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Abstract

Supervised learning is one of the main types machine learning in which model is trained from data which consists of features
(input data) and labels, that is target values. Using our training data, the parameters of our model will be adjusted until
loss function reaches a low value or until we get high accuracy on the validation data. Before we start building model,

we need make data preprocessing. PCA is often used,

to reduce numbers of dimensions our data. Models in which data

have been reduced using PCA often have high accuracy. In this article, we will look at how well-known classifiers work
such as: K-Nearest Neighbors, Gaussian Naive Bayes and Support Vector Machines, that using PCA. We will also check the
performance of the classifiers for which the data has been reduced to fewer dimensions by analyzing correlation tables and
we will look at models whose data contain the original number of features. We will evaluate their effectiveness based on the
Raisin database and show how decision boundaries built in models that were constructed after our analysis.
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1. Introduction

Supervised learning is used in many areas, such as: clas-
sification [1, 2], regression [3], patterns recognition, nat-
ural language processing and image encryption [4, 5, 6].
Examples of problems that can be solved using supervised
learning are: classifying whether an email is spam or not,
weather forecasting, classify text, whether a review is
positive or negative[7, 8].

The popular algorithm used during training model for
example in the case of regression or SVM classifier, is
the gradient descent, which minimizes loss function, by
adjusting the parameters of our model in the direction
of the decreasing gradient of the loss function [9, 10].
The goal of supervised learning is to achieve high accu-
racy to make right predictions on unknown data. There
are many interesting improvements to such models for
application systems. In [11] was presented how to use
machine learning for imbalanced data inputs, while in
[12, 13] was presented positioning of technical systems
for power electric models. We can find also many appli-
cations for complex input data structure ie. [14] gave it
for the graph based input relations compositions.

In classification problem we also distinguish models
based on deep neural networks[15]. The architecture
of neural networks is: weights, activation functions [16],
loss function and optimizer. In the case of classifier
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classifiers

KNN and Gaussian Naive Bayes there is no learning with
weights. Using KNN model on large dataset, it can lead
to high consumption of computing resources. In [17] was
proposed strategy, which improve the efficiency of KNN
classifier on Big Data.

In this paper we will compare three classifiers: KNN,
Gaussian Naive Bayes and SVM, that were built on three
various data:

« model uses PCA to reduce the dimensionality of
the data

« model uses two features selected by us

« model uses all the features

We will check the effectiveness of the above models, in
the case of the KNN for different metrics and for the SVM
model we will test the performance for various kernels.
We will summarize whether reduction of the dimensions
of our data allows us to get satisfactory results, leading
to a decrease in computational complexity.

2. Raisin database

The database that we used to build various classifiers
contains samples that were described by 7 morphological
features. These features were obtained after previously
processing the photos.Values are continuous and we can
see that each feature has value from different ranges.
There are also high values of standard deviations for
example, for Area and ConvexArea features, indicating
that the values for these features are highly dispersed
from their mean.
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2.1. Standardization

Normalization or standardization are used to improve the
efficiency and effectiveness of the model. In the case of
KNN model, that uses distance measures to classify data
samples, if the values weren’t normalized or standard-
ization, features with higher values could have greater
impact on model’s result, which could lead to low accu-
racy. Therefore, an important and recommended action
is to use one of the data processing techniques before cre-
ating KNN and SVM models. Mainly for Gaussian Naive
Bayes doesn’t use data standardization, because this al-
gorithm doesn’t depend on distance, so doesn’t require
scaling of features. We used standardization exception-
ally in Gaussian Naive Bayes classifiers in which the PCA
technique were used and in classifiers in which used two-
dimensional data to plot decision boundaries.We used
standardization, which transforms our data in a way that
the mean is equal to 0 and the standard deviation is equal
to 1. At the beginning for everyone feature we calculated
the mean value and standard deviation and then we used
the results to calculate new values using the formula
below:

T—p

o

1)

Tnew =

2.2. Model based on PCA

One of the popular dimensionality reduction techniques
is PCA. The task of PCA is to return n-features that we
can create a model with high accuracy. Interesting im-
provements to PCA models composed for graph based
classifiers were presented in [18]. In our models were
used PCA, which returns to us new training and test data
reduced from seven to two dimensions.

2.3. Model based on two features

Another way to prepare data for the model is to reduce
dimensionality based on correlation analysis. Correlation
defines the relation between two variables. Correlation
value close to 1 or -1 mean a strong correlation, but value
close to 0 mean weak correlation. The Extent feature
was removed from our training and testing data, because
its correlation value with our target feature was only
0.28. Additionally, the following features were elimi-
nated: ConvexArea, Perimeter, Area, MinorAxisLength,
because these attributes had strong relation with other
features and didn’t contribute relevant information to the
classification models. Finally, our classifiers were built
on other two features: MajorAxisLength and Eccentricity.
The Fig. 1 shows correlation plots between two features.
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Figure 1: Correlation graphs of two features

2.4. Model based on all features

For each classifier, we also built a model based on all
seven features. Sometimes training a model on the basis
of all attributes can be a disadvantage, because this ap-
proach lead to slower learning of our classifier. However,
the advantage of including all features is that in some
cases it can lead to very high efficiency of our machine
learning algorithm, because we don’t lose any relevant in-
formation. Fig. ?? illustrates our feature and correlation
graphs.

3. Methods

3.1. KNN
3.1.1. Formulas

Euclidean distance:

D(I7 y) = @)
Manbhattan distance:
D(z,y) = Y |ai — il 3)
i=1
Minkowski distance:
™ 1
D(z,y) = <Z |zi — yz‘|T> 4
i=1
Canberra distance:
~ lzi — il
D(z,y) = ®)
; || + |yl
Chebyshev distance:
D(x,y) = max [z; — yi] ©)
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Cosine distance: Updating weights and bias:
Zﬁl T " Yi
D(z,y) =1- == ) wy = wy — NV Cost(wy) (12)
VOINERRVO DT
b="b—nVyCost(wy) (13)

3.1.2. Algorithm

KNN classifier is mathematical model, that doesn’t re-
quire training. New, unknown points are predicted based
on the k-nearest points voting. When classifying a new
sample, model calculates distances between the sam-
ple and each point in the specified n-dimensional space.
Among all the distances the model chooses k-smallest
and voting takes place. The class that occurs most fre-
quently among the selected points becomes the predicted
class for the new sample. We compared performance of
KNN classifier for different distance measures (metrics):
Euclidean, Manhattan, Minkowski for » = 3, Canberra,
Chebyshev and Cosine.

3.2. Gaussian Naive Bayes
3.2.1. Formulas

Bayes’ Theorem in our model:

P(y) - TT;Z, Plasly)
P(ylz1, 2, ..., zn) = P(y|z ;1,‘21 ey Tn) ®
1 (w5 — py)
P(xily) = TXPITTTS e ?
Sample variance:
2 _ 1 - 7)2
o n—lZ(xi_w) (10)

i=1

3.2.2. Algorithm

Gaussian Naive Bayes is probabilistic model, that uses
Bayes’ Theorem to determine the probability of sample
belonging to a specific class. The classifier assumes, that
the features are independent. We used this type of clas-
sifier, because our data is continuous and the data is
approximately normally distributed. During the training
process, our model calculated the mean and variance for
each attribute from every class and the "a priori" proba-
bilities for each class. When predicting a test data, two
probabilities are returned because we have binary classi-
fication. We chose the highest probability with its label.

3.3. SVM
3.3.1. Formulas
Hinge Loss:

e; = max(0, 1 — yi f(z:)) (11)

Minimizing the cost function using Stochastic Gradient
Descent (SGD):

minCost(w;) = M|w||* + max(0,1 — y; f(x:)) (14)

A= —

NO (15)

3.3.2. Algorithm

SVM classifier (Support Vector Machines) creates a hy-
perplane that maximizes the distance between the closest
points of two classes (support vectors). When creating
a hyperplane, two techniques are used: soft margin and
hard margin. Soft margin during the process of train-
ing allows our algorithms to make mistakes, so it allows
points to be on the wrong side of the hyperplane or inside
the margin. Hard margin during the process of training
doesn’t tolerate any errors, so points cannot be on the
wrong side of the hyperplane or inside the margin. In our
case, where our data isn’t completely linear separable, we
used the soft margin technique and used various kernels
to transform our data to higher dimensionality. We also
used regularization parameter C. We created models, in
which one of the classes is equal to 1 and the other is
equal to -1. Then, using Stochastic Gradient Descent, we
updated our weights and b after each data sample. Finally,
we tested our models, if the predicted values were nega-
tive, they were assigned the label -1, if non-negative, they
are assigned the label 1. We compared the performance
of classifiers using different kernels such as: linear, poly,
rbf, laplacian and sigmoid.
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4. Experiments

4.1. KNN

We created the KNN models for different metrics for which the prediction is based on 3 nearest neighbors.
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Figure 2: Classification reports for KNN with PCA. The results are shown in order for the metrics:
minkowski, canberra, chebysheyv, cosine
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Figure 3: Classification reports for KNN with two features. The results are shown in order for the metrics: euclidean,
manhattan, minkowski, canberra, chebyshev, cosine
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Decision boundaries for KNN with two features. The results are presented in order for the metrics: euclidean,
manhattan, minkowski, canberra, chebyshev, cosine

precision
Besni 8.86
Kecimen 8.92
accuracy
macro avg 8.89
weighted avg .89
precision
Besni 0.86
Kecimen @.92
accuracy
macro avg @.89
weighted avg .89
precision
Besni 8.87
Kecimen ©.85
accuracy
macro avg B8.80
weighted avg 8.86

recall
@.02
8.85

8.88

@.88
recall
8.92
8.85
.88
6.88

recall

fl-score

.89
.88

.88
@.88
.88

f1-score

8.89
a.88

@.38
8.88
@.38

fl-score

a.86
@.86

8.86
8.86
Q.86

support
39 )
39 B?snl
Kecimen

78
78 accuracy
78 _macro avg
weighted avg

support
Besni
39 Kecimen

39
accuracy
78 macro avg
78 weighted avg

78

support
:i Besni
Kecimen
78 accuracy
78 macro avg

78

weighted avg

precision
g.84
.91

.88
2.88

precision

0.8@
.84

9.82
8.82

precision

recall fl-score support
8.92 @.88 39
9.82 8.86 39
a.87 78

8.87 @.37 78
8.87 a.87 78
recall fl-score  support
@.85 2.83 39
a.79 @.82 39
@.82 78

@.82 8.82 78
8.82 @.82 78
recall fl-score  support
8.92 9.89 39
8.85 6.88 39
6.88 78

B.88 8.88 78
8.88 8.88 78

Figure 5: Classification reports for KNN with all features. The results are shown in order for the metrics: euclidean, manhattan,
minkowski, canberra, chebyshev, cosine
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4.2. Gaussian Naive Bayes
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Figure 6: Classification reports for Gaussian Naive Bayes in order using PCA and all features
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Figure 7: Classification report for Gaussian Naive Bayes with two features and decision boundaries of this model

4.3. SVM

We created SVM models for different kernels for specific parameters. These nuclei are: linear, polynomial with
degree of 7, rbf with a gamma of 2, laplacian with a gamma of 2 and sigmoid with a gamma of 1.
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Figure 8: Classification reports for SVM with PCA. The results are shown in order for the kernels: linear, poly, rbf, laplacian
and sigmoid
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Figure 9: Classification reports for SVM with two features. The results
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Figure 10: Classification reports for SVM with all features. The results are shown in order for the kernels: linear, poly, rbf,
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5. Conclusion

After analyzing our results for three classifiers, we con-
clude that using the PCA technique to reduce the dimen-
sionality from 7 to 2 features supported performance of
our models, also achieving high accuracies, comparable
to the results of models built on all features. After ana-
lyzing the correlation of our data, we were able to find
two features for which the models had similar accuracy
compared to the PCA-based models, these features are:
MajorAxisLength and Eccentricity. The accuracy for the
KNN classifiers with and without PCA are very similar,
ranging from 82% to 88% depending on the metric. In
the case of Gaussian Naive Bayes classifiers the accu-
racy result obtained using PCA and using 7 features gave
the same value of 85% , which only confirms the fact
that the reduction in dimensions didn’t contribute to the
loss of significant information. The last type of classifier,
that was analyzed was SVM. After analyzing for different
kernels, the sigmoid kernel turned out to be the best,
which in models with and without PCA indicated the
best accuracy of 88%.
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