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Abstract
This study presents a comprehensive exploration of EEG-based motor imagery classification using advanced deep learning
architectures. Focusing on six distinct motor imagery classes, we investigate the performance of convolutional neural
networks (CNN), CNN with Long Short-Term Memory (CNN-LSTM), and CNN with Bidirectional LSTM (CNN-BILSTM)
models. The CNN architecture excels with a remarkable accuracy of 99.86%, while the CNN-LSTM and CNN-BILSTM models
achieve 98.39% and 99.27%, respectively, showcasing their effectiveness in decoding EEG signals associated with imagined
movements.The results underscore the potential applications of this research in fields such as assistive robotics and automation,
showcasing the ability to translate cognitive intent into robotic actions. This study offers valuable insights into the realm
of deep learning for EEG analysis, setting the stage for advancements in brain-computer interfaces and human-machine
interaction.
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1. Introduction
Using deep learning for EEG signal classification has
applications in the brain. The advancement of brain-
controlled robots capable of direct communication with
humans is beneficial in several scenarios. A brain-
computer interface (BCI) system is vital in offering ad-
ditional communication between the human brain and
other outside entities, such as robots[1]. BCI becomes
a tool for determining the goals of people dealing with
medical situations by examining recorded brain signals
and interpreting neural responses. Its main goal is to
provide these people the ability to carry out motor func-
tions, which will help them achieve a greater quality of
life[2, 3, 4].

For individuals dealing with medical issues, it becomes
a lifeline. A BCI is a computer-based communication
system designed to analyze signals originating from the
neural activity within the central nervous system[5, 6].

BCI systems are categorized into exogenous and en-
dogenous types. Exogenous BCIs rely on external stimuli
to evoke specific brain responses, with electroencephalo-
gram (EEG) patterns such as P300 and steady-state vi-
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sual evoked potentials (SSVEP) being typical examples[7].
These systems are stable, require less training, but de-
pend on external cues and may cause user fatigue. In
contrast, endogenous BCIs, also known as active BCIs,
are based on self-regulation of brain rhythms, specifically
motor imagery (MI), reflecting the user’s autonomous in-
tentions without external stimulation. MI induces event-
related desynchronization/synchronization (ERD/ERS) in
the brain’s motor area, allowing absolute mind control.
While active BCIs do not rely on external stimuli and
offer more direct user modulation, they require specific
attention and have gained attention for their potential in
realizing genuine user-controlled interfaces[8, 9? ].

In neuroscience and brain-computer interfaces (BCI),
motor imagery (MI) refers to the cognitive process in
which humans mentally simulate or observe a motor ac-
tivity, such as the movement of a limb or the execution
of a particular task, without any accompanying physical
motion [8]. Mentally rehearsing actions activates the
same brain pathways as executing those movements. In
brain-computer interfaces (BCI), electroencephalogram
(EEG) data are commonly used to collect and analyze
brain activity related to motor imagery. By analyzing
brain activity patterns during motor imagery (MI), re-
searchers can decode the intended motor motions and
convert them into control signals for external devices[10].

In recent years, deep learning techniques have rede-
fined the landscape of MI classification, offering unprece-
dented capabilities in extracting complex patterns and
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representations from EEG data [11][12]. Its end-to-end
methodology sets deep learning apart, eliminating the
need for manual feature extraction methods. Instead,
it autonomously learns many essential parameters and
identifies valuable information within the data[13].

Various advanced deep-learning techniques were uti-
lized to improve Motor Imagery’s (MI) precision. As an
example, in this study [14] explores the implementation
of a convolutional neural network (CNN) architecture
with a single convolutional layer for the classification
of motor imagery (MI) tasks based on electroencephalo-
gram (EEG) signals. The designed CNN model includes a
convolutional layer, ReLU activation, and max-pooling.
The output layer is configured with either 2 or 4 nodes,
depending on the specific number of classes in the MI
classification task. The document highlights incorporat-
ing data augmentation techniques and utilizing common
spatial patterns (CSP) for effective feature extraction. Re-
sults from the proposed approach demonstrate promising
outcomes in both two-class and four-class MI classifica-
tion scenarios.

In Ref [15], The authors propose a new approach that
combines continuous wavelet transform (CWT) with a
simplified convolutional neural network (SCNN) to en-
hance the recognition accuracy of Motor Imagery (MI)
electroencephalogram (EEG) signals. The CWT is ap-
plied to map MI-EEG signals into time-frequency image
signals, which are then input into the SCNN for feature
extraction and classification.

In addition, several research has investigated differ-
ent methods, such as Long Short-Term Memory (LSTM),
which have shown good results in motor imagery clas-
sification using EEG. In light of promising findings, one
study [16] introduces an EEG classification framework
for motor imagery tasks in BCI systems. The frame-
work leverages LSTM networks, incorporates a one-
dimensional aggregate approximation (1d-AX) for sig-
nal representation, and employs a channel weighting
technique inspired by common spatial patterns to boost
effectiveness. In reference [17], they combine a one-
dimensional convolutional neural network (1D CNN)
with long short-term memory (LSTM)[18]. The suggested
deep learning network improves classification accuracy
by using CNN and LSTM to extract temporal represen-
tations of MI tasks successfully[19]. The preprocessing
of EEG data encompasses band-pass filtering and data
augmentation using a sliding window. The CNN captures
essential time domain features, and the subsequent LSTM
facilitates additional feature extraction, culminating in a
robust classifier designed for four MI tasks[20].

Many research utilize BiLSTM as an excellent case
study. This research [21] introduces a novel approach
for decoding imagined finger motions using MI-EEG
data. The approach effectively tackles noise challenges
in small, noisy signals using Empirical Mode Decompo-

sition (EMD) and a Stacked BiLSTM architecture. The
method demonstrates notable success, achieving an accu-
racy of 82.26% on a widely used dataset. The research of-
fers an innovative decoding approach and effective noise
reduction through EMD, explicitly enhancing the clas-
sification of MI-EEG signals associated with right-hand
finger movements[22].

Numerous advanced deep-learning methodologies
have been employed to enhance the accuracy of motor
imagery classification within Brain-Computer Interfaces
(BCIs). This motivates us to explore innovative strategies
for motor imagery (MI) classification, contributing to the
continuous progress in the domain. MI, a cognitive pro-
cess involving mental simulation of movements without
physical execution, holds significance in brain-computer
interface (BCI) research. In this investigation, we focus
on a specific subset of six classes from the EEG dataset,
specifically addressing tasks associated with motor im-
agery actions. Our aim is to evaluate the appropriateness
of these classes for efficient EEG-based classification, ul-
timately aiming to facilitate intuitive and precise control
of robotic systems.

2. Materials and Methods

2.1. Dataset
The dataset utilized in our study, attributed to Gerwin
Schalk and colleagues [23], is a pivotal asset in Brain-
Computer Interface (BCI) research.

Obtained from over 1500 EEG recordings with the par-
ticipation of 109 volunteers, the dataset offers a com-
prehensive data collection. The experiments, facilitated
by the BCI2000 system, involve various motor/imagery
tasks and baseline measurements.

Electrode placement follows the international 10-10
system. At the same time, detailed information about
the dataset is accessible through the original publication
on PhysioBank. The participants completed a total of
14 experimental trials, as outlined in Figure 1, which
provides a detailed description of the experiment. Each
trial comprised two one-minute initial sessions—one with
eyes open and another with eyes closed—and three two-
minute trials for each of the four specified tasks.

While the original dataset contains continuous multi-
channel data with a substantial number of users in our
study, we concentrated on the EEG signals obtained from
a subset of seven subjects selected randomly. Specifically,
our focus was on tasks related to imagined movements,
namely tasks 4, 6, 8, 10, 12, and 14. Tasks 4, 8, and 12
involve imagined movements associated with both the
right and left fists, as well as periods of relaxation. On the
other hand, tasks 6, 10, and 14 involve imagined move-
ments of both fists and both feet.
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Figure 1: Overview of the 14-trial EEG experiment.

2.2. Convolutional Neural Networks
(CNN)

CNNs are very good at classifying images because they
use neural layers to learn hierarchically organized fea-
tures. People are now interested in making CNNs use
data that isn’t pictures, like time-series data. CNNs are a
great way to get features from EEG data and recognize
patterns. This is because they can show how electrodes
are spread out in space and how brain activity changes
over time [24, 25]. Convolutional layers, pooling layers,
activation functions, and fully connected layers are the
main parts that make up a CNN. To make output feature
maps, convolutional layers use convolutional kernels to
run convolutions. At the same time, pooling layers sub-
sample feature maps while keeping the most essential
characteristics. Adding activation functions like Sigmoid,
Tanh, and ReLU to the network creates non-linearity, a
vital part of matching inputs to outputs correctly.

Sigmoid function:

Sigmoid(𝑥) =
1

1 + 𝑒−𝑥
(1)

Tanh function:

Tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2)

ReLU function:

ReLU(𝑥) = max(0, 𝑥) (3)

In the design of a CNN, the final layers play a crucial
role in handling classification tasks. These layers, known
as fully connected layers, establish connections between
every neuron within a layer and those from its preceding
layer. The ultimate layer of fully connected layers serves
as the output layer, functioning as the classifier in the
CNN architecture.

2.3. Long Short-Term Memory (LSTM)
and Bidirectional LSTM (BiLSTM)

LSTM designed to overcome the vanishing gradient prob-
lem in traditional RNNs, introduces memory cells with
gating mechanisms, including input, forget, and output
gates, to control the flow of information. It comprises a
cell state representing long-term memory and a hidden
state representing short-term memory or output [26].

Figure 2: The architecture of a LSTM model [27].

Bidirectional Long Short-Term Memory (Bi-LSTM) is
an extension of the traditional LSTM, a type of recur-
rent neural network (RNN). LSTMs are adept at captur-
ing and retaining long-term dependencies in sequential
data, making them suitable for applications like natural
language processing, time series prediction, and speech
recognition [28].

The term "bidirectional" in Bi-LSTM refers to the fact
that it processes input sequences in both forward and
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Figure 3: Bidirectional LSTM model showing the input and
output layers. The red arrows represent the backward se-
quence track and green the forward sequence track [29].

backward directions. This bidirectional processing helps
the network capture information from both the past and
the future of a given time step, allowing it to better un-
derstand the context and dependencies in the sequence.
The Bi-LSTM architecture consists of two LSTM layers,
one that processes the input sequence in the forward
direction and another in the backward direction. The
results from both directions are often combined before
passing them on to the next layer or used for the final
prediction[28, 30].

2.4. Proposed Architecture
The dataset is subjected to a preprocessing phase that
includes applying an 8–30 Hz filter and a notch filter,
followed by sampling at a frequency of 125 Hz. This es-
sential preprocessing step refines the raw EEG signals, ef-
fectively eliminating undesirable frequency components
and ensuring the data’s suitability for further analysis.
The 8–30 Hz filter is instrumental in concentrating on per-
tinent frequency bands linked to neural activity, while
the notch filter serves to eliminate specific unwanted
frequencies, such as those associated with power line
interference.

The CNN architecture, comprising Conv1D, Batch Nor-
malization, MaxPooling1D, Dropout, Flatten, and Dense
layers, demonstrates effectiveness in classifying EEG
data across 6 classes. The CNN with Long Short-Term
Memory (CNN-LSTM) model seamlessly integrates CNN
and LSTM layers to capture spatial and temporal fea-
tures. This architecture includes CNN, Batch Normaliza-
tion, MaxPooling1D, Dropout, LSTM, Flatten, and Dense
layers, showcasing commendable accuracy in EEG data
classification by skillfully combining spatial and tempo-
ral aspects. The CNN with Bidirectional LSTM (CNN-
BiLSTM) architecture enhances EEG data classification by
combining CNN and Bidirectional LSTM networks. The
model incorporates CNN, Batch Normalization, MaxPool-
ing1D, Dropout, Bidirectional LSTM, Dropout, Flatten,

and Dense layers. This hybrid approach synergizes the
strengths of CNN for spatial features and Bidirectional
LSTM for temporal dependencies, resulting in a robust
classification model.

A five-fold stratified k-fold cross-validation is imple-
mented using the StratifiedKFold function from scikit-
learn. The dataset is divided into training and testing sets
for each fold, and each model is compiled with categori-
cal cross-entropy, Adam optimizer, and accuracy as the
metric. The training spans 100 epochs with a batch size
of 32, facilitating a thorough assessment of the model’s
performance across diverse data subsets.

3. Results
To assess the performance of the three models, we em-
ployed key scoring metrics, including Accuracy, Recall,
Precision, and F1-Score. These metrics provide a com-
prehensive evaluation of the models’ effectiveness in
handling classification tasks. Each sign gives a different
view of different parts of a model’s effectiveness, and
when mixed, they provide a complete visualization:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 · Precision · Recall
Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

where TP are the true positives, FP the false positives,
TN the true negatives, and FN the false negatives.

Table 1
Comparison of Architectures.

Architecture Precision Recall F1 Accuracy

CNN 1.00 1.00 1.00 99.86%
CNN-LSTM 0.98 0.98 0.98 98.39%

CNN-BILSTM 1.00 0.99 0.99 99.27%

The CNN architecture showcased exceptional perfor-
mance, achieving perfect precision, recall, and F1-Score,
leading to an impressive overall accuracy of 99.86%.
This underscores the model’s effectiveness in accurately
classifying EEG data. The CNN-LSTM model, although
slightly less accurate, still demonstrated commendable
results, with precision, recall, and F1-Score values at 0.98
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Figure 4: Confusion matrix for the
proposed CNN model.

Figure 5: Confusion matrix for the
proposed CNN-LSTM model.

and an overall accuracy of 98.39%. This model effectively
combines spatial and temporal features for EEG clas-
sification, emphasizing a balance between complexity
and accuracy. The CNN-BILSTM architecture displayed
a well-rounded performance, with precision, recall,
and F1-Score all reaching 1, 0.99, and 0.99, respectively.
Combining CNN for spatial features and Bidirectional
LSTM for temporal dependencies, this hybrid approach
achieved an accuracy of 99.27%, highlighting its efficacy
in accurate EEG data classification.

Figure 6: Confusion matrix for the proposed CNN-BILSTM
model.

4. Discussion
The evaluation results of three distinct architectures,
namely CNN, CNN-LSTM, and CNN-BILSTM, shed light
on their respective performances in classifying EEG data
with 6 classes. The CNN model exhibits exceptional per-
formance across all metrics. It achieves precision, recall,
and an F1-score of 1.00 for most classes, highlighting
its ability to classify each class accurately. The overall
accuracy of 99.86% underscores the model’s effective-
ness in capturing intricate patterns within the EEG data.
The precision-recall curves for each class demonstrate
the model’s robustness and reliability. The CNN-LSTM
model, incorporating both convolutional and long short-
term memory layers, displays a commendable perfor-
mance but with a slight decrease in precision, recall, and
F1-score compared to the pure CNN model. This sug-
gests a potential trade-off between model complexity
and overall performance. The accuracy of 98.39% indi-
cates reliable classification, though less than the CNN
architecture. The CNN-BILSTM model, combining the
strengths of CNN and Bidirectional LSTM, provides an
excellent balance between precision, recall, and F1-score.
With precision above 1 for most classes and an accuracy
of 99.27%, it demonstrates the model’s ability to capture
both spatial and temporal dependencies in the EEG data.
The bidirectional processing contributes to understand-
ing the context and dependencies in the sequence.

The outcomes obtained from the implemented models
indicate their proficiency in recognizing patterns and ex-
tracting features from EEG data, resulting in successful
classification. This underscores the appropriateness and
effectiveness of the selected models for the specific EEG
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signal classification task. The models’ capability to dis-
cern complex neural patterns contributes significantly to
the overall success of the classification process, offering
valuable implications for applications in neuroscientific
research and brain-computer interface systems.

The focused analysis on a subset of six classes derived
from motor imagery tasks opens up intriguing possi-
bilities for the practical deployment of brain-computer
interface (BCI) technologies in the field of robot naviga-
tion. Consider a scenario where a user, equipped with an
EEG-based BCI system, intends to control a robot’s move-
ments seamlessly. In this scenario, the selected six classes
correspond to distinct motor imagery actions with direct
relevance to robot navigation commands: closing and
opening the left hand for turning left, closing and open-
ing the right hand for turning right, and simultaneously
closing and opening both fists and both feet for stopping
and moving forward, respectively. This subset aligns
with intuitive and fundamental commands essential for
controlling the robot’s spatial movements.

Table 2
Mapping Between Movements and Commands for Robotic
Control.

Real or Imagined Corresponding
Movement Commands

Closing/opening left hand Turning left
Closing/opening right hand Turning right
Opening/closing both fists Stopping
Opening/closing both feet Going forward

As the user engages in motor imagery actions, the EEG
signals associated with the specific classes are decoded in
real-time by the implemented classification models. The
system translates these decoded signals into correspond-
ing robot commands, enabling the user to navigate the
robot effortlessly. For instance, by simply imagining the
closure of the left hand, the robot seamlessly executes
a left turn, offering an intuitive and natural interaction
mechanism.

However, challenges and considerations arise in the
implementation of such a scenario. Real-time processing,
user adaptation to the BCI system, and robustness in
various environmental conditions are factors that require
careful attention. The user’s cognitive load, comfort, and
the need for continuous improvement in the classification
models become focal points for refinement.

Despite these challenges, the envisioned scenario high-
lights the potential transformative impact of motor im-
agery classification in robot navigation. The seamless
fusion of cognitive intent and robotic action could rev-
olutionize human-robot interaction, paving the way for
intuitive and accessible control mechanisms in diverse
applications, ranging from assistive robotics to smart

home automation.
The scenario encourages future exploration into re-

fining the proposed approach, addressing practical chal-
lenges, and expanding its applicability in real-world set-
tings. This discussion signals a step toward unlocking the
full potential of BCIs in enhancing the synergy between
human cognition and robotic systems.

5. Conclusions
This study advances EEG-based motor imagery classifi-
cation, evaluating CNN, CNN-LSTM, and CNN-BILSTM
models for six selected classes. Results demonstrate ex-
ceptional accuracy (CNN: 99.86%, CNN-LSTM: 98.39%,
CNN-BILSTM: 99.27%). The discussion introduces a com-
pelling scenario, envisioning the practical application
of the six selected classes in robot navigation through
brain-computer interface technology. This scenario ex-
emplifies the potential real-world impact of motor im-
agery classification, providing a seamless link between
cognitive intent and robotic actions. Despite successes,
challenges in real-time processing and model robustness
persist. The study encourages further refinement and
addresses practical considerations for broader implemen-
tation. The findings contribute to the field, shaping the
future of human-machine interaction, particularly in as-
sistive robotics and intelligent automation.
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