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Abstract
Flood events constitute one of the most serious natural threats, causing significant damage to the environment and endangering human
life. In response to this issue, we propose an innovative system for automated video analysis of flood events and classification of
criticality levels using computer vision. Our approach is based on the YOLOv8 neural architecture, known for its speed and effectiveness
in detecting and classifying objects in complex scenes. The system is capable of classifying 5 levels of criticality, from level zero
indicating no criticality to level 5 indicating maximum criticality, allowing rapid and accurate assessment of the situation. Experimental
results were conducted by considering two real scenarios. The accuracy performance obtained on the 5 criticality classes averaged
98.02%. This study contributes to the advancement of natural disaster monitoring and prevention technologies by providing an efficient
and reliable method to assess hydrogeological risk and protect communities from flooding.
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1. Introduction
Hydrogeological risk, combined with climate change and
rapid urbanization, poses a significant threat to the entire
planet [1, 2]. While climate change is altering hydromete-
orological patterns in terms of frequency and irregularity
[3, 4, 5, 6, 7, 8], rapid urbanization and inadequate urban
planning have increased land vulnerability to hydrological
disasters [3, 9, 10, 11, 12, 13]. Moreover, between 2000 and
2012, the European Union recorded an average annual dam-
age of €4.2 billion and estimated that it could increase to
€23.5 billion by 2050 [14, 15, 16].

Finding a method to monitor and prevent such disasters
therefore becomes essential in order to contain not only
human losses, but also environmental damage and economic
losses.

Finding a method to monitor and prevent such disasters
therefore becomes essential in order to contain not only
human losses, but also environmental damage and economic
losses.

In literature, various studies can be found that estimate
rainfall intensity using different types of signals, such as
audio, image [17], and radio [18, 19, 20] signals, and artificial
intelligence techniques for the detection and classification
of rainfall levels.

In addition to these works, further studies focus on the
use of techniques based on computer vision, a field of artifi-
cial intelligence, that allows meaningful information to be
gleaned from digital images and videos and actions to be
taken or warnings to be formulated based on that informa-
tion. High-resolution satellite images and aerial imagery are
critical for monitoring changing ground conditions, while
computer vision techniques can be used to analyze such im-
ages and identify significant changes in landscape features,
such as soil erosion, sediment accumulation, or changes in
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vegetation [21].
In the literature, computer vision applied to hydrogeo-

logical disruption has been present for several years; this
technology can be used as a means of support through:

• Detecting anomalies: some computer vision-based
software allows near real-time flood mapping using
images captured by satellites or surveillance cam-
eras.

• Prevention and early warning: image and data anal-
ysis can be used to develop forecasting models and
early warning systems to alert authorities and local
communities to potential imminent hazards related
to hydrogeological disruption.

• Emergency management: during hydrogeological
disruption events, computer vision can be used to
monitor the development of the situation in real
time, coordinate rescue operations, and assess the
damage caused [22].

In the study conducted in [23], a sensor system, called
FloodEye, was introduced for monitoring water level during
Catastrophic Water Floods (CWF). This system takes advan-
tage of infrared image processing and is able to accurately
monitor, without the need for preconfiguration, the water
level rise in various situations, even at night, with a margin
of error of 1.9%.

The authors in [24], propose a methodology that uses
validation data obtained through the use of computer vision
to predict flooding. The computer vision algorithm is used
to estimate water levels from images that meet the require-
ments of the proposed guidelines. The results show that
the accuracy of flood forecasting can be greatly improved
through the use of additional validation data.

Finally, in [25], a technology was developed that can pro-
vide accurate and timely estimates from flood hydrographs
based on object-based image analysis (OBIA) and segmen-
tation algorithms. This technology was successfully tested
in the laboratory and in real situations during Hurricane
Harvey.

The state of the art in flood monitoring and forecast-
ing includes the use of sensory systems such as FloodEye,
computer vision and segmentation-based methodology to
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Figure 1: Model confusion matrix containing two scenarios.

improve flood forecasting, and object-based image analysis
for accurate estimates of flood hydrographic data.

This, study, on the other hand, proposes the development
a system capable of analyzing videos of flood events and
classifying them according to different levels of criticality
through the use of convolutional neural networks, without
performing pre-processing and segmentation.

This paper is structured as follows: Section 2 discusses the
methodology used. Then, in Section 3, the results obtained
are reviewed and discussed.

2. Proposed method
The paper describes a comprehensive approach for video
analysis of flood events by first performing a search for video
sources characterizing the event and then selecting suitable
sources for neural network training. Next, the methodol-
ogy for classification of critical water levels is presented,
followed by training of the YOLOv8 neural network for
identification and classification of flood events according to
hazard levels. The study is conducted by considering two
flood scenarios.

2.1. Data Collection
First, a vast amount of video documenting flood disasters
was collected, involving a diverse selection of sources from
various corners of the globe in order to obtain a comprehen-
sive overview of flood events.

Second, a selection was made among the videos to meet
certain criteria necessary for proper training of the neural
network:

• Timelapse video format: this format, characterized
by recording in regular intervals, provides a com-
plete and dynamic view of the evolution of the flood
and its impact on the surrounding environment.

• Visibility of the surrounding environment before
the onset of flooding: this criterion ensures a clear
view of initial conditions, providing a solid reference
point for assessing the evolution of events over time.

• Presence of landmarks: these are common objects
such as cars, road signs, and other identifiable fea-
tures that serve as a visual scale to quantify the water
level during the weather phenomenon.

The choice therefore fell on two videos, which were di-
vided into a series of frames, each classified with a level
of criticality. The dataset used, therefore, for the training
and validation phase consists of frames obtained from two
different flood videos. This dataset contains 10200 frames,
divided into 7100 for the training set and 3300 for the test
set. The extracted frames were finally appropriately resized
to meet the input size required by the neural network.

2.2. Criticality Classification
The criticality classes were defined based on the height
of the water relative to the surroundings, using reference
objects found within the different frames as a scaling factor.

The five classes of criticality are as follows:

• Criticality 0 (low): the water level remains within
safe limits and poses no threat to infrastructure or
public safety.

• Criticality 1 (moderate): the water level is slightly
above the safe limit but still manageable. Although
road flooding may occur, there is no serious threat
to public safety or property preservation.

• Criticality 2 (medium): the water has reached a level
that affects the manageability of roads and surround-
ing areas.

• Criticality 3 (high): water level reaches very high,
causing extensive flooding in roads and homes in
the affected area, thus threatening public safety.
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Figure 2: Training and validation loss/accuracy

Figure 3: Examples of images belonging to each criticality class - Scenario 1

• Criticality 4 (maximum): the water level is extremely
high, significantly endangering property and lives.

Fig. 3 and Fig. 4 show examples of images, for each
scenario, belonging to each criticality class.

2.3. Neural network training and testing
YOLO (You Only Look Once) was chosen as the architecture
for image classification and model training. YOLO is a par-

ticularly effective neural architecture for class and bounding
box prediction, widely used for various purposes such as
image classification, object detection and pose estimation.
The version employed in this study is YOLOv8 [26].

The neural network underwent a supervised training
process using the training dataset described earlier, taking
special care to ensure a balanced distribution of different
criticality stages among frames [27, 28].
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Figure 4: Examples of images belonging to each criticality class - Scenario 2

3. Experimental Results
The neural network model trained with the set of images
characterizing the two different flood scenarios demon-
strated an excellent ability to recognize the level of crit-
icality independently. In fact, the average accuracy level in
classifying the five levels of criticality is 98.02%.

In order to evaluate the performance of the model, it is
possible to visualize in Fig. 1 the confusion matrix related
to the validation dataset and in Fig. 2 the trends of loss and
accuracy for the training and validation phase of the model.

In order to validate the proposed model, videos totally
unknown to the neural network were given in inference
to the network model because they contained scenarios
different from those in the training dataset. As can be seen
in Fig. 5 the trained network manages to classify criticality
classes well on average even in totally unknown scenarios.

4. Conclusion
This study focused on creating a system capable of analyz-
ing videos of flood events and classifying them according
to different levels of criticality using the YOLOv8 neural
architecture.

The use of an Artificial Intelligence model proved to be
efficient in the assessment of hydrogeological risk, and the
results obtained confirm the validity of the approach taken.

The main limitations of this study stem from the training
phase of the neural network. It was trained using images re-
lated to a few scenarios, which could affect the performance
of the network in classifying criticality in other scenarios
not present in the training dataset.

To overcome these limitations and further improve the ac-
curacy of the model, future research could extend the study
by considering a wider variety of flood scenarios. Integrat-
ing data from different sources and incorporating additional
information, such as meteorological and topographic data,
could help create a more robust and generalizable model.
In addition, using active learning techniques could enable
the neural network to acquire knowledge from new sce-
narios, gradually improving its classification capabilities in

different and more complex situations.
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