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Abstract
During the COVID-19 pandemic, the use of a people tracking system could have been crucial, particularly in sensitive
environments, such as hospitals. DPPL Hallway Tracker is a framework that uses security camera footage to determine
which rooms in a corridor a person has entered. It generates a database containing all the people identified and allows quick
identification of potential cases of infection based on the time spent in a room and its maximum capacity. DPPL Hallway
Tracker is structured in two phases: detection and re-identification. In the first phase, it exploits Mask RCNN to identify
people and room doors. In the second one, it uses the deep association metric model from DeepSORT to re-identify a person
as he leaves a room.
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1. Introduction
Managing a pandemic has proved to be a difficult chal-
lenge despite the technological developments of the past
decades. Containment measures based on restrictions on
personal mobility (such as lockdowns) have proved to be
very effective for infection containment [1, 2, 3]. How-
ever, these turn out to be short-term solutions that are
not extendable throughout the whole virus’s life cycle.

Aswith Covid-19, the presence of a potentially infected
individual in a closed environment is a central problem
and the risk of contagion increases with exposure time.
Face masks, in combination with good room ventilation,
help to reduce the risk of transmission. However, it is not
sufficient to eliminate all the risks. Tracking operations
are required to ensure the identification of the chain of
contacts and the estimation of the relative risk of con-
tagion. Tracking turns out to be even more essential in
public settings, such as public offices and hospitals [4, 5].

Some countries, such as Italy and Germany, used spe-
cific tracking apps (respectively, Immuni and Corona-
Warn-App) for a Bluetooth-based contact estimation
[6]. These solutions, although potentially effective, have
shown evident limitations, such as low diffusion in the
population, constraints on the version of the smartphone
OS, poor estimation of distances and related false posi-
tives. While they may be effective in the short term since
they are employable on a big scale, other solutions prove
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to be more effective in the long run. Among these, the
security cameras already installed in many public-private
contexts can represent an excellent solution in terms of
scalability and minimum requirements for the citizen. In-
deed, they allow for the estimation of people’s distances
as well as the detection of room entrances and exits.
This project aims to create an offline framework for

tracing the entrances and exits of people in one or mul-
tiple rooms facing a hallway. In this way, it is possible
to extract some valuable information for estimating the
risk of infection, such as the duration of the stay and
the level of saturation of the room given its maximum
capacity. The methodology described relies solely on
Deep Learning solutions, and it employs two networks
to detect doors and people and assign them appearance
descriptors. A specific algorithm is in charge of tracking
people’s movements, exploiting the characterization of
the hallway environment and the descriptors generated.
In particular, unlike other solutions that exploit mo-

tion features to determine a distribution of the positions
where a subject can stay in the next frame [7, 8, 9], this
project - named DPPL Hallway Tracker - uses only ap-
pearance features. A person is first identified in the scene
and segmented using Mask R-CNN; then, their mask is
passed to a Re-ID network to obtain an identifier (an
array) that “describes” the way they appear in the scene.
The descriptors are finally compared with those of the
people already known to verify the person’s identity. An-
other contribution, in addition to the general approach
adopted, is the use of three new datasets to fine-tune the
networks, built from scratch or starting from existing
ones.
DPPL Hallway Tracker appears to be very effective

51

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:christian.marinoni@uniroma1.it
mailto:ponzi@diag.uniroma1.it
mailto:danilo.comminiello@uniroma1.it
https://creativecommons.org/licenses/by/4.0


Christian Marinoni et al. CEUR Workshop Proceedings 51–61

in tracking people entering and leaving rooms facing a
corridor. The use of appearance features turns out to be
sufficiently robust to allow correct identification, even if
it is less effective in recognizing people who reappear in
the corridor without leaving a room.

This report describes the project’s workflow, from the
description of the datasets to the results’ analysis.

2. Related works
The object tracking problem is one of the classic problems
in Computer Vision. Being able to determine the posi-
tion of an object, even in the presence of partial or total
occlusions, can be beneficial in many contexts, such as au-
tomated surveillance, video indexing, human-computer
interaction, traffic monitoring, vehicle navigation and
many others. A solution to the object tracking problem
should manage multiple complexities: the loss of infor-
mation caused by the projection of the 3D world on a 2D
image, the complexity of the movement of objects, the
presence of occlusions and changes in the scene illumi-
nation can make this task highly challenging.

The approaches can be divided into several categories
based on their implementation and conceptual charac-
teristics. In this Section, some solutions based on the
“tracking-by-detection” strategy are mentioned. This
strategy consists in doing a type-specific object detection
or motion detection and then conducting (sequential or
batch) tracking to link detection hypotheses into actual
trajectories.
An example of an application is the one proposed by

Bewley et al. [10], known as SORT (Simple Online and
Realtime Tracking). It uses CNN-based detection - more
specifically, Faster R-CNN [11]- to identify people in
the scene. At that point, SORT associates a state 𝑥 =
[𝑢, 𝑣 , 𝑠, 𝑟 , ̇𝑢, ̇𝑣 , ̇𝑠]𝑇with each target, where 𝑢 and 𝑣 represent
the horizontal and vertical pixel location of the centre of
the target, 𝑠 and 𝑟 are the scale (area) and the constant
aspect ratio of the target’s bounding box and, finally, ̇𝑢,
̇𝑣, ̇𝑠 are the corresponding first derivatives (velocities) of
𝑢,𝑣 and 𝑠. The state gets updated at every new frame
based on the related new detection and a Kalman Filter
framework [12].

A related work is DeepSORT [7]. It expands the SORT
framework by providing a re-identification network that
takes as input the portion of the image showing the per-
son and returns an appearance descriptor (a vector of size
128). This vector makes it easier to correctly assign iden-
tities to people by reducing the number of inter-frame
ID switches.
SORT and DeepSORT, as well as other methods that

use motion features, are effective tools for people track-
ing; however, they are not the best option in case of
people entering and leaving rooms. Indeed, the states of

multiple people entering the same room collapse at the
same value, thus providing no valuable information for
the ID attribution when a person leaves the room. On the
contrary, the use of a re-identification network based on
appearance features in DeepSORT is functional for the
current application and is therefore also implemented in
this project.
In today’s literature, at best of our knowledge, there

are no studies aimed at analyzing the specific context of
tracking and re-identifying people who enter and leave
rooms. Pedestrians on streets or people moving around
indoors are usually the focus of most approaches. Other
works specialize in counting people in some particular
environments. For example, Rabaud and Belongie [13]
investigate the possibility of counting people passing
through crowded environments; [14], [15], [16] focus on
counting passengers getting in/out of a bus and [17] of a
metropolitan train; [18] counts people walking through
a corridor or a door, without keeping into account their
identities.
The absence of a similar application makes the com-

parison between the implementation proposed in this
project with a baseline more complex. Therefore, in the
following Sections, the individual modules that constitute
it are compared with corresponding existing solutions, in
the attempt to offer an objective yardstick on the choices
made.

3. People and Door detection
The fundamental principle behind this project is the
search for practical but effective solutions for tracking
people entering and leaving rooms. As said in Section
2, in the “tracking-by-detection” strategy the first main
challenge is object detection, i.e., producing a bounding
box (and, eventually, a mask) for both people and doors
in the image. The framework can thereby determine the
position of a person at each frame and their relative dis-
tance from the doors detected in the scene. This Section
describes the datasets used, as well as the implementation
choices and the results obtained.

3.1. Object semantic segmentation
In order to obtain people tracking, it is crucial to identify
the position of people and doors to understand which
room they enter and leave. There are generally two ways
to accomplish this task: object detection and image seg-
mentation. Object detection focuses on defining the posi-
tion of objects in an image, whereas image segmentation
locates an object and defines a mask of pixels that repre-
sent it. This project exploits the second one - and, more in
particular, its subclass known as instance segmentation -
because of the benefits it provides in the re-identification
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Figure 1: General scheme of the R-CNN Mask framework.
The layers indicated with the letters C and P are convolutional
layers that represent the backbone network. The classic pyra-
mid architecture improves the detection of objects of various
sizes.

task. More specifically, it employs the Mask RNN frame-
work [19, 20], which derives from Faster RNN [11, 21] (in
turn, one of the evolutions of the original R-CNN [22])
but adds a third parallel head used to generate the masks.
It also introduces further improvements, like the support
to pixel-to-pixel alignment between network inputs and
outputs (ROI-Align). Figure 1 shows the different stages
that characterize the network.

Initially, the image is passed as input to a convolution-
based Feature Pyramid Network [23], which has the task
of extracting meaningful information from differently-
sized feature maps. An object can appear in the fore-
ground (and therefore very large in the image) or further
away from the camera; hence, this pyramidal structure
facilitates its detection. The features thus extracted are
passed to the Region Proposal Network (RPN), which
produces several Regions Of Interest (ROI), each with its
bounding box. At this point, the first-mentioned ROI-
Align is applied and its result is passed to the second
stage of the network, from which a series of fully con-
nected layers allow to refine the position of the bounding
box, the class of the object it contains and its mask.

Moreover, assuming the camera to be static and, there-
fore, the position of the doors to be fixed over time, this
project exploits two distinct models: one for the door
detection only and the other for people detection. Door
detection is applied just in the starting phase of the frame-
work while, from then on, people detection is performed.
The process of generating the two models and the related
results are analyzed below.

3.1.1. Door detection

To provide door detection, Mask R-CNN[19] was fine-
tunedwith a dedicated dataset, assembled for the purpose.
It includes a selection of 2773 out of 3000 RGB images
of the DeepDoors2 dataset [24], which is freely available
online. These images represent one or multiple doors
in different outdoors and indoors scenarios, which do
not necessarily correspond to a corridor: in fact, the
large majority of them represent doors from the front.
They also include obstacles that partially occlude part
of the doors. The annotations in the DeepDoors2 data
set are provided as additional images where each one
has a black background and different coloured masks for
the doors. Being interested in this project more in the
portion of space occupied by the door than in the profile
of the door itself, all the images are re-masked to segment
exclusively the door casing. Hence, almost all images
have quadrilateral-shaped masks (thus with four vertices
only). Moreover, the generated annotation files are no
more encoded as images like in the original DeepDoors2
dataset, but they are fully compatible with the COCO
dataset specifications [25]. In fact, the annotation files
are JSON files containing: (1) references to all images,
each having a unique ID, as shown in the first row of
Table 1; (2) a mask and bounding box (bbox) associated
to each image (second row of Table 1).

{"images": [
{"id": 514, "width": 1080,
"height":1920, "file_name":"frame.jpg"},
...
]

}

{"annotations": [
{"id": 519, "iscrowd": 0,
"image_id": 514, "category_id": 1,
"segmentation": [[587.52,...,1097.77]],
"bbox": [467.20,581.407,295.90,809.02],
"area": 121068.87},
...
]

}

Table 1
An example of the formatting of JSON files containing image
annotations according to COCO specifications is represented
in this table. The first row shows the data structure used
to list all the images in the dataset, the second row instead
shows the one used to specify the annotations associated with
each image, thus including the mask (“segmentation”) and the
bounding box (“bbox”). The “category_id” field is always set
to 1, as there is only one category (door or person, depending
on the dataset).

The dataset is split into training, validation and test
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Figure 2: Training and validation losses during training with
the Dppl dataset.

sets. These subsets are disjoint; the training set contains
70% (1941) of the images, while the remaining 30% is
equally divided between the validation and test sets (416
each).
With the new dataset available, called Dppl, we fine-

tuned the model pre-trained with the COCO dataset,
which is available on the framework’s GitHub reposi-
tory. Consequently, ResNet101 was used as the backbone,
and training was done in the same manner as the frame-
work’s authors. In particular, we trained the head only
for the first ten epochs; for the following thirty epochs,
we fine-tuned stages four and above of the backbone too;
finally, in the last ten epochs, we extended the training
to the entire network. Unlike [19], the learning rate is
initially set to 0.001 (rather than 0.02) to keep the weights
from exploding; moreover, it is divided by a factor of 10
during phases two and three of the training. The other
parameters are left unchanged, such as the weight decay
of 0.0001 andmomentum of 0.9. Finally, mini-masks were
used (i.e. the masks were resized to the size of 56x56 px)
to lessen the risk of memory problems. Data augmen-
tation (horizontal flipping) was also applied. Figure 2
shows the train and validation losses got during training.
On the test set, the AP metric was used to assess the

quality of the results produced by the training. AP, the
acronym for Average Precision, computes the average
precision value for recall values over 0 to 1. In practice,
AP is computed as the mean of precision values at a set of
𝑅 equally spaced recall levels, as defined by the following
formula

𝐴𝑃 = 1
𝑅

∑
𝑟∈{0,...,1}

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

where, given 𝑝(⋅) the precision, 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max ̃𝑟∶ ̃𝑟≥𝑟 𝑝( ̃𝑟 )
and 𝑅 = 101 in COCO. AP@k stands for the average pre-
cision for IoU (Intersection over Union, i.e. how much
the predicted mask overlaps with the ground truth) of k.
More specifically, in the computation of AP@k, an esti-

Figure 3: In this example, door detection is performed cor-
rectly with two of the three instances. Masks are shown in
light red, while the center of the door is shown as a red dot.

mated mask is considered to be True if its IoU is greater
or equal than k, false otherwise.
The primary challenge metric for the COCO dataset is
AP@[.50:.05:.95] (usually referred to simply as AP), which
is the average AP for IoU (Intersection over Union) from
0.5 to 0.95 with a step size of 0.05. This metric is also used
to evaluate the results of our test set. In particular, with
the Dppl dataset and the training procedure described
above, we got an AP of 85.7 and AP@.75 of 95.8. We
also report the Average Accuracy, which is calculated by
counting how many pixels out of those belonging to a
specific area are correctly classified. In this case, rather
than the whole image, the considered area is the smallest
rectangular portion of the image that contains both the
ground-truth mask and the one produced by the model.
In numerical terms, we obtained an Average Accuracy of
95.34% in the case of Door Detection.
Figure 3 displays the situation in a corridor not in-

cluded in the dataset: the door on the right that is par-
ticularly “thinned” from the perspective is indeed not
detected. Precisely for this reason, the framework pro-
vides a specific graphical interface that allows adding
new door positions, as shown in Section 4.3.

3.1.2. People detection

Similarly to what was done with the doors, a model for
people detection is also generated. Mask R-CNN with
the weights of COCO is already alone able to detect and
segment people with acceptable accuracy. However, fine-
tuning was done using a dedicated dataset built specifi-
cally for the occasion from videos captured along a hall-
way. More in detail, the dataset contains 793 frames

54



Christian Marinoni et al. CEUR Workshop Proceedings 51–61

captured in a corridor by a 1080x1920 px resolution cam-
era that was positioned a few centimeters from the ceiling
(approximately 2.9 meters from the floor) with a vertical
image layout. In the scene, six people appear walking
down the hallway and entering/exiting the adjoining
rooms. They wear various types of clothing (including
a white coat to simulate the presence of a doctor); they
are of different ages and all wear face masks. One of the
people has a foot cast and crutches. All frames are hand-
annotated to generate high-quality masks, accurately
respecting the person’s shape. The related annotation
files follow the COCO specifications, as described before.
The split of files between training (555 images), valida-
tion (119) and test (119) sets follows the same proportion
as the Dppl dataset.
With this second dataset available, called dPPL, we

once again fine-tuned the model pre-trained with the
COCO dataset. All the Mask R-CNN’s parameters are
kept the same, but Gamma Contrast is used as a data
augmentation technique in conjunction with horizontal
flipping in this case.
Figure 4 shows the graph of the training and valida-

tion losses. As for the performance on the test set, Table
2 shows the comparative Average Precision values be-
tween the use of a model trained only with COCO and
that obtained by doing fine-tuning with the dPPL dataset.
This second option provides better results for both AP
and AP@.75. The same applies for the Average Accu-
racy. These good results should be evaluated considering

Method AP AP@.75 Acc.

COCO only 70.5 92.9 99.08%
COCO+fine-tuning on dPPL 76.3 95.5 99.74%

Table 2
Comparison between the use of Mask R-CNN trained on
COCO only and the same network trained with COCO and
fine-tuned with dPPL dataset. AP stands for Average Preci-
sion; Acc. stands for Average Accuracy (calculated by counting
how many pixels out of those belonging to smallest rectangu-
lar portion of the image that contains both the ground-truth
mask and the one produced by the model are correctly classi-
fied).

the not very high number of images that compose the
dataset. Indeed, environments with completely different
illumination and compositions will certainly attenuate
the good performances provided by this model.

3.2. People Re-identification
The detection of doors and people in the scene does not
suffice to ensure accurate tracking. As mentioned above,
one can use additional information extracted from the
images within more or less complex systems, which may
exploit appearance, movement and shape features. An

Figure 4: Training and validation losses during training with
the dPPL dataset.

example is DeepSORT [7], which uses the Kalman fil-
ter to predict the position of a person in the next frame
and integrates appearance information based on a deep
appearance descriptor. Despite DeepSORT being a pow-
erful tool, the use of the Kalman Filter turns out to be less
effective when the subject disappears for long periods
from the camera view. Indeed, the Kalman Filter mod-
ulates the state estimate of the system (in this case, the
position in the frame of a subject) as a Gaussian distribu-
tion whose variance strictly depends on the observations
over time. When a person disappears from the scene, the
degree of uncertainty increases and the same happens to
the distribution variance. Furthermore, the Kalman Filter
would be practically useless if several people enter the
same room: the states of those subjects would collapse
into the same value, making this information useless to
distinguish a person from the others when they leave the
room. Nevertheless, the solution undertaken in Deep-
SORT on the use of appearance features turns out to be
quite effective whenever the Kalman Filter is not since
it relies on visual cues. For this reason, DPPL Tracker is
primarily based on appearance features, though it also
takes advantage of some assumptions related to the work
environment (a corridor).

In this project, Deep Cosine Metric Learning [26], the
same used in DeepSORT for appearance re-identification,
is used. It applies a variation of Softmax classifier called
Cosine Softmax Classifier, which allows obtaining a dif-
ferent representation space in which compact clusters
are formed based on the appearance features. This is
achieved by first applying the 𝑙2 normalization, which
uses the 𝑙2-norm to normalize the input values so that, if
squared and summed, they would result in the value 1,
and, secondly, by normalizing the weights. Finally, the
cosine softmax classifier is applied, which is defined as
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follows:

𝑝(𝑦𝑖 = 𝑘|𝑟𝑖) =
exp(𝜅 ⋅ �̃�𝑇

𝑘 𝑟𝑖)

∑𝐶
𝑛=1 exp(𝜅 ⋅ �̃�𝑇

𝑛 )

where 𝜅 is a free scaling parameter.
Table 3 summarizes the entire network, which is made

up of convolutional and residual layers. Dropout of 0.4
is used within the Residual layers.

Layer Patch Size/Stride Output

Conv1 3 ×3/1 32 × 128 × 64
Conv2 3 ×3/1 32 × 128 × 64
Maxpool 3 ×3/2 32 × 64 × 32
Residual 4 3 ×3/1 32 × 64 × 32
Residual 5 3 ×3/1 32 × 64 × 32
Residual 6 3 ×3/2 64 × 32 × 16
Residual 7 3 ×3/1 64 × 32 × 16
Residual 8 3 ×3/2 128 × 16 × 8
Residual 9 3 ×3/1 128 × 16 × 8
Dense 10 - 128

𝑙2 normalization - 128

Table 3
Overview of the CNN architecture of the Re-ID network

The dataset used for training the re-ID network
is MARS [27], a large scale video-based person re-
identification dataset that extends the Market-1501
dataset [28]. It consists of 1261 different pedestrians, who
are captured by at least two of the six near-synchronized
cameras placed on the Tsinghua University campus. It
also includes over 1 million bounding boxes and 3248
distractors to make it more realistic. The goal of the Re-
Identification network is to provide useful information
on the person’s identity starting from how they appear
in the image. In the case of MARS, it will have to try
to learn this information from images that also include
backgrounds of different colours and patterns. To con-
centrate solely on the subject, we preprocessed theMARS
dataset by using the Mask R-CNN network to detect peo-
ple. Therefore, the result is a new dataset where each
image of size 256x128 px represents a segmented person
and a black background (as shown in Figure 5).
The network has been trained for 100.000 steps, with

a constant learning rate of 0.001 and weight decay of
1 × 10−8; moreover, the input images are scaled to 128x64
px.
The use of the masked MARS dataset proves to be

beneficial for the network training since it provides im-
proved results according to the CMC Rank@K and mAP
metrics1, as shown in Table 4. The table also shows the
results of two state-of-the-art solutions on the original
MARS dataset. Both largely outperform the solution pro-
posed in this project, however, they also use much more
1Computed through the MARS evaluation tool, available at
https://github.com/liangzheng06/MARS-evaluation

(a)

(b)

Figure 5: Examples of the resulting images in the MARS
dataset after applying object instance segmentation.

sophisticated methods or networks with many more pa-
rameters.

Method Rank1 Rank5 mAP

DCML on MARS𝑎 72.93 86.46 56.88
DCML on masked MARS𝑏 75.73 90.08 60.72

B-BOT + Attention & CL loss𝑐 88.6 96.2 82.9
MGH𝑑 90.0 96.7 85.8

Table 4
Comparison between the Deep Cosine Metric Learning (ab-
breviated to DCML) on the original MARS dataset and the
masked version and some state-of-the-art solutions. 𝑎Results
from [26] - 𝑏Proposed in this project - 𝑐Results from [29] - 𝑑Re-
sults from [30]. mAP stands for mean Average Precision

4. DPPL Tracker framework
People tracking is offered through a specific framework
that employs Mask R-CNN and the above-mentioned
re-identification network. It also provides additional fea-
tures to improve the user experience and optimize the
search for people. More precisely, the workflow is the
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following: the first frame is first passed as input to Mask
R-CNN for doors detection. Once doors are located, that
frame and the following ones are passed to the same
network (with different weights) for people detection.
The portion of the image containing each person is then
multiplied by the corresponding mask (to have a black
background) and, after being resized to 128 x 64 px, is
passed to the re-identification network. The latter has its
head cut off so that it outputs an array of size 128 (gener-
ated by the last Dense layer). This array is a descriptor of
the person’s appearance and is used by the framework’s
main algorithm to associate a unique identity ID with
each person.

4.1. Main algorithm
After selecting the video, the first frame is analyzed
through mask-RCNN to locate the doors in the scene.
If one or more doors are not detected, the user can man-
ually add additional ones, as shown in Section 4.3. Only
at that point, the analysis of the following frames begins.
Pseudocode 1 shows the main steps. As previously de-
scribed, Mask R-CNN is again used to identify people,
while the re-ID network provides the people appearance
descriptors. At that point, for each person, the find_near-
est function allows identifying the already-known closest
identifier to the detected descriptor, if any. In this way,
it is possible to determine whether that person already
appeared in the past and, depending on their position
and on the knowledge derived from past frames, a log is
added to the database if they are leaving a room. If there
is no similar person, the algorithm adds a new one to the
scene. The final for loop finds all people who were in
the environment up to the previous frame but are now
missing. In this case, there are two alternatives: the per-
son may either have entered a room (if in the preceding
frame they were sufficiently close to the relative door)
or may have disappeared, for example, because they left
the hallway or are temporarily occluded. To improve
the efficacy of the algorithm, the framework starts track-
ing a person when he appears entirely in the scene and
his bounding box is at a minimum distance from the
image edges. Furthermore, it uses the area of the bbox
to interrupt (temporarily or not) the tracking when an
object/person occludes the subject or when the tracked
person has nearly entirely entered a room.
A fundamental step is the one implemented by the

find_nearest function, shown in Pseudocode 2. It uses
differentiated searches to find the already-known person
with the most similar identity to the one passed as input.
First, it searches among the people visible in the scene in
the previous frame. In case of failure, if the detection is
close enough to a door - according to a given threshold
- it searches among the people who are known to be in
that room. As a last chance, it starts searching among the

Algorithm 1: Main algorithm
Data: 𝑚𝑎𝑠𝑘𝑅𝐶𝑁𝑁_𝑟𝑒𝑠𝑢𝑙𝑡, 𝑓 𝑟𝑎𝑚𝑒
Result: People identified

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑦_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← [];
2 for 𝑝𝑒𝑟𝑠𝑜𝑛 in 𝑚𝑎𝑠𝑘𝑅𝐶𝑁𝑁_𝑟𝑒𝑠𝑢𝑙𝑡 do
3 𝑚𝑎𝑠𝑘, 𝑏𝑏𝑜𝑥 ← 𝑝𝑒𝑟𝑠𝑜𝑛;
4 𝑖𝑚𝑔𝑝𝑜𝑟 𝑡𝑖𝑜𝑛 ← 𝑓 𝑟𝑎𝑚𝑒[𝑏𝑏𝑜𝑥[0] ∶

𝑏𝑏𝑜𝑥[2], 𝑏𝑏𝑜𝑥[1] ∶ 𝑏𝑏𝑜𝑥[3]];
5 𝑖𝑚𝑔𝑝𝑜𝑟 𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘𝑒𝑑 ← 𝑖𝑚𝑔𝑝𝑜𝑟 𝑡𝑖𝑜𝑛 ∗ 𝑚𝑎𝑠𝑘;
6 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 ←

get_person_identifier(𝑖𝑚𝑔𝑝𝑜𝑟 𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘𝑒𝑑);
7 𝑝𝑒𝑟𝑠𝑜𝑛𝐼𝐷, 𝑟𝑜𝑜𝑚𝐼𝐷 ← find_nearest(𝑝𝑒𝑟𝑠𝑜𝑛,

𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟);
8 if pID == -1 then
9 // New person appeared

10 else
11 // Person in the corridor or exited from a

room
12 end
13 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑦_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← 𝑝𝑒𝑟𝑠𝑜𝑛
14 end
15 for 𝑝𝑒𝑟𝑠𝑜𝑛 in 𝑔𝑒𝑡_𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑛_𝑠𝑐𝑒𝑛𝑒() do
16 if 𝑝𝑒𝑟𝑠𝑜𝑛 not in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑦_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 then
17 if 𝑝𝑒𝑟𝑠𝑜𝑛 close to a room then
18 // Person entered in a room
19 else
20 // Person disappeared from the scene

(may due to an occlusion)
21 end
22 end
23 end

people who last left the corridor, then moving on to all
the known people. The similarity between two identifiers
ID𝑎 and ID𝑏 is computed with the cosine similarity, as
follows

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦 = ID𝑎 ⋅ ID𝑏
‖ID𝑎‖‖ID𝑏‖

Two identifiers are more similar as the cosine similar-
ity goes to one. Hence the need to define, for each of
the listed searches, a threshold that defines when two
descriptors must be considered sufficiently similar (and
therefore belonging to the same person) or not. The
choice of the threshold heavily influences the tracking
effectiveness. In the various phases a different threshold
is used, more specifically: (1) if a person is walking along
the corridor without other people in the close vicinity
and, if compared to the previous frame, that person has
not moved too far from their previous position in the
scene, then a greater dissimilarity between the descrip-
tors is tolerated; (2) in other cases, the threshold is set to
a value between 0.85 and 0.9. Section 5 discusses some
critical issues regarding the choice of the threshold.
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Algorithm 2: Find nearest identity
Data: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟
Result: Person id

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑦_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← [];
2 if 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 in the scene then
3 // Person in the scene, return the ID
4 end
5 for 𝑑𝑜𝑜𝑟 in room do
6 if 𝑝𝑒𝑟𝑠𝑜𝑛 close to 𝑑𝑜𝑜𝑟 then
7 // Look among people inside that room
8 end
9 end

10 // Look among last detected people;
11 // Look among all people;

4.2. Database
Whenever a person enters and leaves a room, a corre-
sponding log is added to the database. Each log has the
following structure:

frameID personID roomID "in/out/new"

where frameID is an incremental value representing the
currently processed frame, personID is a unique integer
associated to a person (different from the identifier repre-
senting the way that person looks in the scene), roomID
is the ID of the room the person is entering/leaving - if
any - and it is equal to −1 otherwise. The last label has
the value “in” or “out” when “roomID” is different from
−1, while it assumes the value “new” when a new person
appears in the scene.

For simplicity, the database is implemented via a sim-
ple CSV file containing all the logs, but more complex
and scalable solutions (such as NoSQL) are also possible.
Knowing the video framerate, the framework derives an
estimate of the time spent in the room, to highlight possi-
ble dangerous situations. The same is done by counting
the number of people in the same room and alertingwhen
the maximum capacity is exceeded.

4.3. GUI
A simple user interface, implemented with the PySim-
pleGUI library, is also available to provide the user with
more flexible interaction with the framework. The user
can select a file or directory containing the needed frame
images, as well as add new doors that Mask R-CNN did
not detect. In this second case (shown in Figure 6), by
using a simple library such as Matplotlib, it is possible to
offer a response in real-time on the location of the new
doors and their heights (used by the algorithm). Finally,
at the end of the processing of all frames, the user can
search all the times a particular ID has entered and left

a room (Figure 7). In the latter case, the interface high-
lights the riskiest situations (for example, if the room
capacity has been exceeded) in addition to providing all
records linked to the entered ID.

Figure 6: The user can add multiple additional doors through
the user interface. The position of the center of the new door
is shown by a red dot, while its height by a dashed line with
two blue dots at the ends.

Figure 7: The user can visually see a list of rooms a particular
ID has entered through the user interface.

5. Analysis and results
The behaviour of the framework is evaluated in two differ-
ent setups of incremental difficulty. In the first setup, peo-
ple walk down a corridor one after the other, in a perfect
flow that limits the occasions when two or more people
are simultaneously in the same room. This modality al-
lows focusing mainly on an inter-frame re-identification
and on the correct detection of people entering and leav-
ing the rooms. In the second setup, multiple people can
enter the same room. The challenge, in this case, is to be
able to identify the identity of a person when he leaves
the room. The results show that the algorithm can handle
a wide range of situations with ease, producing results
that are similar - if not identical - to the ground truth.
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First of all, it is beneficial to analyze how accurately
the framework can detect the presence of one or more
people in the scene. To calculate the overall accuracy of
the detections we used two methods. The first consists
of considering only those frames in which a person is
shown entirely (i.e., he is not hidden - even partially - by
objects or other people). The second way is to consider
all frames, including all borderline cases in which only
a portion of a person’s arm or leg appears in the frame.
Figure 8 shows an example of the frames considered with
both methods. The results - obviously better in numerical
terms in the first case - are shown in Table 5.

Overall (Detection) Accuracy
Method 1 100%
Method 2 91.76%

Table 5
The accuracy of people detection computed with two methods
is shown here. With the first one, we only considered those
frames in which people bodies are shown wholly in the image.
The second method also includes those frames in which a
person is only partially visible.

Figure 8: The frame on the left is an example of those con-
sidered with Method 1 for calculating the Overall Detection
Accuracy. The person’s body is entirely included in the scene.
The frame on the right is instead an example of those consid-
ered with Method 2, that takes also into account all borderline
cases in which only a portion of a person’s arm or leg appears
in the frame. In this case, the two people in the scene are only
partially visible and the arm of the uppermost person is not
detected by the model.

Having ascertained that the framework can detect the
presence of people with good reliability, we then move

on to analyze the accuracy of people tracking. In partic-
ular, the inter-frame re-identification of a person in the
scene scores 100% accuracy, even in the case of several
people in the corridor; the same happens when the per-
son leaves a room, even when more than one is inside
it. The criticalities are mainly two: (1) the difficulty in
defining an efficient threshold for cosine similarity, since
the method adopted is susceptible to sudden changes in
the person’s position (such as front and rear vision of
the person); (2) the influence of the quality of masks pro-
duced by Mask R-CNN on the re-identification network.
A sudden change in the portion of the image taken into
consideration (even without sudden movements of the
subject) can reduce the cosine similarity.

Cosine similarity can be a powerful tool for guiding the
re-identification task: limiting the search to the people
inside the room and using the cosine similarity always
leads to correct identifications. Nevertheless, the weak-
nesses listed above heavily reduce its effectiveness when
it is necessary to recognize a person who had previously
left the corridor (without entering any room) and who
reappears later on. Indeed, the choice of a high threshold
(i.e., ≥ 0.9) makes it difficult to assign the same ID in
the situation under analysis, because usually, the person
will reappear in a completely different pose (for example,
from behind and not the front) which will reduce the
value of the cosine similarity. In this case, there will be
no ID switches between different people, but each time
one reappears in the scene it will be assigned a new ID.

On the contrary, lowering the threshold facilitates the
ID switches, creating some cascading problems in the
framework (an ID already assigned - even if incorrectly
- to a person will not be re-assigned as long as the per-
son is in the scene, not even if the one it was originally
assigned to reappears). However, these problems do not
affect the recognition of people leaving the rooms: the
identifier produced by the Re-ID network and the simi-
larity computed with the cosine similarity is sufficient
for the correct attribution of the ID. Compared to the
baseline (Re-ID network trained on the original MARS
dataset), it can be observed that the cosine similarity of
the same person in two different situations (frames) is
greater (by 1-2%) when assessed with our method.
As a final benchmark, the accuracy of the logs (seen

as the ratio of the logs equal to ones of the ground truth
over the total number of them) produced in the tests is
equal to 50%. The accuracy goes up to 84% if we also
include those logs with labels “in” and “out” that differ
only in the person ID from the ground truth (but only
if that ID is a new one, and therefore if there is no ID
switchwith a previously known identity). When a person
enters a room, the relative log at the exit is always correct,
as already mentioned above. As for performance, an
Nvidia Tesla K80 is capable of processing 1.4-1.5 frames
per second.
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We also ran a test in a setup with slightly different
specifications. In fact, the recording device was placed at
eye level, tilted almost parallel to the floor and with an
image ratio of 16:9. The results obtained are comparable
to those indicated above, although tracking people in
areas very distant from the camera (and therefore at lower
resolution) turns out to be more critical. Under these
conditions, it is quite easy for two different subjects to
appear very similar even to the human eye. An example
is shown in Figure 9. Ultimately, the framework is most
effective when the distance to the doors is not excessively
large.

Figure 9: Those shown in the figure are two different peo-
ple, who however visually appear practically identical. Their
appearance descriptor is therefore very similar and this leads
the framework to a wrong ID attribution when one of the two
leaves the room.

6. Conclusion
DPPL Hallway Tracker turns out to be a good starting
point for developing a framework capable of tracking
people entering and leaving multiple rooms. The use of
a re-ID network that exploits the masks produced in the
detection and segmentation phase leads, even in the tests
performed, to improvements in identification.
A project extension might be able to address some of

the remaining issues: (1) the enrichment of the datasets of
people and doors could lead to better detection in several
more challenging contexts: for example, as discussed
above, the detection and segmentation of doors “thinned”
from perspective remains difficult; (2) using a dynamic
threshold and investigating complementary solutions to

the re-identification network could alleviate the difficulty
of assigning the same ID to a person who reappears in the
corridor without leaving a room. The study of solutions
for tracing people entering and leaving the rooms is of
great importance for the application developments that it
can have. It not only allows contact tracing in the event
of pandemics but it can be also used for other contexts, as
for the analysis of the movements of patients and medical
operators and the optimization of hospital wards.
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