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Abstract
The study of human engagement has significantly grown in recent years, particularly accelerated by the interaction with a
growing number of smart computing machines [1, 2, 3]. Engagement estimation has significant importance across various
domains of study, including advertising, marketing, human-computer interaction, and healthcare [4, 5, 6]. In this paper, we
propose a real-time application that leverages a single RGB camera to capture user behavior. Our approach implements
a novel method for estimating human engagement in real-world scenarios by extracting valuable information from the
combination of facial expressions and gaze direction analysis. To acquire this data, we employed fast and accurate machine
learning algorithms from the external library dlib, along with custom versions of Residual Neural Networks implemented
from scratch. For training our models, we used a modified version of the DAiSEE dataset, a multi-label user affective states
classification dataset that collects frontal videos of 112 different people recorded in real-world scenarios. In the absence
of a baseline for comparing the results obtained by our application, we conducted experiments to assess its robustness in
estimating engagement levels, leading to very encouraging results.
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1. Introduction
In today’s rapidly evolving digital landscape, humanity
interacts with a growing number of smart computing
machines. This situation highlights the increasing trend
of direct interactions with smart devices in various do-
mains, including household assistance, customer service,
and industrial applications. Despite this technological
advancement, many devices lack algorithms capable of
perceiving and responding to users’ attentional states.
Traditional user interfaces still heavily rely on explicit
input or predefined triggers, resulting in often inefficient
and mechanical interactions.

The potential for automatic acquisition and interpreta-
tion of users’ engagement represents a huge usability im-
provement for Human-Computer Interaction (HCI) and
Human-Robot Interaction (HRI) systems. This capability
holds the promise of ushering in more advanced and intu-
itive interactions, elevating system responsiveness, and
enhancing overall user experience. In detail, engagement
is a fundamental aspect of the human experience and
captures in depth the quality of an individual’s involve-
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ment, focus, and interaction with their surroundings. For
detecting it, facial expressions and gaze direction are cru-
cial elements. In particular, the motion of the eyes is
an important element to employ since it highlights the
psychological mechanisms behind the human mind and
naturally gravitates toward objects, people, or specific
regions of interest in the environment.

In this paper, we propose a real-time application that
combines gaze direction and face expression analysis to
determine the engagement level of a person while in-
teracting with intelligent systems. To achieve this, we
defined two machine-learning pipelines leveraging RGB
videos of a person interacting with the system. The first
pipeline focuses on the user’s facial expressions analysis
and employs a residual neural network architecture. The
second pipeline concentrates on the user’s gaze direc-
tion estimation by combining pre-trained face and facial
landmark detection models with a fast computer vision
algorithm that we developed. Predictions of the user’s
engagement level are ultimately calculated by merging
the outputs of these two pipelines using a weighted linear
interpolation formula.

Addressing the challenge posed by the absence of a
baseline for reference, our primary hurdle in handling
this task involved creating an appropriate dataset for
training our models. We opted to customize the Affective
States in E-Environment Dataset (DAiSEE) [7], a compre-
hensive collection of multi-label videos designed for iden-
tifying user affective states. Given that the estimation of
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engagement levels necessitates both temporal and spatial
information, videos proved to be an ideal choice. How-
ever, to mitigate the high computational and resource
costs associated with treating videos as opposed to single
images, we implemented mandatory preprocessing steps
to optimize memory and computational efficiency.

Continuing to tackle the absence of a reference base-
line, we conducted experiments to assess the robustness
and effectiveness of our application. This evaluation was
carried out using quantitative metrics.

1.1. Roadmap
This paper is organized in the following way: first of all, a
summary of the state-of-the-art systems and techniques
to recognize the human engagement level is presented
(see Section 2). Subsequently, a description of the dataset
that we have developed for training our models is illus-
trated (see Section 3). Following this, a detailed overview
of the architectures employed for our application is pro-
vided (see Section 4). Then, the results obtained by test-
ing our system considering the quantitative metrics are
presented (see Section 5). Finally, we summarize the
article’s content and outline the possible viable improve-
ments that can be made to our application (see Section
6).

2. Related Works
The field of engagement level detection has seen signifi-
cant growth, particularly fueled by the global pandemic.
With many individuals compelled to participate in re-
mote meetings, analyzing engagement in online sessions
has become a pivotal focus, leading to the development
of numerous systems. Some studies have explored phys-
iological factors like fatigue [8], brain status and data
[9, 10], blood flow and heart rate [11], and galvanic skin
conductance [12]. However, due to the recent needs and
the remote nature of this task, there has been widespread
exploration of inexpensive and unobtrusive technolo-
gies. Eye trackers [13, 14] and facial expression recogni-
tion models [15, 16] using simple RGB cameras are now
among the most promising options.

In a comprehensive review treated in [17], the state-
of-the-art engagement detection techniques within the
context of online learning are explored. The authors
classify existing methods into three primary categories:
automatic, semi-automatic, and manual. This classifica-
tion is based on the methods’ dependencies on learners’
participation. Furthermore, each category is subdivided
based on the type of input data used (e.g., audio, video,
text). Among these, video-based methods in the auto-
matic category that leverage facial expressions emerge as
the most prevalent. These methods are favored for their

ease of implementation and their proven effectiveness
in achieving accurate results. The prominence of such
techniques underscores the significance of visual cues,
particularly facial expressions, in gauging user engage-
ment levels during online interactions.

The work presented in [18] investigates the suitability
of three popular models: All-CNN [19], NiN-CNN [20],
and VD-CNN [21], along with a customized Convolu-
tional Neural Network (CNN) [22] for detecting engage-
ment level of online learners in educational activities.
All the analyzed models leverage facial expressions for
scalable and accessible engagement detection. Each of
the three base models has its distinct features and the cus-
tomized CNN combines these advantageous features. For
instance, by replacing linear convolutional layers with a
multilayer perceptron, increasing depth with small con-
volutional filters, and replacing some max-pooling layers
with convolutional layers with increased stride. All the
analyzed models were evaluated on the DAiSEE dataset
(extensively explained in Section 3) and the results reveal
that the customized CNN outperforms the base models
in detecting the engagement level.

In a similar study proposed in [23], the automatic
recognition of student engagement from facial expres-
sions is examined using a three-stage pipeline. The initial
step involves face registration, detection, and the estima-
tion of key facial landmarks (e.g., eyes, nose, and mouth)
by using the approach described in [24]. The second stage
employs four binary classifiers to classify the cropped
face, distinguishing whether it belongs to one of four
engagement levels (𝑙 ∈ 1, 2, 3, 4), where 1 signifies no
engagement and 4 represents full focus. The authors
compared three models for the binary classifier: Sup-
port Vector Machines with Gabor features (SVM (Gabor))
[24], Multinomial Logistic Regression with expression
outputs from the Computer Expression Recognition Tool-
box (MLR(CERT)) [24], and GentleBoost with Box Filter
features (Boost(BF)) [25]. This study reveals that SVM
(Gabor) yields the best results. The third stage integrates
the outputs of all four binary classifiers, utilizing a Multi-
nomial Logistic Regressor model to estimate the final
engagement level.

In [26], the authors introduced a regression model
for predicting engagement level as a single scalar value
from RGB video streams captured by two cameras on the
torso and head of an autonomous mobile robot, utilized
for tours at The Collection museum in Lincoln, UK. The
model incorporates CNN and Long Short-Term Memory
(LSTM) [27] networks for video data analysis. Train-
ing and evaluation of this regressor network were con-
ducted using a dataset built from the recordings of the
autonomous tour guide robot in the public museum. The
dataset, manually annotated by three independent peo-
ple, assigns scalar values in the range [0,1] to represent
the user’s engagement level. The model demonstrates
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Figure 1: Some sample instances present in our customized version of the DAiSEE before converting them in grayscale and
applying an histogram equalization. From the left to the right, we have: a) very low engaged, b) low engaged, c) highly
engaged, and d) very highly engaged.

optimal engagement level predictions, achieving a Mean
Squared Error (MSE) prediction loss of up to 0.126 on the
test dataset.

The research conducted in [28] focused on investigat-
ing the Deep Facial Spatiotemporal Network (DFSTN).
Comprising two integral modules, namely the pretrained
SE-ResNet-50 (SENet) utilized for extracting facial spatial
features and an LSTM network with Global Attention
for generating an attentional hidden state, the DFSTN
synergistically captures both facial spatial and tempo-
ral information. This combined information is crucial
for enhancing engagement prediction performance. The
model underwent testing on the DAiSEE dataset, achiev-
ing an accuracy of 58.84%, showcasing its capability to
outperform numerous existing engagement prediction
networks trained on the same dataset.

In [29], the estimation of human attention is based on
the direction of the user’s face, considering five different
directions: central, lateral to the left, lateral to the right,
towards up, and towards down. If the user looks in any di-
rection other than the central one, they are assumed to be
distracted, with only the central gaze indicating full focus.
The authors created a dataset for training, comprising
270 videos of approximately 20 seconds each from 18 dif-
ferent individuals. To enhance data diversity, GAN-based
data augmentation techniques were employed to gener-
ate new samples, diversifying somatic features in the
recorded videos. Transfer Learning [30] was utilized to
construct the classifier. Specifically, a pre-trained VGG16
[21] architecture was employed, with three additional
dense layers attached at the end for attention estimation.

The approach presented in [31] offers a novel method
for estimating driver attention. Departing from conven-
tional methods that primarily focus on a single frontal
scene image to analyze driver gaze or head pose, this
method introduces a dual-view scene. The additional
input data includes the frontal view of the car that the
driver is observing. Specifically, the gaze direction is
detected and transformed into a probability map of the
same size as the road view image, while salient features
of temporal and spatial dimensions are extracted from the
road view images. These features are then combined and
fed into a multi-resolution neural network tasked with

driver attention estimation, generating a heat map on the
images representing the road. The training dataset for
this model is constructed using virtual reality and a driv-
ing simulator, incorporating images from the DR(eye)VE
dataset [32] that depict the frontal view of the road ob-
served by the driver. Experimental results showcase the
feasibility and superiority of the proposed method over
existing approaches.

3. Dataset
The baseline dataset utilized for training our networks is
a customized version of the Dataset for Affective States
in E-Environments (DAiSEE), a large collection of multi-
label videos designed for identifying user affective states,
including boredom, confusion, engagement, and frustra-
tion in real-world scenarios. This dataset comprises 9068
frontal view videos featuring 112 distinct individuals ex-
pressing different levels of affective states. Each of these
states was manually ranked utilizing the following scale:
very low, low, high, and very high.

To create our customized dataset we initially modified
the task from which DAiSEE was originally built. We
switched from multi-label to multi-class classification,
associating only the level of engagement with each video
and removing the labels for the other affective states. Ex-
ample instances present inside our customized version
of the DAiSEE are displayed in Fig. 1. Subsequently, we
divided the dataset into Training, Validation, and Test
sets, with proportions of 60%, 20%, and 20%, respectively.
However, the resulting sets were highly unbalanced due
to a small portion of videos classified as very low and
low engagement. To address this issue, we downsampled
the dataset in several ways to achieve a more balanced
distribution. First of all, redundancy in subjects was
reduced by removing multiple videos of the same indi-
viduals. Then, through the use of a normal distribution,
we sampled the remaining data instances considering
the frequency of labels in the videos with the following
formula:

𝑛𝑖 = 𝑓𝑖 ⋅
𝑛𝑡𝑜𝑡 − 𝑓𝑖
𝑛𝑡𝑜𝑡

⋅ 𝜆 (1)

77



Emanuele Iacobelli et al. CEUR Workshop Proceedings 75–84

Table 1
This table displays the number of sample instances before and after the customization of the Training, Validation, and Test
sets derived from the DAiSEE.

Engagement Level Original Dataset Customized Dataset

Training Validation Test Training Validation Test

Very Low 34 23 4 34 23 4
Low 214 160 81 52 37 17
High 2649 912 861 341 110 105

Very High 2585 625 777 344 100 102

where 𝜆 is the reduction coefficient (that we have set
to 0.25), 𝑛𝑡𝑜𝑡 represents the total number of samples in a
given set, and 𝑓𝑖 denotes the frequency of label 𝑖 in that
set. Table 1 displays information both before and after
the preprocessing procedures on the dataset.

Since DAiSEE contains recordings captured in dynamic
environments, each of these videos may present different
and various disturbances, such as changing light condi-
tions, visual occlusions, or unconstrained user motion.
To improve video quality, we applied manual color and
intensity adjustments, focusing on enhancing contrast,
brightness, and sharpness for optimal detail resolution.
Examples include adjustments to the gamma value, which
effectively improves visibility in varying light conditions
or exposure levels by normalizing image histograms,
making videos more suitable for continuous analysis;
Another example is the sharpness adjustments, which
enhance fine details and edges, making facial features
more prominent.

Despite these modifications, the dataset still demanded
excessive memory requirements. Consequently, we
opted for further adjustments. Considering that the ma-
jority of engagement information is likely derived from
human expressions and gaze attention, with a smaller
contribution from gestures, we decided to crop from each
video only the user’s faces. This step also aimed to elimi-
nate potential issues and biases arising from background
data. The face cropping was automated using a pre-
trained Single Shot Multibox Detector (SSD) model from
the Caffe framework [33].

To prevent the generation of unstable videos, we ap-
plied a stabilization algorithm (see pseudocode in Fig. 2)
that facilitates smooth transitions between subsequently
detected faces by stabilizing the position of their bound-
ing boxes. At the start of each video, the size of the first
detected face’s bounding box is stored. In all the follow-
ing frames, this dimension is used to resize the bounding
box of the subsequently detected faces. Additionally, if
the distance between the centers of two consecutive de-
tected faces is smaller than a manually adjusted threshold
𝛾, the center of the newest detected face is replaced with
the center of the bounding box of the previously detected
face. Finally, each frame is converted to grayscale, and

Figure 2: Pseudocode of the face stabilization algorithm used
to prevent unstable videos while cropping the user’s faces
from the original video in the DAiSEE.

histogram equalization is applied to normalize the color
information.
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Figure 3: Full pipeline of the real-time application. The Webcam Reader Module acquires the data in real-time and passes
them to the Face Cropping Model. This model crops the user’s face from the webcam images and passes them both to the
Facial Landmark Detection module and the Frame Buffer which has a capacity of 60 frames. Once the buffer is full, each new
frame is passed to the Gaze Direction Module and the Face Engagement Model. The predictions of these models are then
combined to produce the actual output of our system.

4. Methodology
The complete architecture of the real-time application we
developed is illustrated in Fig. 3. Specifically, the system
utilizes a single input video stream captured through
a webcam reader module, implemented in the external
library OpenCV [34], to feed two distinct models. The
Face Engagement Model evaluates engagement based
on facial expressions, while the Gaze Direction Model
predicts engagement by analyzing where the user’s focal
point. Lastly, the predictions of these two models are
combined to derive the final engagement level estimated
by our application.

4.1. Face Engagement Model
This model is designed to estimate the user engagement
level from frontal recording videos. We designed it as a
customized version of the ResNet architecture [35] and
we implemented different versions to identify the most
effective one. In essence, a residual network employs skip
connections to address the vanishing gradient problem.
These connections allow information to directly back-
propagate, circumventing previous layers. Moreover, a
skip connection facilitates a residual block in learning
the residual, which is the difference between the desired
output and the current input of the layer. This approach
makes it easier for the network to understand what input
modifications are needed to achieve the desired output,
rather than altering the entire input from scratch. This of-
ten translates to a more straightforward learning process
for the network.

To address the human engagement level classification
problem, our models needed to capture both spatial and
temporal information. To enable the network to learn
temporal information by analyzing multiple frames si-
multaneously in the same layer, we opted for 3D convolu-

tional layers instead of the traditional 2D convolutional
layers implemented in the original ResNet architecture.
Learning temporal information is crucial for video anal-
ysis, as it allows the network to recognize complex pat-
terns such as actions, gestures, or sequences of facial
expressions. Due to this requirement, the model necessi-
tates an initial period to populate a buffer of 60 frames,
ensuring a sufficient amount of data for the correct uti-
lization of the 3D convolutional layers. Once the buffer
reaches its capacity, the prediction of the engagement
level can begin. Subsequently, with the arrival of each
new frame, the buffer is updated, and the oldest frame is
discarded. We tested three versions of this architecture,
differing mainly in the depth and the internal structure
of the convolutional block used. Specifically, we imple-
mented the 18-, 34-, and 50-layer versions.

For all these architectures, we introduced 3D layers
for batch normalization, max pooling, and average pool-
ing. In detail, each convolutional block includes a batch
normalization layer, and all convolutional layers employ
the ReLU activation function. Only the last fully con-
nected layer, responsible for the final prediction of the
human’s engagement level, uses the Softmax activation
function. During training, we utilized the He/Kaiming
initialization technique [36], which initializes weights us-
ing a normal distribution with zero mean and a variance
of 2

𝑛 , where 𝑛 is the total number of inputs to the neuron.
This initialization is specifically tailored for networks
employing the ReLU activation function, mitigating the
vanishing or exploding gradient problem.

Additionally, we employed the Focal Loss [37] as the
training function, opting for it over the conventional Cat-
egorical Cross-Entropy. The principal reason is that the
Focal Loss addresses the issue of unbalanced data by pri-
oritizing examples the model struggles with, rather than
those it confidently predicts. This ensures continuous
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Figure 4: Gaze Direction Model Workflow: The input image, captured by the webcam, undergoes processing through the
Face Cropping Module. This module is responsible for cropping the detected face, and the resulting image is then fed into the
Face Landmark Detector. The Face Landmark Detector estimates the position of facial keypoints, which are subsequently
utilized to crop the eye regions. Each eye image undergoes further analysis in the Gaze Direction Module, which assesses both
horizontal and vertical directions of the gaze.

improvement on challenging examples, preventing the
model from becoming overly confident with easy ones.
We implemented the following Focal Loss formula:

− (1 − 𝑝𝑖)𝛾 ln(𝑝𝑖) (2)

where 𝛾 represents the focusing parameter (typically a
positive number) to be fine-tuned using cross-validation,
and 𝑝𝑖 denotes the predicted probability of the correct
class. Also, our training process incorporates early stop-
ping with a learned patience value of 10 epochs, L2 reg-
ularization featuring a weight decay set to 1𝑒−3, and an
Adam Optimizer accompanied by a Learning Rate Sched-
uler [38] with a maximum learning rate of 1𝑒 − 4 and a
Gradient Scaler to reduce the range of magnitudes in the
gradients. All the implementation details of the tested
models are reported in the Table 2. Following the train-
ing phase, we opted for the 50-layer version model, with
a batch size equal to 16, as the engagement network for
our application, as it demonstrated the highest accuracy
among the tested versions.

4.2. Gaze Direction Model
This model is designed to extract attention information
from a person’s gaze in frontal recording videos. The
gaze direction provides valuable insights into a person’s
engagement during a task. The complete workflow of
this model is displayed in Fig. 4. To implement this
model, we combined two pre-trained neural networks
available in the dlib library [39].

The first network is the Face Cropping Model, a CNN
trained for face detection in general images. It not only
identifies faces but also provides their bounding box co-
ordinates and converts the input image to grayscale. Al-
though the use of this network may appear redundant

Table 2
This table displays the implementation details of the three
different architectures that we tested for the Face Engagement
Model. When the stride information is not present it means
that the stride is equal to 1.

Layer Name Architecture Name

18-layer 34-layer 50-layer

Convolution kernel = [7,7,7], filters = 64, stride = 2

Max Pool k = [3,3,3], s = 2

Convolution k=[3,3,3],f=64 k=[3,3,3],f=64 k=[1,1,1],f=64
Block k=[3,3,3],f=64 k=[3,3,3],f=64 k=[3,3,3],f=64

k=[1,1,1],f=256
x2 x3 x3

Convolution k=[3,3,3],f=128 k=[3,3,3],f=128 k=[1,1,1],f=128
Block k=[3,3,3],f=128 k=[3,3,3],f=128 k=[3,3,3],f=128

k=[1,1,1],f=512
x2 x4 x4

Convolution k=[3,3,3],f=256 k=[3,3,3],f=256 k=[1,1,1],f=256
Block k=[3,3,3],f=256 k=[3,3,3],f=256 k=[3,3,3],f=256

k=[1,1,1],f=1024
x2 x6 x6

Convolution k=[3,3,3],f=512 k=[3,3,3],f=512 k=[1,1,1],f=512
Block k=[3,3,3],f=512 k=[3,3,3],f=512 k=[3,3,3],f=512

k=[1,1,1],f=2048
x2 x3 x3

Average Pool Output Size = 1x1x1

Dropout Rate = 0.4

Linear Neurons = 1024

considering the customized dataset that we have em-
ployed for training the engagement model, it plays a
crucial role in the real-time application. Specifically, it
crops faces from the live stream frames and passes these
images to both the Engagement Model and the Facial
Landmark Detector.

The Facial Landmark Detector, the second network

80



Emanuele Iacobelli et al. CEUR Workshop Proceedings 75–84

that we have employed from the dlib library, recognizes
68 2D facial landmarks (e.g., nose tip, corners of the
mouth, and eyes) in a given face image. These facial
landmarks serve two purposes: they are used to crop the
eye regions based on the eye landmarks and to calculate
the face orientation with respect to the vertical axis (yaw
angle). This orientation is determined through the use
of a vector starting from the midpoint between the eyes
and terminating at the nose tip.

Estimating the focal point of the user is accomplished
through the Gaze Direction Module, a simple computer
vision pipeline. Initially, the eye landmarks outlining
the eye contours are employed to create a mask that re-
moves extraneous pixels from each cropped eye image.
Subsequently, the Otsu’s method [40] is applied to auto-
matically threshold the image, distinguishing between
foreground (iris and pupil pixels) and background (sclera
pixels).

The resulting image is then horizontally and vertically
divided around its center to estimate the gaze direction.
Both vertical and horizontal gaze directions are quanti-
fied as values within the range of [-1,1]. Regarding hori-
zontal gaze direction, a value approaching -1 indicates
the user is looking to the left, while a value approaching
1 suggests a rightward gaze. A value around 0 indicates
the user is looking at the center of the screen. Similarly,
for vertical gaze direction, a value nearing 1 signifies
a downward gaze and a value nearing -1 indicates an
upward gaze.

To compute these directions, the density of white pix-
els representing the sclera is analyzed. For each eye im-
age, the total number of white pixels is calculated. If this
value is zero, it implies incorrect eye detection, and the
current frame is skipped. Otherwise, for each sub-image
generated, the percentage of white pixels in relation to
the total number of white pixels in the corresponding
original eye image is calculated. Then, the percentages
belonging to the same direction of both eyes are averaged
(e.g., the percentage of white pixels in the left sub-image
of the left eye is averaged with the percentage of white
pixels in the left sub-image of the right eye). Finally, the
difference between these averages produces the value
within the range of [-1,1] described earlier.

To effectively use the estimated gaze direction, it’s
crucial to consider the limits of the user’s field of view,
which may vary based on the task. In our screen-based
task implementation, we assume that a face orientation
deviation exceeding 30 degrees from the camera-aligned
orientation indicates the user is no longer looking at the
monitor.

Initially, these limits are set at the task’s beginning and
dynamically adjusted based on the user’s face position
and orientation relative to the camera frame’s center. If
the face orientation exceeds 20 degrees from the frontal
position, the horizontal limits shift proportionally based

Table 3
Table displaying the conversion rules from engagement level
labels to score and vice versa.

Engagement Label Engagement Score

0 0.1
1 0.35
2 0.65
3 0.9

on the sine of the face orientation. Updates related to
face position involve calculating the distance between
the face bounding box center and the frame center. If this
distance exceeds one-sixth of the total frame dimension,
the right and left limits are adjusted. The adjustment is
determined by normalizing the distance between the face
and frame centers between 0 and 0.5. If the face shifts
to the right, the distance is subtracted from the limits;
otherwise, it is added.

The engagement level, derived from the gaze direction,
is within the range [0,1]. It is obtained by subtracting
the sum of horizontal and vertical gaze errors from 1. A
score of 1 indicates complete focus on the screen, with
no gaze exceeding the defined limits. A score of 0 implies
no face detection in the current frame. The closer the
engagement level is to zero, the more the user surpasses
the admissible field of view limits, indicating a lack of
focus on the task. Specifically, when the gaze exceeds the
limits, horizontal and vertical gaze errors are calculated
as the difference in modulo between the estimated gaze
direction and the corresponding limits.

4.3. Engagement Level Estimation
To obtain the final detected engagement level, we com-
bined the predictions from the Face Engagement Model
and the Gaze DirectionModel using a linear interpolation
formula:

𝛼 ⋅ 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑒 + (1 − 𝛼) ⋅ 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝐺𝑎𝑧𝑒 (3)

Where 𝛼 is a learnable parameter used to weigh the
importance of the models’ predictions. In addition, to
correctly apply this formula, the prediction of the Face
Engagement Model needs to be converted from labels to a
valuewithin the range [0,1]. The conversion is performed
according to the rules displayed in Table 3.

5. Results
To evaluate the accuracy of our system, we measured the
disparity between the predicted engagement scores and
the ground truth values using two regression metrics:
Mean Absolute Error (MAE) and Mean Absolute Percent-
age Error (MAPE). To facilitate the application of these
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Figure 5: Trend of the Mean Absolute Error (MAE) with vary-
ing values of the parameter 𝛼 in Eq. (3).

Figure 6: Trend of the Mean Absolute Percentage Error
(MAPE) with varying values of the parameter 𝛼 in Eq. (3).

metrics, we converted the engagement level labels associ-
ated with the samples in our customized dataset using the
conversion rules outlined in Table 3. This transformation
effectively turned the multi-label class problem, designed
for the DAiSEE dataset, into a regression problem.

During training, we experimented with different val-
ues for the parameter 𝛼 in Eq. (3) to maximize the sys-
tem’s accuracy. As illustrated in Figs. 5 and 6, the lowest
error for both MAE and MAPE occurred when 𝛼 was set
to 0.5. This indicates that both predictions from the Face
Engagement Model and the Gaze Direction Model carry
equal importance and are essential for achieving accurate
predictions.

Analysis of the scenarios where 𝛼 is 0 (using only the
Face Model) or 1 (using only the Gaze Model) reveals
significantly higher errors in both performance metrics.
Independently, these predictions struggle to accurately
gauge the user’s engagement level. With 𝛼 initialized to

0.5, our system achieved an accuracy of approximately
58% (57.7%), closely aligning with the performance of
state-of-the-art works in engagement level detection dis-
cussed in Section 2 that work with the original version
of the DAiSEE.

6. Conclusions
Our work introduces a novel approach to engagement
level estimation by integrating two distinct machine
learning pipelines focused on analyzing facial expres-
sions and gaze direction. Noteworthy is our real-time
application’s emphasis on cost-effectiveness and accessi-
bility, achieved through the utilization of a single RGB
camera, fast and lightweight machine learning algo-
rithms, and computationally efficient computer vision
techniques.

In terms of system training, we customized the DAiSEE
dataset to optimize memory usage, reduce class imbal-
ance, mitigate bias introduced by repeated instances of
the same individuals, and focus exclusively on facial crop-
ping to eliminate potential background-related biases.
The achieved results underscore the potential of our sys-
tem as a robust foundation, offering a secure benchmark
for the development of innovative applications integrat-
ing automatic user engagement recognition, thereby dy-
namically adapting to user interactions. This not only
enhances overall usability but also heralds a new era in
application interfaces, promising heightened levels of
user experience and interaction.

Looking forward, future improvements to our system
can be directed towards enhancing the accuracy, robust-
ness, and generalization capabilities by expanding the
dataset’s dimensions. This expansion may involve incor-
porating data from a more diverse group, encompassing
individuals with varying demographic characteristics,
cultural backgrounds, and engagement patterns.

Also, exploring attention estimation in multi-face con-
texts, where multiple individuals are present simultane-
ously, represents another intriguing avenue for future re-
search. Lastly, a significant refinement to our application
involves substituting the CNN layers in the Face Detec-
tion Model with Visual Transformers [41](ViTs), known
for their excellence in image manipulation and long-
range dependency modeling compared to traditional con-
volutional layers. This substitution could enhance the
precision of engagement level estimation from facial ex-
pressions, as different facial regions can be effectively
combined at the same time.
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