Algeria

Abstract
Object detection is a key technique in computer vision, as it is considered a necessary step in any recognition process. It is
the procedure for determining the instance of the class to which the object belongs and estimating its location by displaying
its bounding box. It was widely accepted that advances in object detection have generally gone through two periods: ”the
traditional object detection period”, where detection was performed through classical machine learning techniques, and
”the deep learning based detection period”, where classical machine learning techniques have been completely replaced by
methods based on deep neural networks. In this paper, we will focus on object detection based on deep learning. The main
objective is to carry out a comparative study of three models of the YOLO family, already proven to be effective for object
detection that are YOLOv3, YOLOv4, and YOLOv5 in the context of the detection of URLs in photos taken by a mobile phone.
The experimental results, expressed in terms of average precision, showed the generalization ability of the three models,
YOLOv3, YOLOv4, and YOLOv5. In addition, the stability of the YOLOv4 model against several difficulties added to the
images.

Keywords
Object Detection, Deep Learning, Convolutional Neural Networks (CNN), YOLO, URL Detection

1. Introduction
Object detection plays a central role in any recognition
system, encompassing the task of identifying an object’s
class and estimating its spatial coordinates by delineating
a bounding frame around the object. Recent advance-
ments in deep learning-based object detection have de-
livered remarkable outcomes. However, the real-world
implementation of object detection faces a host of chal-
lenges when confronted with actual images, including
factors like noise, occlusion, lighting fluctuations, rota-
tions, and others. These elements have a pronounced
impact on the precision of object detection and demand
thorough scrutiny during the detection process.

Conversely, the web has consistently served as a
medium that allows the transfer of data in a simple and
fast way. It counts as a necessary tool in modern life,
offering a multitude of prospects for both individuals and
large corporations.

World Wide Web, often referred to as the Web or
WWW, encompasses all publicly accessible websites and
pages that users can access on their local devices via the

6th International Hybrid Conference On Informatics And AppliedMath-
ematics, December 6-7, 2023 Guelma, Algeria
*Corresponding author.
†

These authors contributed equally.
$ boussaad.mous@gmail.com (L. Boussaad);
boucetta_batna@yahoo.fr (A. Boucetta);
aymenezeroual@gmail.com (A. Zeroual);
wailalaeddinezeroual@gmail.com (W. A. Zeroual)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Internet. These pages and documents are interconnected
through hypertext links, which users can click to access
information. This information can take various forms, in-
cluding text, images, audio, and video. To visit a website,
a specific page on a site, or more precisely, an "online
resource" (such as content or an online service), users
can enter its address, known as a Uniform Resource Lo-
cator (URL), into the browser’s address bar. The URL is
indispensable for pinpointing a particular page within
the vast sea of billions of web pages. Each web resource
possesses a unique URL, which serves as the web address
displayed in your browser.

To be more efficient and remove the step of entering
the URL, especially with increasing processing capabili-
ties such as the availability of smart phones and visual
input devices such as cameras built into smartphones,
this process can be divided into three steps: image ac-
quisition, URL localization, and URL recognition. In this
paper, we will mainly focus on the second step, which
plays a crucial role in the localization of URLs in a cap-
tured image containing text. Object detection methods
are well suited to accomplish this process. The detection
of a URL can be useful in several fields, particularly in
the field of tourism. The tourist can take a picture of a
URL and view website information without having to
type on their keyboard. Businesses, store owners, and
their customers can advertise and post information by
leaving URLs to the services they offer on their ad slots,
and users can retrieve the URL(s) by clicking a button.
The model can also be used to capture URL references

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:boussaad.mous@gmail.com
mailto:boucetta_batna@yahoo.fr
mailto:aymenezeroual@gmail.com
mailto:wailalaeddinezeroual@gmail.com
https://creativecommons.org/licenses/by/4.0


while listening to a presentation at a conference. Given
the capability of smart phone cameras lately, taking a
picture of a URL in transit should result in a "good qual-
ity" image that can be passed as input to a model, and
the URL(s) of interest will be recovered.

The primary goal of this study is to implement and
assess the effectiveness of three established models in
the domain of object detection—specifically, YOLOv3,
YOLOv4, and YOLOv5—for the identification of URLs
within images characterized by numerous challenges.
This includes the application of traditional image pro-
cessing techniques like rotation and noise addition, which
exist in real-world scenarios.

The subsequent sections of the manuscript are de-
signed as follows: Section II provides a concise overview
of the key concepts underpinning this paper. Section III
outlines the evaluation process we employed. Section IV
is dedicated to the presentation of experimental results
and ensuing discussions. Finally, in Section V, the paper
draws its conclusions.

2. Backgrounds
Prior to delving into the process and the diverse tech-
niques employed in object detection, it is essential to
establish a precise comprehension of object detection
itself. Frequently, this term is used interchangeably with
techniques like image classification, object recognition,
segmentation, and more. Nonetheless, it is imperative to
acknowledge that many of the techniques mentioned are
distinct tasks typically encompassed within the broader
realm of object detection. Treating them as synonyms is
inaccurate, as each corresponds to a task of equal impor-
tance. Thus, we can distinguish these computer vision
tasks:

Image classification is about predicting the class of
an element in an image, while object localization is
about locating the presence of objects in an image and
indicating their location using a bounding box (see figure
1(a)), and object detection is about locating the presence
of objects with a bounding box and the types or classes
of objects located in an image. Figure 1 (b) clearly shows
the result of an object detection process in a road scene.

Another extension of this division of computer vision
tasks is semantic image segmentation where instances
of recognized objects are indicated by highlighting spe-
cific pixels of the object. This technique gives a precise
location (at the pixel level) of an object and the pixels
found. The pixels produced can also be called a mask
(see figure 1 (c)). Combining semantic segmentation with
object detection leads to instance segmentation, which
first detects object instances and then segments each into
detected boxes (in this case called regions of interest). In
other words, each object in the image gets its own unique

mask even if there are other objects with the same class
(see figure 1 (d)).

Figure 1: The different computer vision tasks.

In this paper, we will focus on object detection, where it
is widely accepted that progress in this field has generally
crossed two periods: ”the traditional object detection
period (before 2014)” and ”the period of deep learning-
based detection (after 2014)."[1].

During the traditional object detection period (before
2014), object detection predominantly relied on classical
machine learning techniques. Among the notable meth-
ods that emerged during this period, three significant ap-
proaches are worthy of mention. These include the Viola-
Jones detector, originally developed in 2001 by Paul Viola
and Michael Jones [2] for real-time human face detection,
and it has demonstrated its utility in diverse applications.
The Histogram of Oriented Gradients (HOG), introduced
in 2005 by N. Dalal and B. Triggs [3], represents an en-
hancement over SIFT descriptors, shape contexts, and
contour orientation histograms. HOG provides a robust,
scale-invariant solution. Additionally, there is the De-
formable Partial Model (DPM) [4], initially proposed by P.
Felzenszwalb in 2008 as an extension of the HOG detec-
tor. DPM introduced a novel strategy involving learning
the components and their overall structure.

Despite the success of traditional approaches, the ef-
fort required to create effective and efficient detection
models remains significant. Therefore, they have been
completely replaced by methods based on deep neural
networks, resulting in greater accuracy and generaliza-
tion. In the era of deep learning, object detection is



grouped into two classes: "two-step detection” and “one-
step detection”. Typically, an object detector solves two
successive tasks: finding an arbitrary number of objects
(perhaps even zero) and classifying each object and es-
timating its size using a bounding box. Methods that
combine both tasks in one step are called single-step
detectors.

One-stage detectors skip the region proposal step and
perform detection directly on a dense sampling of loca-
tions. They generally consider all positions in the image
as potential objects and try to classify each region of
interest as a background or target object.

Within the realm of single-step object detection algo-
rithms, a noteworthy mention goes to the YOLO (You
Only Look Once) family of algorithms [5], which serves
as the central focus of this investigation. This approach
employs a single, fully trained neural network that re-
ceives an image as input and directly generates predic-
tions for bounding boxes and their associated class labels.

In the subsequent sections, we provide a concise
overview of the three models under consideration.

2.1. YOLOv3 [6]
YOLOv3 is primarily comprised of two key components:
a feature extractor and a detector. The initial step in-
volves passing the image through the feature extractor
known as Darknet-53. Darknet-53 is responsible for pro-
cessing the image and generating feature maps at various
scales. These feature maps at each scale are subsequently
directed into distinct branches of the detector. The de-
tector’s primary function is to process these multiple
feature maps at diverse scales, culminating in the cre-
ation of output grids that contain objectivity scores and
bounding boxes. The complete architecture of YOLOv3
is illustrated in Figure 2.

Darknet-53 integrates both residual blocks and Feature
Pyramid Networks (FPNs), as illustrated in Figure 3. Serv-
ing as a feature extractor, Darknet-53 accepts single-scale
images of arbitrary dimensions as input and yields ap-
propriately scaled multi-level feature maps. This feature
design enables exceptional performance across a broad
range of input resolutions.

2.2. YOLOv4 [7]
Developed in 2020 by Alexei Bochkovsky, the YOLOv4 ar-
chitecture features CSPDarknet53 as its backbone, which
builds upon the foundation of DarkNet-53. It incorpo-
rates a CSPNet strategy, as referenced in [8], to parti-
tion the base layer’s feature map into two segments and
subsequently reunite them through a multi-step hierar-
chy. This division and reunification approach facilitates
more degraded flow within the network. Following the
backbone, YOLOv4 adopts PANet, as cited in [9], as a

Figure 2: YOLOv3 Architecture.

Figure 3: Feature Pyramid Network (FPN).

parameter aggregation method from various levels of the
backbone for distinct detector levels, deviating from the
FPN approach employed in YOLOv3.

Furthermore, an SPP block, as referenced in [10], is
introduced for the notable expansion of the receptive
field. This block effectively isolates crucial contextual
features while maintaining minimal impact on network
operational speed. Finally, YOLOv3 is employed as the
network’s head, tasked with extracting pertinent features.
The figure 4 provides a clear structure of the YOLOv4
architecture.

2.3. YOLOv5
Developed by Ultralytics in 2020, this development
marked a substantial enhancement in facilitating real-
time object detection. The shift from Darknet to PyTorch
as a framework played a pivotal role in this improvement.
Darknet, known for its complexity in configuration and
limited production readiness, was surpassed by PyTorch,
leading to significant reductions in both training and
prediction times.

The model’s architecture bears similarities to YOLOv4,
incorporating CSPDarknet53 as the backbone, SPP and



Figure 4: YOLOv4 Architecture.

PANet for the neck, and employing YOLOv3 as the head,
as illustrated in Figure 5.

Figure 5: YOLOv5 Architecture.

3. Methodology Steps Description
This section offers an in-depth clarification of the evalu-
ation methodology employed in this study. The research
involves a comparative analysis of three deep models
within the YOLO family: YOLOv3, YOLOv4, and YOLOv5.
These models are single-stage detectors recognized for
their fast, high-accuracy detection capabilities and are
ideally suited for deployment on low-end systems, such
as embedded platforms.

We commence this section by delineating the primary
stage, which entails the creation and preparation of the
training dataset. Subsequently, we delve into the train-
ing process for the three selected models. The section
culminates with a series of tests conducted on images
presenting various challenges, aimed at assessing the

models’ generalization aptitude across distinct usage sce-
narios featuring diverse content.

3.1. Creating and preparing the Training
and Testing Datasets

The chosen object detection algorithms are rooted in
deep learning, and their intricate architecture necessi-
tates training on specific datasets to attain the desired
objectives. The dataset plays a pivotal role in influencing
the models’ performance; thus, it is imperative to have a
robust dataset in order to achieve optimal performance.

In the context of this research, our focus lies on the
application of various models for the detection of URLs.
A challenge surfaced during the preliminary phase of our
study, as no standardized database was readily available
for conducting a comprehensive evaluation and compari-
son of these models. In response, we undertook the task
of creating our own dataset, comprising a total of 160
images, all of which feature URLs.

The URL starts with three consecutive letters ’w’ and
a dot, followed by a label. The label is a series of English
letters from a to z (not case-sensitive) and can also con-
tain digits from 0 to 9. Hyphens can be added, but not
at the beginning or at the end, and adding more than
one consecutively is not allowed. The label length is be-
tween 3 and 63 characters maximum. In the end, after a
point, an extension is added. The most used extensions
are ".com", ".net" and ".org". This part can be called the
domain name.The URL can start with a protocol such
as http://, but modern web clients like browsers auto-
matically add the protocol before the URL if it doesn’t
contain one. The URL can also contain, after the exten-
sion name, more data, such as the filename /index.html
or subdirectories like /dir1/dir2 (see figure 6).

Figure 6: URL structure.

For our image dataset, we created random tag names
according to the previously listed conventions with
the defined extension added at the end, which
is:.com,.net,.org,.fr,.dz,.ca,.uk. These extensions are
widely spread, especially in our region. We added a few
URLs with additional data at the end, but for the majority
of images, we focused heavily on the domain name (label
and extension).

Object detection techniques exclusively process pixel-
level data, which implies that they perceive distinct varia-
tions between the letter ’A’ in one font style and the same
letter ’A’ in a different font style. Moreover, there can be
substantial disparities between a handwritten letter and



its printed equivalent, despite both conveying the same
semantic meaning through different visual representa-
tions (see figure 7). So, as a starting point for creating the
dataset, the printed URLs are written using the popular
Arial font. and for color, black is chosen.

Figure 7: The letter ’A’ written by different fonts.

The majority of global printing is performed on A4 pa-
per, and thus, our dataset will exclusively feature sample
URLs that have been printed on A4 paper. These URLs
will be juxtaposed with randomly generated text writ-
ten in various languages, encompassing Latin, Arabic,
Chinese, Russian, and Indian scripts.

After the generation of numerous simulated images,
the next step consists of a manual labeling process. Dur-
ing this phase, each image’s linked URL box is defined
and manually set. Subsequently, these annotations are
stored using the YOLO image annotation format, wherein
each image corresponds to an individual text annotation
file, denoted by the same name as the image itself. Each
line within the annotation file serves to define a ground-
truth object present within the image, represented like
this:

"< 𝑜𝑏𝑗𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠 >< 𝑥 >< 𝑦 >< 𝑤𝑖𝑑𝑡ℎ ><
ℎ𝑒𝑖𝑔ℎ𝑡 >"

This dataset format is compatible exclusively with
Darknet-based versions of YOLO, namely YOLOv3 and
YOLOv4, and is not compatible with YOLOv5. To accom-
modate YOLOv5, we adopted the Roboflow web platform,
which serves as a comprehensive solution for hosting,
annotating, and converting datasets across diverse for-
mats.

3.2. Model training
The models are trained on 80 % (127 images) of all the data.
The training is carried out in a Google Colab environment.
The training parameters are:

• In the case of YOLOv3, the input images are set to
dimensions of 416× 416, and the training covers
30 epochs, accumulating a total training duration
of 7 hours.

• In the case of YOLOv4, the input images are con-
figured at dimensions of 608×608, and the train-
ing persisted for 30 epochs, amounting to a total
training duration of 7 hours.

• For YOLOv5, the medium model is chosen, balanc-
ing precision and speed more effectively. The in-
put image dimensions are set to 640×640with 30
epochs. Remarkably, unlike its predecessors, this
model required just 15 minutes to complete the
training process, showcasing exceptional speed.

The training of YOLOv3 and YOLOv4 is executed
within the Darknet framework, whereas YOLOv5 is
trained using PyTorch. In all cases, official pre-trained
weights are chosen to apply transfer learning. The final
weights of the models are uploaded to the local machine
to be used in the evaluation phase.

4. Model evaluation, results and
discussion

The evaluation is conducted through a two-part process.
In the initial stage, we assess the models’ capacity for gen-
eralization in URL detection by considering their overall
performance, which involves the utilization of the entire
test dataset. In the subsequent stage, we subject the three
models to testing under various conditions commonly en-
countered in photos taken with mobile phones, thereby
evaluating their stability.

In the field of object detection, the evaluation of model
performance relies on several crucial metrics that provide
a comprehensive assessment of a model’s object detection
capabilities. In the context of this work, we have utilized
the defined metrics below:

The Intersection over Union (IoU), also known as the
Jaccard Index, quantifies the similarity between predicted
bounding boxes and actual bounding boxes. Formally,
IoU equals the intersection between the real and pre-
dicted bounding boxes divided by their union. The figure
8 clearly illustrates this concept of IoU. IoU ranges from 0
to 1; the closer the actual and predicted bounding boxes,
the closer the IoU measure is to 1 (see Figure 9).

Figure 8: Intersection over Union (IoU) metric.

Precision and recall. Precision assesses the propor-
tion of correct predictions among all positive predictions,
while recall measures the proportion of true positives
identified among all actual objects.



Figure 9: Examples of the Intersection over Union (IoU) met-
ric.

Finally, the precision-recall curve illustrates the trade-
off between precision and recall for different confidence
thresholds, providing an overall view of the model’s per-
formance across a range of confidence thresholds.

4.1. Generalization ability evaluation
The evaluation involves a subset of 20% of the complete
dataset, comprising 33 images. We have selected an IoU
(Intersection over Union) threshold of 0.5 for this assess-
ment. Results are depicted in figure ??.

Figure 10: Precision-Recall curve (YOLOV3).

In the evaluation of our object detection models, dis-
tinct performance characteristics emerge. YOLOv3, for
instance, achieved an average accuracy of 70.53%. No-
tably, precision begins to decline once recall surpasses
75%.

Conversely, YOLOv4 demonstrates a notably higher
average accuracy of 90.91%, with a subsequent drop in
precision observed after reaching a recall rate of 98%. As
for YOLOv5, it achieves an average accuracy of 88.63%,
with precision exhibiting a decrease once recall exceeds
91%.

Despite the limited dataset size, the above observations
underscore the model’s ability to generalize effectively.

Figure 11: Precision-Recall curve (YOLOV4).

Figure 12: Precision-Recall curve (YOLOV5).

4.2. Evaluation in different conditions
In this section, we assess the model’s performance using
images that present challenges not encountered in the
training dataset. These challenges include:

• Distinct typestyles, such as Algerian, Bradley
Hand ITC, and Jokerman.

• Different background colors and character colors.
• Rotation of images of 90° and 180°.
• URLs prefixed with the https:// protocol tag.
• Handwritten URL characters.
• Images with Gaussian Noise.

The table below showcases the models’ performance as
measured by the average precision (AP) for each difficulty
category.

From results presented in Table 1, we can draw the
following conclusions:

4.2.1. Testing with distinct typestyles:

This challenge had a relatively minor impact on the
models’ performance, as all three models demonstrated



Table 1
Average Precision (AP) of YOLOv3, YOLOv4, and YOLOv5 for
different difficulties

Models
Difficulty YOLOv3 YOLOv4 YOLOv5

Colors 31.17% 54.55% 27.27%
Font 72.73% 84.29% 88.07%
HTTP Protocol 12.12% 28.9% 13.64%
Handwritten
characters

0.0% 0.0% 0.0%

Rotation (180°) 27.27% 18.18% 18.18%
Rotation (90°) 0.0% 0.0% 0.0%
Gaussian noise 36.36% 37.36% 83.98%

closely aligned average accuracies. YOLOv3 yielded
the lowest average accuracy of 72.7%, while YOLOv5
achieved the highest average accuracy of 88.07%, and
YOLOv4 84.2%. Furthermore, figures 13, 14, and 15 pro-
vide a comprehensive representation of URLs successfully
identified within text samples rendered in three different
fonts.

Figure 13: Different character polices (YOLOV3).

4.2.2. Testing with different color polices and
backgrounds:

This challenge posed a significant impact on the models’
performance. YOLOv3, for instance, exhibited the inabil-
ity to detect URLs against a colored background, yet it
demonstrated success in detecting URLs with colored
characters, achieving an average accuracy of 31.71%. In
contrast, YOLOv4 emerged as the top-performing model
in this context, attaining an average accuracy of 54.44%.
YOLOv4 managed to successfully detect all URLs with
colored characters and a majority of URLs against col-
ored backgrounds. Conversely, YOLOv5 displayed the
weakest performance with an average accuracy of 27.27%,
struggling to detect URLs with colored objects, as well as

Figure 14: Different character polices (YOLOV4).

Figure 15: Different character polices (YOLOV5).

those against colored backgrounds. Additionally, figures
16, 17, and 18 provide a visual representation of the identi-
fication of URLs within text samples that feature colored
characters and are placed against colored backgrounds.

Figure 16: Different color polices and backgrounds (YOLOV3).



Figure 17: Different color polices and backgrounds (YOLOV4).

Figure 18: Different color polices and backgrounds (YOLOV5).

4.2.3. Testing with different image rotations (90° et
180°):

Rotating the images by 180° had no notable influence
on the models’ performance. However, when rotated by
90°, the models’ performance was significantly decreased,
with all three models achieving an average accuracy of
0%. as evident in figures 19, 20, and 21.

4.2.4. URL prefixed with the http:// protocol tag:

In the case of URLs prefixed with the http:// tag, the
models encountered difficulties in their detection, with
some models failing to identify the complete URL, rec-
ognizing only the domain name. YOLOv3 exhibited an
average accuracy of 12.12%, YOLOv4 outperformed the
others with the highest accuracy at 28.9%, and YOLOv5
achieved an accuracy of 13.64%. Examples of detections
for this particular challenge are illustrated in Figures 22,
23 and 24.

Figure 19: Image rotations -90°, 180° (YOLOV3).

Figure 20: Image rotations -90°, 180° (YOLOV4).

Figure 21: Image rotations -90°, 180° (YOLOV5).

4.2.5. Handwritten URL characters:

In this case, all models were unable to identify the URL,
resulting in an average accuracy of 0% across the board.
Figure 25 provides an image depicting a sheet with var-



Figure 22: URL prefixed with the http:// protocol tag
(YOLOV3).

Figure 23: URL prefixed with the http:// protocol tag
(YOLOv4).

Figure 24: URL prefixed with the http:// protocol tag
(YOLOv5).

ious handwritten URLs that remained unrecognized by
all three models.

Figure 25: Handwritten URL characters (YOLOv3, YOLOv4,
and YOLOv5).

4.2.6. Gaussian noise addition:

The introduction of noise had a profound impact on the
models’ accuracy, leading to the detection of false objects.
YOLOv3’s accuracy dropped to 36.36%, and YOLOv4
also experienced a decrease, with an accuracy of 37.36%.
In contrast, YOLOv5 achieved the highest accuracy of
83.98% under these conditions (see figures 26, 27, and 28).

Figure 26: Images with Gaussian noise (YOLOv3).



Figure 27: Images with Gaussian noise (YOLOv4).

Figure 28: Images with Gaussian noise (YOLOv5).

5. Conclusion
In this study, we investigated a very interesting topic
in the field of computer vision, specifically focusing on
object detection, a pivotal stage in recognition processes.
Our primary goal was to assess the generalization capa-
bility and robustness of three distinct models—YOLOv3,
YOLOv4, and YOLOv5—in the context of URL detection
within mobile phone-captured images.

The experimental results, expressed in terms of aver-
age precision, allowed us to deduce the following conclu-
sions:

The three models gave very satisfactory generalization
results, and the best is YOLOv4.

Concerning stability for several difficulties, the 3
models did not completely recognize URLs rotated by a
90° rotation angle, where the average precision achieved
is 0:0%. Also, for handwritten URLs, all three models
provided an average accuracy of 0.0%.

To improve these results, we propose to:

• increase the size of the dataset.

• Augment the image set with images containing
different difficulties for the training dataset.

• Test other versions of the YOLO family, even
other models of the two-stage detector family.

References
[1] Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Object

detection in 20 years: A survey, Proceedings of
the IEEE 111 (2023) 257–276. doi:10.1109/JPROC.
2023.3238524.

[2] P. Viola, M. Jones, Rapid object detection using a
boosted cascade of simple features, in: Proceedings
of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR
2001, volume 1, 2001, pp. I–I. doi:10.1109/CVPR.
2001.990517.

[3] N. Dalal, B. Triggs, Histograms of oriented gradi-
ents for human detection, in: 2005 IEEE Computer
Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), volume 1, 2005, pp.
886–893 vol. 1. doi:10.1109/CVPR.2005.177.

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester,
D. Ramanan, Object detection with discriminatively
trained part-based models, IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (2010)
1627–1645. doi:10.1109/TPAMI.2009.167.

[5] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You
only look once: Unified, real-time object detec-
tion, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 779–788.
doi:10.1109/CVPR.2016.91.

[6] J. Redmon, A. Farhadi, Yolov3: An incremental im-
provement, arXiv preprint arXiv:1804.02767 (2018).

[7] A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, Yolov4:
Optimal speed and accuracy of object detection,
arXiv preprint arXiv:2004.10934 (2020).

[8] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen,
J.-W. Hsieh, I.-H. Yeh, Cspnet: A new backbone that
can enhance learning capability of cnn, in: 2020
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2020,
pp. 1571–1580. doi:10.1109/CVPRW50498.2020.
00203.

[9] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggrega-
tion network for instance segmentation, in: 2018
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8759–8768. doi:10.
1109/CVPR.2018.00913.

[10] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid
pooling in deep convolutional networks for visual
recognition, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 37 (2015) 1904–1916.
doi:10.1109/TPAMI.2015.2389824.

http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPRW50498.2020.00203
http://dx.doi.org/10.1109/CVPRW50498.2020.00203
http://dx.doi.org/10.1109/CVPR.2018.00913
http://dx.doi.org/10.1109/CVPR.2018.00913
http://dx.doi.org/10.1109/TPAMI.2015.2389824

	1 Introduction
	2 Backgrounds
	2.1 YOLOv3 yolo3
	2.2 YOLOv4 yolo4
	2.3 YOLOv5

	3 Methodology Steps Description
	3.1 Creating and preparing the Training and Testing Datasets
	3.2 Model training

	4 Model evaluation, results and discussion
	4.1 Generalization ability evaluation
	4.2 Evaluation in different conditions
	4.2.1 Testing with distinct typestyles:
	4.2.2 Testing with different color polices and backgrounds:
	4.2.3 Testing with different image rotations (90° et 180°):
	4.2.4 URL prefixed with the http:// protocol tag:
	4.2.5 Handwritten URL characters:
	4.2.6 Gaussian noise addition:


	5 Conclusion

