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Abstract
Drivers’ attention is a key element in safe driving and in avoiding possible accidents. In this paper, we present a new approach
to the task of Visual Attention Estimation in drivers. The model we introduce consists of two branches, one which performs
Gaze Point Detection to determine the exact point of focus of the driver, and the other which executes Object Detection
to recognize all relevant elements on the road (e.g. vehicles, pedestrians, and traffic signs). The combination of the two
outputs from the two branches allows us to determine whether the driver is attentive and, eventually, on which element of
the road they are focusing. Two models are tested for the gaze detection task: the GazeCNN model and a model consisting
of a CNN+Transformer. The performance of both models is evaluated and compared with other state-of-the-art models to
choose the best approach for the task. Finally, the results of the Visual Attention Estimation performed on 3761 pairs of
images (driver view and corresponding road view) from the DGAZE dataset are reported and analyzed.
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1. Introduction
Attention while driving is a key element in road safety
to keep passengers, drivers and pedestrians safe. Distrac-
tions caused by secondary tasks have been proved as the
main factor in slowed responses in immediately danger-
ous situations [1], with 80% of reported crashes and 65%
of near-crashes over 100 analyzed vehicles caused by un-
safe driving behaviors such as inattention [2]. Moreover,
the probability of collisions caused by driver distraction
is significantly reduced in case passengers warn them
about unseen hazards [3, 4]. This shows the importance
of developing increasingly efficient Advanced Driver As-
sistance Systems (ADAS), especially with the use of arti-
ficial intelligence algorithms capable of understanding
whether a driver is distracted from the road and alerting
them. The identification of points of focus of drivers
can also be used to train autonomous driving algorithms
to pay more attention to some elements rather than to
others, thus making them more capable of safe driving.
Machine learning and distributed computing approaches
e.g. cloud computing have become a cornerstone of mod-
ern data technology, playing a pivotal role in various
sectors [5, 6]. In the green economy, machine learning al-
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gorithms help optimize energy consumption and reduce
carbon footprint by predicting demand and managing
supply efficiently. In the field of renewable energies,
these algorithms aid in forecasting energy production
from sources like wind and solar, thereby facilitating ef-
fective grid management. In the field of human-computer
interaction, machine learning enhances user experience
by enabling systems to understand and respond to human
behavior in a more intuitive and personalized manner
[7, 8, 9, 10, 11]. Lastly, in the automobile industry, ma-
chine learning is driving the revolution of autonomous ve-
hicles and smart traffic management systems, contribut-
ing to safer and more efficient transportation [12]. The
goal of this paper is to introduce a new approach to vi-
sual attention estimation for safe driving. To the best
of our knowledge, most studies on driver attention are
based either on the evaluation of driver behavior, with-
out considering the environment surrounding the car, or
exclusively on the road, training models to identify the
elements to focus on. Our approach, in contrast, entails
a comprehensive consideration of both the driver and
the road views. Specifically, we assess the point of focus
of the driver, contextually understanding whether they
are paying attention to the road, and eventually which
element of the road has captured their focus. To do this,
we divide our task into two parts:

• Gaze point detection: we identify the point where
the driver is looking at to assess where the driver
is paying attention;

• Object identification: we identify the main ob-
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Figure 1: Example of paired images from the DGAZE dataset.
(a) Driver view of driver number 22. (b) Sample 15 road view
of driver number 22.

jects on the road, namely pedestrians, motorbikes,
traffic signs, traffic lights, other cars, and trucks.

For the first task we will employ the GazeCNN model,
a variant of a ResNet [13] that takes various facial fea-
tures as input, such nose and left pupil position, head
pose and eyes corners. In addition, to perform a compara-
tive analysis between two different methods, we will also
consider a Resnet+Transformer model [14] fine-tuned to
output the exact position of where the driver is looking at.
For the second task, instead, we use a fine-tuned YOLOv8
model, part of the YOLO family of object detection algo-
rithms [15], configured to consider only the classes of
interest. To accomplish our task, we used the DGAZE
dataset [16], which to the best of our knowledge is one
of the few dataset that provide both both the driver’s
view and the road view. This data was collected in a con-
trolled laboratory setting where 112 street videos were
projected in front of 20 ’drivers’, who were told to focus
on a designated point annotated in the projected video.
This dataset contains over 180,000 pairs of images, where
each pair includes a road view and the corresponding
driver view, plus a label indicating the coordinates of
the point the driver was instructed to focus on (specifi-
cally, the center of the bounding box of the object). We
reported an example of this dataset in Figure 1.

The paper is organized as follows. In Section 2, related
works about gaze detection and driver gaze prediction
are provided to frame our work in the current state-of-
the-art scenario. Section 3 describes the data analysis,
the pre-processing and feature extraction done on the
DGAZE dataset and the proposed architecture to perform
our task. Section 4 reports the performed experiments
and the corresponding results. Finally, Section 5 presents
the study’s conclusions.

2. Related Works

2.1. Gaze Detection
Gaze detection is a highly significant topic in the field of
Computer Vision and Human-Robot Interaction. Despite

various advancements over time, it remains a challeng-
ing task due to aspects such as the uniqueness of faces
and eyes, potential occlusions, differences in lighting,
image quality, etc. Throughout literature, various meth-
ods have been employed, ranging from simple classifi-
cation methods, like Random Forest [17] and SVM [18],
to deep neural network models. The use of deep CNNs
has greatly enhanced accuracy of this task, with great
results obtained even with wild datasets [19]. While the
majority of works use only the eyes to perform gaze es-
timation, other works use facial features different than
the eyes, such as facial grids [20] or a combination of the
eyes images and the head pose [21].

Transformers are also a viable novel solution, with
two types of transformers derived from the Vision Trans-
former (ViT) framework finding success [14]. The first
one, denoted as GazeTR-Pure, processes the cropped face
as input, divides it into patches and passes them to a
transformer encoder that will return the direction of gaze.
In contrast, GazeTR-Hybrid adopts a hybrid approach,
combining Convolutional Neural Networks (CNN) with
transformers. The CNN extracts local feature maps from
the face, which are then passed to the encoder trans-
former to capture the global relationships between the
maps and finally obtain the desired output. These models
take advantage of the transformer’s attention mechanism
to improve performances, with the GazeTR-Hybrid ob-
taining results comparable to the state-of-the-art. As
previously mentioned GazeTR-Hybrid will be the base
for one of our two approaches.

2.2. Driver Gaze Prediction
Driver gaze prediction task is approached in two ways in
literature. The first approach focuses only on the interior
images of the car (the driver’s view) [22, 23, 24, 25]. Gen-
erally, the car is divided in different zones, such as the
windscreen, the speedometer, the two side-view mirrors,
the back mirror, and so on. The algorithms try to predict
which of these areas the driver is looking at by analyzing
the images of the driver.

The other approach, instead, is focused only on the
outside the car. Many papers analyze images of the road
recorded from inside the car via the windscreen to cal-
culate an attention map, i.e. a heat map where brighter
colors indicate the elements where drivers focus most
while driving [26, 27, 28, 29]. Attention maps are ex-
tremely significant for autonomous driving, since they
may be useful in training models that can understand, in
a given driving situation, which of the many important
elements of the road to focus on the most.

For what concerns the DGAZE dataset, already ana-
lyzed in the introduction, a related model called I-DGAZE
has also been developed [16]. The model consists of two
branches. The first is composed of a CNN with the ad-
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Figure 2: (a) Cropped driver 22 view subjected to K-Means clustering. (b) Corresponding color distribution histogram after
K-clustering. On the x axis is represented the bin number, while on the y axis the number of pixel occurrences of the bin.

dition of a final flattened layer, which takes the driver’s
left eye as input. The other is composed of only dense
layers and takes as input various features of the face,
namely the pose, location, and area. The features gener-
ated by the two branches are then merged and passed to
a fully connected layer that uses them to determine the
coordinates of the gaze point (x, y).

Building on the literature just presented, our work is
quite innovative in using an approach that is not widely
used for the identification of drivers’ attention while driv-
ing. It will also compare two models for gaze detection,
as mentioned above, combining the results of these with
those of YOLO in such a way as to output whether or not
the driver is paying attention to the road and in particular
to which element.

3. Materials and Methods

3.1. Data Analysis
Due to various challenges in gaze detection (e.g. eye-
head interplay, illumination, eye registration errors, oc-
clusions, difficulties in generalization of eye region ap-
pearance) [30], before proceeding with the implemen-
tation we conducted a thorough analysis of color distri-
bution on our data, examining it in both RGB and HSV
color spaces. Driver’s view images were cropped to a
700 x 700 format from the top-left corner at pixelwise
x and y coordinates (25, 100). This pre-processing step,
consistently applied throughout our work, was designed
with the specific purpose of eliminating non-essential
areas within the image, focusing only on the face region.

We then computed histograms within the RGB and
HSV color spaces for a randomly selected sample from
each driver’s image set. The K-Means algorithm was
employed to cluster all the colors in 16 clusters, with the
resulting histogram shown in Figure 2.

The relative 1D RGB graphs are presented in Figure 3,
while the flattened 3D RGB graph is shown in Figure 4.
Both graphs have been normalized to facilitate compari-

son. Finally, we selected three distance metrics to conduct
a dataset-wide comparison between the histograms and
computed the corresponding matrices:

• Wasserstein (Earth Mover’s) Distance:

𝑊 (𝑝, 𝑞) = inf
𝛾∈

∏︀
(𝑝,𝑞)

(︂∫︁
R×R

||𝑥− 𝑦||𝑑𝛾(𝑥, 𝑦)
)︂
(1)

where 𝑝 and 𝑞 are two probability distributions
and

∏︀
(𝑝, 𝑞) denotes the set of all joint probability

distributions on R × R whose marginals are 𝑝
and 𝑝. This metric is symmetric.

• Chi-Squared Distance:

𝜒2(𝑝, 𝑞) =
∑︁
𝑖

(𝑝(𝑖)− 𝑞(𝑖))2

𝑝(𝑖)
(2)

where 𝑝 and 𝑞 are two probability distributions.
• Kullback-Leibler Divergence:

𝐷𝐾𝐿(𝑝||𝑞) =
∑︁
𝑖∈R

𝑝(𝑖) 𝑙𝑜𝑔

(︂
𝑝(𝑖)

𝑞(𝑖)

)︂
(3)

where 𝑝 and 𝑞 are two probability distributions
on the same sample space R.

The obtained matrices for 3D RGB graphs are reported
in Figures 5, 6 and 7. Our data analysis indicate that
there are no significant differences in color distribution
among various driver images with the exception of cer-
tain drivers, such as Driver 13 and 5, with consistently
high values among all metrics. Conversely, Drivers 2, 22,
and 23 occasionally exhibit increased differences, but not
consistently across all plots. The three metrics have also
been calculated for 1D channels and averaged, produc-
ing similar results, therefore they will not be reported.
The same process has also been repeated for the HSV
color space, so the 1D and flattened 3D graphs have been
computed, with an additional 2D heat map of the 3D

42



Francesca Fiani et al. CEUR Workshop Proceedings 40–50

Figure 3: Graphs of the red, green and blue channel bin frequency distribution. Each channel has 16 bins (represented on the
x axis), with the frequency for each bin represented on the y axis. The frequency distribution has been normalized.

Figure 4: Graph of the flattened bin frequency distribution. 64
bins have been considered for the flattened 3D representation
(represented on the x axis), with the frequency for each bin
represented on the y axis. The frequency distribution has been
normalized.

graph, and the nine distance matrices have been com-
puted. Given the use of RGB space during the experi-
ments and the absence of significant differences in the
HSV analysis, we will skip the presentation of the ob-
tained results.

3.2. Architecture
As mentioned, our idea is to divide the model into two
branches. The first branch predicts the exact coordinates
(𝑥, 𝑦) of the driver’s focus point from the input driver
view. The decision to predict the exact point of focus of
the driver is due to the desire to achieve greater accuracy
in estimating visual attention. This way, we will be able
to distinguish precisely which element of the road they
are paying more attention to even in case of elements
overlapping. To the best of our knowledge, this is a situ-
ation that is not very usual in the literature and could be
an important innovation to obtain increasingly accurate
results in Visual Attention Estimation. The video lengths
of view and driver videos were manually aligned since
some view videos (which are common among all drivers)

Figure 5: Wasserstein (Earth Mover’s) distance matrix be-
tween all couples of sample drivers 3D color distribution. A
high value indicates a big color space distance between images.
Only the upper triangular matrix has been reported given the
symmetry of the matrix.

were mismatched in the number of frames with driver
videos. The input is then processed to extract key com-
ponents of the face, i.e. the driver’s face, the left eye, the
pupil position, the nose position, the head pose and the
eye corners. A combination of SOTA tools for analyzing
facial features was used: a shape predictor, obtained from
dlib [31], for the extraction of the eyes and the position
of the nose and pupils, a frontal face detector, also from
dlib, for the extraction of the face, and SixDRepNet [32]
for the extraction of the head pose.

Two types of models will be considered for this branch
and confronted to evaluate the best one in terms of perfor-
mance. The first model is GazeCNN, a variation in model
and layers size of I-DGAZE. The model, shown in Fig-
ure 8, is composed of two branches which extract features
used as inputs for the final fully connected layer. The
first branch takes the cropped 3 x 32 x 64 left eye image

43



Francesca Fiani et al. CEUR Workshop Proceedings 40–50

Figure 6: Chi-Squared distance matrix between all couples
of sample drivers 3D color distribution. A high value indicates
a big color space distance between images.

Figure 7: Kullback-Leibler divergence matrix between all
couples sample drivers 3D color distribution. A high value
indicates a big color space distance between images.

as input, which is then passed through three 8-channel
convolutional layers. The second and third one are fol-
lowed by a max-pooling layer each, while the second
convolutional block has an additional residual connec-
tion compared to the original architecture. The resulting
output is then flattened to obtain a 336-dimensional fea-
ture vector. The other branch, instead, takes a series of
features as input. We examined two scenarios to assess
the actual influence of features on the final outcome. In
one case, we used a 7-dimensional face feature vector as
input, comprising head pose and the positions of the two
pupils, while in the other we also added the nose and eye
corners positions. The performances for both scenarios

Figure 8: Schematic model of the GazeCNN architecture.

Table 1
Evaluation Metrics at best epoch in Test Dataset for the three
selected models

Eye Feature Branch

Layer Kernel Output Channels

Conv2D_1 3x3 8
Conv2D_2 3x3 8

MaxPool2d_1 4x4 8
Dropout 8

Conv2D_3 3x3 4
MaxPool2d_2 4x4 4

Flatten_1 336

Feature Branch

Layer Kernel Output Channels

Dense_1 16

Fused Branch

Layer Kernel Output Channels

Merge_1 352
Dense_2 64
Dense_3 2

will be discussed in the following section. This branch is
composed of only a fully connected layer of output size
16. The two features vectors output from the branches
are then merged in a 352-dimensional vector, which is
then passed through two fully connected layers which
output the final (𝑥,𝑦) coordinate vector of the driver’s
focus point. All the structure is summarized in Table 1.

The second model is GazeTR-Hybrid, composed of a
ResNet which extracts local feature maps and a Visual
Transformer which calculates global relationships be-
tween the feature maps and generates the gaze point.
Our aim was to assess the performance of a transformer
model in a domain where it is not commonly employed
and to verify the applicability of GazeTR-Hybrid on a
different task than the original (i.e. compute focus point
instead of gaze direction). The original model with its
pre-trained weights, but we performed fine-tuning to
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Figure 9: Schematic model of the GazeTR-Hybrid architec-
ture.

adapt the model for a direct confrontation with GazeCNN.
The structure of GazeTR-Hybrid, shown in Figure 9, is
composed of various convolutional layers, forming the
ResNet-18 block, which generate 7 × 7 × 512 feature maps
from face images. The block is followed by an additional
1 × 1 convolutional layer aimed at adjusting the channel
scale to obtain 7 × 7 × 32 feature maps. The transformer
block, instead, consists of six Transformer Encoder Lay-
ers which perform 8-heads self-attention mechanism, fol-
lowed by a two-layer MLP with hidden size 512 and the
dropout 0.1. The transformer is also equipped with a lin-
ear feedforward layer which produces the 2-dimensional
output of the driver’s gaze point.

The second branch performs object detection by pass-
ing as input to the model the various images of the ’road
view’ to recognize in each of them the most relevant
elements. This is instrumental in identifying the most
important objects on the road, those to which the driver
should pay most attention to. For this purpose, we used
a pre-trained YOLOv8 model, which was then fine-tuned
on the elements that we were most interested in. This
way, our fine-tuned YOLO model will be able to identify
only the road elements of our interest while excluding
irrelevant ones. For our task, we combined a dataset
of road signs part of the RF100 initiative [33] with one
created by us using images from the COCO dataset [34].
The images from COCO were carefully chosen to exclu-
sively include pictures with the presence of people, cars,
motorcycles, and trucks. This was done to prevent our
fine-tuned YOLO model from forgetting these classes,
which are crucial for our task. The other dataset, instead,
contains various classes of road signs that were helpful
for training YOLO to identify these road elements, which
are the ones every driver should pay attention to. In total,
we used 3589 images, divided into 2480 for the training
set and 1109 for the validation set.

We fine-tuned the pre-trained YOLO model on this
dataset for 40 epochs, resulting in a precision of 83.61%,
a recall of 73.99%, and a mAP50 of 79.27%. We report
in the Figure 10 the confusion matrix. We can see how
our YOLO model performs quite well on almost all new
classes of road signs, while its performance is lower in

Figure 10: Confusion matrix of the YOLO fine-tuned model.

identifying cars, people, trucks and motorcycles. This
could be attributed to the fact that in the images from the
road signs dataset we only recognize one element of the
considered class, leading to higher precision, whereas
in the photos from COCO there are various elements of
different classes in each image. This might lead to our
fine-tuned model having more difficulty learning from
images rich of different elements, resulting in poorer per-
formance in those classes. We also see a particularly low
precision for the traffic light class, probably influenced by
the lower number of samples in our dataset. Despite this,
for the use in our Visual Attention Estimation model, the
achieved results can be considered acceptable.

The outputs of the two branches are finally combined
to determine the final output of the model. If the driver’s
point of gaze falls within one of the bounding boxes of
the road elements identified by YOLOv8, we can assert
with confidence the driver’s attention and identify which
element they are looking at. In general, giving as input to
our model a pair of images corresponding to the driver’s
view and the road view at a specific moment during driv-
ing (i.e. capturing what happens inside and outside the
vehicle), it can determine whether the driver is paying
attention to the road. Additionally, it can identify, and
return in output, which specific element on the road is
drawing more of the driver’s interest at that moment.
A schematic representation of the full defined model is
shown in Figure 11.

4. Results and Discussion
To perform the experiments, the DGAZE dataset has
been split into train set, validation set and test set accord-
ing to the same original division [16]. Of the 20 drivers,
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Figure 11: General Architecture presented in our paper. The
network is divided in two branches: one which computes the
point the driver focuses on, the other which identifies all the
principal street objects. The model then assesses the driver’s
attention (whether they are looking at an element of the road)
and which element they pay the most attention to.

16 were used for training (corresponding to 60% of the
video sequences for training), 2 for validation (20%) and
2 were used for testing (20%). As mentioned earlier, var-
ious training experiments were conducted for both the
GazeCNN and the GazeTR-Hybrid models. In addition,
for the first model we also considered a scenario where
the input also considers the position of the nose and the
eye corners as features (i.e. a 17-feature vector) to assess
whether increasing the number of features has any effect
on the model’s performance.

All the models were trained using L1 loss function,
Adam optimizer with a learning rate of 1e-3, weight de-
cay of 1e-5, 𝛽1 = 0.9 and 𝛽2 = 0.97. Additionally, a StepLR
scheduler with a step size of 15000 and a gamma of 0.1
was also applied to improve training performance. The
models were trained for 10 epochs with a batch size of
16. All the hyperparameters have been experimentally
calculated to avoid overfitting and to reach the best per-
formance possible. The experiments were performed
using a NVIDIA GeForce RTX 3060 Laptop GPU. In the
next subsection we will see more in details the results of
these training experiments.

4.1. Driver Gaze Prediction
In this section, we will present the results of the experi-
ments conducted for the gaze detection task. We consider
the GazeCNN, the GazeCNN + features and the GazeTR-
Hybrid (CNN + Transformer) models to perform this task.
To validate results obtained, we consider three different
metrics:

• Accuracy w.r.t Threshold:

𝑎𝑐𝑐𝑡𝑟𝑒𝑠ℎ =
1

𝑛

∑︁
𝑖∈ℐ

𝑥𝑖 (4)

where ℐ is the set of images in the dataset, 𝑛 =

|ℐ| the cardinality of the set and

𝑥𝑖 =

{︃
1 if 𝑑(𝑔𝑖, 𝑔�̂�) < threshold
0 otherwise

(5)

where 𝑑(𝑔𝑖, 𝑔�̂�) =
√︀

(𝑔𝑖 − 𝑔�̂�)2 is the Euclidean
distance, 𝑔�̂� is the estimated gaze point and 𝑔𝑖 the
true gaze point in the road view image coordi-
nates. The threshold has been set to 250 pixels.

• Accuracy w.r.t Bounding Box:

𝑎𝑐𝑐𝑏𝑏𝑜𝑥 =
1

𝑛

∑︁
𝑖∈ℐ

𝑥𝑖 (6)

where ℐ is the set of images in the dataset, 𝑛 =
|ℐ| the cardinality of the set and

𝑥𝑖 =

{︃
1 if 𝑔𝑖 ∈ boundingbox
0 otherwise

(7)

where 𝑔�̂� is the estimated gaze point and 𝑔𝑖 the
true gaze point in the road view image coordi-
nates. The bounding box considered is the one
surrounding the road element that, during the
creation of the dataset, is observed by drivers.

• Displacement via Euclidean Distance:

𝐷(𝑔𝑖, 𝑔�̂�) =
1

𝑛

𝑛∑︁
𝑖=1

√︀
(𝑔𝑖 − 𝑔�̂�)2 (8)

where 𝑔�̂� is the estimated gaze point and 𝑔𝑖 the
true gaze point in the road view image coordi-
nates.

Table 2 shows the evaluation of the three metrics in
the three selected models at the best epoch during the
testing phase. The CNN + Transformer model performs
better compared to the GazeCNN model in all cases. This
demonstrates the effectiveness of this model in the con-
sidered task. We believe that, with an increase in epochs
and input features, the CNN + Transformer model has
the potential to achieve even better results by increasing
the accuracy in calculating the driver’s point of gaze. In-
stead, regarding the GazeCNN + features and the CNN +
Transformer, we can observe that the latter proves to be
superior in both bounding box accuracy and Euclidean
error, while the former slightly outperforms in thresh-
old accuracy. We can observe how the addition of input
features (eye corners and nose position) leads to a re-
markable improvement in performance for GazeCNN,
proving to be a crucial factor in the learning process.

We would like to point out that, for all the models,
the bounding box (bbox) accuracy is relatively low. This
can be explained by the fact that, for many videos in the
dataset, the fixation elements tend to be small, as they
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Table 2
Evaluation Metrics at best epoch in Test Dataset for the three selected models

Model Threshold Accuracy [%] Bbox Accuracy [%] Euclidean Error [px]

GazeCNN 37.57 15.97 371.93
GazeCNN + features 46.33 18.50 320.54
CNN + Transformer 45.62 19.72 317.40

Table 3
Comparison table between our models and other SOTA eye gaze models on train, validation and test pixel accuracy (calculated
via Mean Absolute Error)

Model Train Error [px] Val Error [px] Test Error [px]

Turker Gaze [35] 171.30 176.37 190.72
iTracker [20] 140.10 205.65 190.5
I-DGAZE [16] 133.34 204.77 186.89

GazeCNN 163.00 154.41 228.46
GazeCNN + features 171.99 174.63 199.99
CNN + Transformer 200.85 197.88 196.53

are far away, and therefore the corresponding bounding
boxes are similarly small. Accuracy for bounding boxes
is very restrictive, since the presence of an error, even
by a single pixel, could cause the point to be outside
the corresponding bounding box and therefore lead to a
decrease in the accuracy.

Considering the analyzed results, the GazeTR-Hybrid
(CNN + Transformer) model has been employed in the
overall Driver Visual Attention Estimation model to per-
form point-gaze estimation. To confirm what has been
discussed so far, we present a comparison in Table 3 be-
tween the models just considered and some SOTA eye
gaze models. In particular, we consider the model pro-
posed in TurkerGaze [35], where they use pixel-level
face features as input and use Ridge Regression to es-
timate gaze point on the screen, the one proposed in
Eye-tracking for Everyone [20], which predicts user gaze
on phone and tablet, and finally I-DGAZE, the model
presented in our reference paper [16].

The error used as a metric for this comparison is the
Mean Absolute Error (MAE), calculated by taking the
mean of the absolute differences between model predic-
tions and actual values. In mathematical terms, it is ex-
pressed as:

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑔𝑖 − 𝑔�̂�| (9)

where 𝑛 is the total number of samples, 𝑔𝑖 represents
the actual values and 𝑔�̂� represents the model predictions.
The smaller the Mean Absolute Error, the more accu-
rate the model is in predicting the co-ordinates of the
gaze point. We can see that even in this case the CNN +
Transformer model proves to be in line with the other
SOTA models on the validation and test error, proving

the efficacy of the method. In contrast, the train error
is the highest. This phenomenon does not fit with any
classical training schema and is therefore not correlated
to underfitting or overfitting, but a lower validation error
compared to train error may be caused by the samples se-
lected for validation being particularly simple to predict
for the network. Finally, it is important to note that the
GazeCNN model has the lowest validation error. How-
ever, this is associated with a higher test error, possibly
indicating overfitting during training.

4.2. Driver Attention Evaluation
In Table 4 we describe the results obtained from the analy-
sis of drivers’ attention using the general model described
by the Figure 11. To perform this analysis, we considered
only the two drivers belonging to the test set as specified
above out of the total 20 included in the dataset. The
dataset used, DGAZE, provides bounding boxes coordi-
nates as labels only corresponding to the object observed
by the driver. Therefore, we have considered these bound-
ing boxes as indicative of the most important element
in the scene, and we will consider any detected object
aside from the selected one as an incorrect focus object.
Based on this reasoning, we identified three attention
score scenarios:

• Correct bbox (Attention Score=2): the driver is
looking at the correct road element indicated by
the dataset, so the point the driver is focusing on
falls in the bounding box of the expected object;

• Another bbox (Attention Score=1): the driver is
attentive, but focused on an another element of
the road, so the point the driver is focusing on
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Table 4
Results of Visual Attention Estimation in Drivers. An attention
score of 2 indicates a correct object of focus, an attention score
of 1 an incorrect object of focus but an attentive driver and
an attention score of 0 a distracted driver.

Attention Score Percentage [%]

Correct bbox (Att. Score = 2) 16.06
Another bbox (Att. Score = 1) 29.95

No bbox (Att. Score = 0) 53.99

falls in the bounding box of an object different
from the one of the expected object;

• No bbox (Attention Score=0): the driver is not
paying attention to the road and is therefore not
looking at any important road elements, so the
point the driver is focusing on doesn’t fall in any
bounding box.

We observe that the system identifies distracted drivers
(Attention Score=0) 53.99% of the time, a percentage
which does not fall in line with expected results. Un-
fortunately, this result is attributed to the suboptimal
performance of our CNN + Transformer model, partic-
ularly in bbox accuracy which as shown in Table 4 is
particularly low (less than 20%). As mentioned earlier,
this is a challenging task, as even small pixel errors in
this context have significant relevance, and it therefore
highlights the need for greater precision in determining
the gaze point, especially in such cases where a high
accuracy is necessary due to safety reasons.

In the scenario where the system recognizes drivers as
attentive, instead (approximately 46.01% of the time), we
notice that generally they are attentive but focused on
road elements that are not considered the most impor-
tant (Attention Score=1). The data presented in Table 5
reveals that, most often, drivers concentrate their atten-
tion on the vehicles in front of them, especially on cars
and trucks. This indicates a higher level of attention to
other vehicles compared to road signs or other objects,
which justifiable due to other vehicles being the main
’antagonistic’ driving element and the primary source
of potential impediment to road safety. Even though
in our dataset we have predetermined attention objec-
tives, which consequently limits the correctness of the
obtained results, a statistical analysis can be performed
with our framework in different scenarios to gain insight
on drivers’ attention behaviour and on the objects that
they pay most attention to in different driving situations.

5. Conclusion
In this paper we presented a new way to perform the
task of driver visual attention detection. As already men-

Table 5
Object focus distribution in test set for drivers. Obtained data
shows that drivers tend to focus their attention on vehicles
(car and truck) compared to other elements.

Object Type Percentage [%]

person 8.33
truck 15.70
car 16.40

road signal 2.90
motorcycle 2.66
traffic light 0.01

tioned, this is obtained by performing two sub-tasks, gaze
estimation and the object detection. To execute the first,
we examined two different architectures, GazeCNN and
GazeTR-Hybrid. We then assessed the performance of
both models for the specified task, achieving better re-
sults with the GazeTR-Hybrid model. This second model
was consequently used to implement driver visual at-
tention detection. For object detection, we employed a
fine-tuned YOLOv8 model capable of recognizing cars,
people, trucks, motorcycles, traffic lights and various road
signs. By combining the outputs of the two branches, i.e.
projecting the driver’s gaze point (whose coordinates are
obtained as output from the gaze detection branch) onto
the corresponding ’road view’, where all relevant road
objects identified by YOLO are located, we evaluated the
actual visual attention of drivers. This approach allowed
us to obtain two valuable pieces of information: whether
the driver is attentive or not and, if so, to which element
of the road.

Possible future improvements are evident, starting
with the gaze detection task, where increased precision
in calculating the gaze point could lead to better results
in assessing drivers’ visual attention. We believe that
the addition of more features during the training phase
to the GazeTR-Hybrid model could lead to the desired
improvement in performances, thus achieving increas-
ingly precise results. This, in turn, would contribute to
an effective improvement in Visual Attention Estimation
in drivers. This is a consequence of the fact that, by in-
creasing precision, we can identify information about
the objects the driver is focusing on even in case of oc-
clusions, i.e. if they are distant or partially hidden by
other elements. However, we find our approach to the
Driver Vision Attention task promising for future works,
particularly in the aspect of obtaining more complete
results on the drivers’ engagement with the road.

Drivers’ attention and the object they focus on can
be subsequently used in different contexts. For instance,
the former could be applied in assessing attention in
systems designed to alert the driver when not paying
adequate attention to the road, while the second can be
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used to train autonomous driving models, helping them
understand what to prioritize in each driving scenario. A
mixed model able to detect both data could lead to more
comprehensive autonomous or assisted driving systems
by reducing training times due to faster data collection.
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