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Abstract
Autonomous driving is a highly relevant topic today, particularly among major car manufacturers attempting to lead in
technological innovation and enhance driving safety. An autonomous vehicle must possess the capability to sense its
environment and navigate without human intervention. Thus, it serves as both a driver support system and, in some cases, a
substitute. A crucial aspect involves identifying the positions of pedestrians, traffic signs, traffic lights, and other vehicles while
computing distances from them. This enables the vehicle to emit alerts to the driver in potentially dangerous situations, such
as impending obstacles due to external factors or driver distraction. In this paper, we introduce an approach for identifying
traffic signs and determining the distance from them. Our method utilizes the YOLOv4 network for identification and a
customized network for distance computation. This integration of AI technologies facilitates the timely detection of hazards
and enables proactive alert mechanisms, thereby advancing the capabilities of autonomous vehicles and enhancing driving
safety.
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1. Introduction
Road safety is a major global concern, impacting the
well-being of individuals and communities worldwide.
The development and adoption of advanced technolo-
gies, such as driver assistance systems and autonomous
vehicles, offer significant potential to further enhance
road safety in the long term. This is possible by creating
systems based on cameras or sensors mounted on the ve-
hicles that process the acquired images and can identify
the typical objects of a road environment by doing some
computation on them, such as looking at their distances.
In this way, the vehicle could be able to make quick de-
cisions autonomously in case of necessity. A classical
example is when there is a stop signal and the system
detects that the driver is not reducing the velocity, at this
point it can brake autonomously the vehicle or easily
alarms the driver with acoustic signals.

In the last years, attempts have begun to approach
this field of research by exploiting artificial intelligence.
Previous methods involved the use of geometry with the
assumption of fixed dimensions for objects such as vehi-
cles. Other methods were based on IPM (Inverse Perspec-
tive Mapping) using the lines present on the carriageway,
these methods are all dependent on the parameters of
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the used camera.
One of the main problems in this field of research is

the dataset. We are talking about a very delicate area, so
to be sure of the system’s accuracy the dataset should
be composed of a huge number of samples representing
different objects in very different contexts [1, 2, 3]. So,
what we did was to record video on short routes from a
dash cam mounted on our vehicle, extracting frames on
which we then calculated ground truth in an automated
way to finally make an ad hoc dataset for us.

In this paper, we focus on computing the distances
between the vehicle and the detected traffic signs using
single images captured by a monocular camera. We de-
cided to use this type of camera because it is the most
common and affordable. The method foresees two phases,
one for the detection of the traffic signs on the captured
images and a second phase for inferring distances from
them. For this second phase we built a network based on
a modern paper [4] that tries to solve the problem with a
pure base artificial intelligence approach.

Our main contributions arise from our endeavor to
create an automated system tailored to our needs. Ini-
tially, we integrated YOLOv4 to produce bounding boxes
around traffic signs, facilitating the automatic identifica-
tion of their positions within images, thus concluding the
initial phase of our approach. Subsequently, we directed
our efforts towards developing a specialized dataset to
address our specific problem, as existing datasets did not
fulfill our requirements. Building upon our initial find-
ings, we sought to enhance our system by implementing
two stabilization methods for predicted distances. The
first method entails generating and utilizing depth maps
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for each frame, enhancing the accuracy of distance mea-
surements between signs located at the same depth. The
second method capitalizes on temporal frame correla-
tion, enhancing the smoothness and consistency of our
system, and thereby augmenting its overall performance.

The use of depth maps helps us to get more accurate
measurements between signs that are collocated at the
same depth. Temporal frame correlation instead helps
us to: Filtrate some false positive predictions keeping a
bounding box if and only if it appears in the previous and
the next frames and get more stable distance predictions
for successive ones.

The major car manufacturers are at the forefront in this
field. Taking Tesla as an example, it uses a huge amount
of sensors and cameras mounted on its vehicles. This
implies that the car must be produced in that way. With
methods like ours, what you can do is simply mount
a camera, such as a dash cam, inside the vehicle as a
driving aid. Furthermore, what we have tried to do is
to implement, as in the reference paper, a method that
was not bound to the parameters of the camera used. For
example, the IPM methods are bounded by the height of
the camera from the ground, instead in this case the driver
does not have to worry about the position in which the
camera is mounted, which can easily be used on different
vehicles. building a simple and portable system usable
on any camera.

2. Related works
Inverse Perspective Mapping [5] consists of removing
the perspective distortion from the road surface, taking
as reference the lane lines to compute distances assuming
they have a fixed size. In this method, a bird’s eye view
of the roadway is computed to carry out the correspon-
dence between a pixel dimension and the lane line size.
This correspondence is then used to count the pixel be-
tween an object and the vehicle getting the approximated
distance. This method has problems in the presence of
road curves or road signs not very visible or absent. In
addition, it is very dependent on the camera parameters.
Stereo vision [6] This method foresees the use of

a stereo camera that generates two images, a left and
a right view. From these two images of the same envi-
ronment is generated a disparity map with the use of
epipolar geometry. Using a simple formula from the gen-
erated map it is possible to compute for each pixel of
the 2D image the z coordinates that give us the depth of
the object in that pixel in the real 3D world. The main
problem with this method is the expensive cost of the
stereo camera.
AI-based approach[7] This method is based on a

deep learning approach to monocular images. Starting
from labeled data train a neural network able to compute

distances from objects bounding boxes (DisNet).
Geometry approach [8] Other papers are based on

the assumption of fixed sizes for known objects, such as
vehicles. In this way, knowing camera parameters can be
used as a formula to compute distances [9, 10? ].

3. Our approach
Our approach focused on the use of Italian road signs. In
Italy, for each category of sign there is a most commonly
used size, so once we classified the sign surveyed, we
assumed that its size was the common one.

To approach the problem, we started creating our
dataset from scratch. To accomplish this task, we used
a dash cam mounted on our vehicle recording routes
around the city to finally get more or less 3 hours of
recordings. Then we filtered out all unsuitable videos,
from the remaining videos we got about 1500 frames rep-
resenting the roads around the city. We cut each frame
on the vertical axis because of a visible portion of the
vehicle interior, removing useless information.

For object detection, we needed a quick solution to
avoid wasting time in the whole process. So, we chose
YOLOv4 (You Only Look Once) [11] because it runs a
lot faster than other methods as RCNN [12] or methods
based on color segmentation [13]. We downloaded a
pre-trained YOLO network on which we did transfer
learning on a German Traffic Sign dataset training for
4000 iterations. During the transfer learning phase. Other
attempts we made were to use some image pre-processing
techniques, those in grayscale, or the images on which
we used histogram equalization getting unfortunately
bad results. In the end, the network reached an accuracy
of about 91%.

With the YOLO network, we got the bounding boxes
of the traffic signs for each frame, discarding manually all
the frames without detected objects or with the presence
of wrong detections. To get the ground truth of each
bounding box we use the following formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑊𝑖𝑑𝑡ℎ𝑐𝑚 * 𝐹𝑜𝑐𝑎𝑙𝑙𝑒𝑛𝑔ℎ𝑡

𝑊𝑖𝑑𝑡ℎ𝑝𝑥

It is based on the focal length of the camera that we
obtained by taking a picture of an object of known size
placed at a known distance to count the pixels of which
the object is composed within the image. This is the only
parameter of the camera that was necessary to create the
dataset.

In particular, the width of the triangular and octagonal
signs used is 90 cm, while it is 60 cm for the square and
circular ones.

Through this process, we built a dataset composed of
959 images. After the creation of the dataset, we focused
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(a) Predictive model for traffic sign distance computation. Input image with bounding boxes undergoes VGG16 feature extraction,
ROI pooling for size standardization, and a three-layer feedforward network for distance prediction using soft plus activation.

(b) Enhanced model integrating depth map information and temporal frame correlation for stabilized predictions. Input image
with bounding boxes processed through VGG16, ROI pooling, and a modified three-layer feedforward network, leading to
improved distance accuracy.

Figure 1: Schematic representations of the comprehensive distance computation system.

on the detection part. For this purpose, we used YOLOv4
as mentioned above.

After obtaining the bounding boxes for an image, it is
passed to a specific network for the distance computation.
This second network is composed of a CNN (VGG16) [14]
for feature map extraction, and then this is combined with
the information about bounding boxes passed through an
ROI pooling layer [15]. This Layer is necessary because
bounding boxes for a single image could be of different
sizes, this layer aims to remove this difference in the
dimension standardizing them. The output of the ROI
pooling is finally passed to a feedforward network, com-
posed of 3 layers (2048, 512, 1), that predicts distances
using a soft plus activation function. The architecture of
the network is shown in Figure 1a.

By testing the entire process on different videos, we
noticed that for our cases this method was not stable in
the predictions made between successive frames, in fact
in some cases, it happened that there was a large variance
between distances predicted for the same traffic sign in
two or more successive frames. We tried to increase our

results by adding the use of depth map information and
exploiting the concept of temporal frame correlation.
Depth map [16]: The concept is that traffic signs

at the same depth in the real world are more or less at
the same distance from the vehicle. Based on this point
we use a pre-trained network called MIDAS [17] [18]
to get the depth map of the image under exam. Once
bounding boxes are detected in the original image and
distances are computed, we report the bounding boxes
in the depth map image. For each traffic sign at the
same depth, considering a small variance based on the
maximum depth value inside the image, we computed an
average of the distances in the original image to obtain a
uniform value. At the moment, we used this method after
the computation of the distances, but it could be used
also in the creation of the dataset to get more detailed
labels or in the training phase to directly stabilize results
in the network.

Figure 2 shows a representation of this method, look-
ing at the traffic signs in the image are now visible from
the depth map coloration that they are at the same dis-
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Figure 2: Example of depth map using MiDas network.

tance. So, thanks to this now the prediction for them is
corrected at the same value.

Temporal frame correlation: We use this technique
to give a linearity in predicting distances for the sequence
of frames. Going through this method, we noticed that
in some cases the network’s predictions were much dif-
ferent for successive frames. To stabilize predictions, we
thought that given a traffic sign in a frame at time t, if
it is also present at time t-1 and t+1 it is a valid object
to consider for time t and its distance is the average be-
tween the 3 frames in sequence. To verify if the same
traffic sign is present in the 3 subsequence frames, we
first find the center of its bounding box at time t and of
all the traffic signs for the previous and forward frames.
Then we compute the distances between points and if it
is lower than a certain threshold, we are looking at the
same traffic sign.

An example of this concept is given in Figure 3, in
which there is a wrong detection at frame t (red circle on
the top right image) and since this wrong prediction is
not present at frame (t-1) and (t+1), it is also discarded at
frame t.

The architecture of this modified network is repre-
sented in Figure 1b.

4. Training
About the training phase, due to time and resource issues,
we were unable to train the networks for long sessions.
We trained the YOLOv4 for about 4000 iterations using
RGB frames from the German Traffic Sign Dataset. For
the distance prediction network (DPN), all components
composing the DPN network are trained together. We
trained it with our dataset for 560 epochs using RGB
frames. About the training parameters, we used a learn-
ing rate starting from 0,001 with ADAMS, minibatch size
of 16, and loss the 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1.

5. Results
Talking about the detection part with the YOLO we reach
an accuracy of around 91%.

For the distance prediction network instead, it is not
possible to compute a true accuracy, but we reach a loss
of more or less 130, visible in the graph in Figure 4.

It shows that the loss function has a trend that tends
to improve if trained for more epochs.

As an evaluation metric, we used the ones provided
by [7]. In particular, we use the RMSE on predictions
divided by meters:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑛∑︁
𝑑=1

‖𝑑𝑖 − 𝑑*𝑖 ‖
2

This is to see how the behavior of the network changes
concerning the distance from the detected object. Results
are represented in the graph in Figure 5, compared with
the ones obtained by the reference paper. Visible pre-
dictions get worse as distances increase. We notice that
bounding boxes of traffic signs at higher distances do not
match perfectly their dimensions introducing an error.
Another source of error is probably the fact that we have
only a few samples of road signs at large distances.

Table 1 compares our results with the ones of the refer-
ence paper. As visible, results are similar, ours are a little
bit better because lower values represent better predic-
tions. This is because we make predictions only on traffic
signs while they predict on cars, cyclists, and pedestrians,
this means that they have a larger margin of error than
us.

To show the method in action, we made some test
video, available on YouTube, of the network works. In
particular, we made videos with the following character-
istics:

• Test video using the base network without depth
map and temporal frame correlation (daylight
conditions)

• Test video using depth map and temporal frame
correlation (daylight conditions)

• Test video using the base network without depth
map and temporal frame correlation, rounded on
5 meters (daylight conditions)

• Test video using depth map and temporal frame
correlation, rounded on 5 meters (daylight condi-
tions)
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Figure 3: Example of temporal frame correlation in case of wrong predictions.

Table 1
Comparison of results between our implementation and the one of the paper we take as reference.

Method Abs Rel Squa Rel RMSE RMSE(log)

Our base model 0.131 0.468 3.126 0.173
Paper base model 0.251 1.844 6.870 0.314

Figure 4: Graph of the loss function of the distances predic-
tion network.

• Test video using depth map and temporal frame
correlation, rounded on 5 meters (night condi-
tions)

Rounded on 5 meters, means that we do an approxima-
tion on the predictions made to get more stable results.
As, 12.4 meters is rounded to 10 meters, while 12.6 meters
is rounded to 15 meters.

The formulas used in the table are the following:

𝑅𝑀𝑆𝐸(𝑙𝑜𝑔) =

⎯⎸⎸⎷ 1

𝑁

𝑛∑︁
𝑑=1

‖𝑙𝑜𝑔(𝑑𝑖)− 𝑙𝑜𝑔(𝑑*𝑖 )‖
2

𝐴𝑏𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
1

𝑁

𝑛∑︁
𝑑=1

|𝑑𝑖 − 𝑑*𝑖 |
𝑑*

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
1

𝑁

𝑛∑︁
𝑑=1

‖𝑑𝑖 − 𝑑*𝑖 ‖2

𝑑*

Figure 6 shows two examples of predictions in images.
The top image distances are predicted without the use
of the depth map and temporal frame correlation, as
the predictions do not seem reliable, they appear quite
random. The bottom image instead, is done using our
two variations. As visible all the detected signs are more
or less at the same depth, this is not considered for the
top image, while in this case thanks to the depth map
their predictions are adjusted correctly.

6. Conclusion
The method seems to work well, there are errors intro-
duced by the labels of our dataset that are not accurate,
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(a) Our meters-RMSE predictions graph (b) Reference paper meters-RMSE predictions graph

Figure 5: These are the graphs that are put in relation to the predictions at certain meters with the distance error from the
true values.

caused by the possible different dimensions for each traf-
fic sign on the road introducing a small error that then
will propagate throughout the process, even if we tried to
solve it using depth map and temporal frame correlation.
So, the main future step could be using more accurate
labels for the samples inside the dataset. The work is
based on the objects detected and rounded by bounding
boxes but is not always sure that their dimensions match
perfectly the sizes of the traffic signs, so this point intro-
duces errors in the predictions of the network. As said
at the beginning, in Italy the same traffic signs could be
used up to 3 different dimensions, so it could be useful to
infer their dimensions to improve the predicted distances.
As future improvement, there possible extension of the
detected objects also to vehicles and pedestrians.
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