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Abstract
Monitoring the driver’s attention is an important task to maintain the driver’s safety. The estimation of the driver’s gaze
direction can help us to evaluate if the drivers are not focusing their attention on the street. For an evaluation of this type,
comparing the inside view and outside scenery of the vehicle is essential, therefore we decided to create a specific dataset for
this task. In this work, we realize a machine-learning-oriented approach to driver’s attention evaluation using a coupled
visual perception system. By analyzing the road and the driver’s gaze simultaneously it is possible to understand if the driver
is looking at the traffic signs detected. We evaluate if a determined Region Of Interest (ROI) contains a road sign or not
through YOLOv8.
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1. Introduction
Artificial Intelligence (AI) employed in assessing driver
attention within assisted driving scenarios is swiftly ad-
vancing, propelled by the evolution of autonomous ve-
hicles and the integration of hybrid systems designed to
assist drivers. These systems encompass a range of func-
tionalities, including cruise control, lane-keeping assis-
tance, automatic parking, and various other features inte-
grated into modern vehicles. It is well known that driver
inattention is a major cause of road accidents [1, 2, 3],
with violations of the expected driver behavior being a
fundamental factor [4]. Due to its significant contribu-
tion to accidents, monitoring driver attention has become
a critical necessity for automotive safety systems, aiming
to detect potential risks and proactively prevent accidents.
To achieve comprehensive attention monitoring, it is im-
perative to conduct precise analyses of various factors,
including the driver’s posture, head position, rotation
angles, and gaze direction. These insights into driver
behavior enable the identification of factors influencing
reactions to different conditions and scenarios, thereby
mitigating distractions and drowsiness-related incidents
in the future [5].

Literature primarily addresses driver attention by di-
viding the internal and external components. Typically,
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the analysis of the vehicle cabin and the driver’s gaze is
conducted independently, without considering the evalu-
ation of the surrounding environment, road conditions,
and the driver’s reaction to specific events.

Several studies focus either on observing the driver’s
behavior through internal vehicle cameras or analyzing
external road conditions using external cameras and sen-
sors [6, 7, 8, 9, 10]. However, a gap exists in comprehen-
sive research that integrates both internal and external
perspectives without relying on complex and inaccessi-
ble equipment. To address this gap, our research adopts
a novel approach. We simultaneously analyze internal
driver information, such as posture and gaze, and exter-
nal data about road conditions and points of interest, like
signs and pedestrians, during driving. This integrated ap-
proach allows for a more holistic understanding of driver
attention and behavior.

Machine learning is playing a pivotal role in creating
a safer society. In the realm of energy [11], machine
learning algorithms are optimizing data systems [12, 13],
improving supply-demand forecasting, and enhancing
the efficiency of renewable energy sources. This not only
ensures a stable energy supply but also reduces the risk
of blackouts. When it comes to fostering a green environ-
ment, machine learning is at the forefront of monitoring
and predicting environmental changes, enabling us to
take timely action against potential threats [14, 15]. So-
cial benefits are manifold, including improved healthcare
through predictive diagnostics, personalized education,
and effective public services, all contributing to an im-
proved quality of life [16, 17, 18]. In the context of urban
driving, machine learning is the driving force behind
autonomous vehicles [19]. These vehicles promise to sig-
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nificantly reduce traffic accidents, improve traffic flow,
and reduce carbon emissions, making our cities safer
and more sustainable. Thus, machine learning is a key
enabler in our pursuit of a safer society.

In this research, we merge various internal and exter-
nal techniques for gaze recognition and correlate them
with external Regions Of Interest (ROIs) to develop an
easily applicable solution that comprehensively tackles
the issue of driver attention. This approach holds sig-
nificant practical implications for everyday scenarios,
including:

• Autonomous vehicle development: Understand-
ing the driver’s focus during critical driving situ-
ations, including the duration of their attention
to specific elements and their perception of ir-
relevant factors, plays a pivotal role in the ad-
vancement of Advanced Driver Assistance Sys-
tem (ADAS) solutions.

• Car crashes: Having information about driver
attention during a road accident could facilitate
the execution of investigations, checks, and in-
surance procedures. By utilizing an affordable
camera system, video data on the driver involved
in the accident could be collected and provided
to an application.

• Emergency services: Emergency response vehi-
cles, including ambulances and fire trucks, of-
ten need to navigate through traffic quickly and
safely. Driver attention monitoring systems can
help emergency service providers ensure their
drivers remain vigilant while responding to emer-
gencies, minimizing the likelihood of accidents
and delays.

• Public transportation infrastructure: Driver atten-
tion monitoring systems can also be integrated
into public transportation infrastructure, such as
traffic lights and pedestrian crossings. By detect-
ing instances of driver distraction or inattention,
these systems can improve traffic flow and pedes-
trian safety, reducing the risk of accidents and
congestion in urban areas.

To advance driver attention monitoring, we have di-
rected our efforts towards computer vision-based method-
ologies, which are gaining traction over physiology-
based approaches. Unlike physiological methods, in fact,
vision-based techniques rely solely on cameras to observe
and analyze driver behaviors, eliminating the need for
intrusive devices such as eye-tracking glasses or brain-
wave recognition gadgets and consequently reducing the
cost associated with experiments.

The most in-depth analysis in our work focused on
finding the best method and features to extract from im-
ages to accurately determine the driver’s gaze direction

and point of focus. Our novel approach involves the use
of a grid of nine cells to predict the Regions Of Inter-
est (ROIs) of the driver’s gaze, as illustrated in Figure 1.
To achieve this, we employ a VGG16 network to extract
features from facial video frames, augmenting this in-
formation with head-pose data (i.e. roll, pitch, and yaw
angles) to enhance gaze-position prediction [20, 21, 22].

The difference between tracking gaze-position when a
person is looking at a monitor and while they are driving
is, in fact, substantial [21, 22]. When looking at a monitor,
head movements are imperceptible, so the only discrimi-
nant is the position of the pupil. During driving, however,
the driver tends to rotate their head to look at vehicles
and pedestrians or tilt it to see street names, signs, or
higher traffic lights. They also shift their gaze to look at
mirrors or to initiate a reverse maneuver. For these rea-
sons, analyzing only pupil movement was insufficient for
our task and it was necessary to have additional informa-
tion about head pose (rotation angles) and characteristics
of eyes or facial images, see Figure 2.

In addition to methodological research, another sig-
nificant challenge we faced was sourcing an appropri-
ate dataset for driver attention monitoring. We encoun-
tered existing datasets with comprehensive documenta-
tion of driver behavior, but they lacked corresponding
real-world external observations. Furthermore, datasets
focused solely on gaze analysis typically consisted of
images of individuals looking at points on a computer
screen, which did not align with our real-world driving
scenario. To address this gap, we decided to create our
own dataset, encompassing both internal and external
videos captured during driving sessions. This approach
enabled our final application to process and correlate

Figure 1: Example of an external image after road signs de-
tection, with the ROI grid in green. Several regions of interest
which contain one or more road signs have been identified in
the image (specifically, cells 4, 5 and 6). The red rectangles
represent the traffic signs bounding boxes.
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information from multiple perspectives simultaneously.
To train the two components of our application, we uti-

lized two additional datasets. For the internal component,
which involves predicting the driver’s gaze position, we
curated the HEAD-POSE dataset, featuring data from dif-
ferent subjects. Unlike many existing datasets that often
focus on a single subject, our dataset offers a broader
and more diverse range of observations. For the external
component, which entails predicting the position of road
signs, we leveraged a customized dataset of road signs
sourced from the internet. We carefully selected images
from datasets such as MAPILLARY and GTSDB, ensuring
that they adhered to European traffic regulations gov-
erned by the Vienna Convention of 1968. This meticulous
curation process ensured the relevance and accuracy of
the data used in our research and development efforts.

2. Related Works
As previously discussed, in recent years a growing in-
terest in analyzing driver attention during driving has
been noticed. This includes understanding whether a
person is observing the road, being distracted, remaining
vigilant, or experiencing drowsiness. Most state-of-the-
art approaches are based on the unique observation of
the driver’s interior cabin to understand their behaviors
[23, 24, 2, 20]. One or more internal cameras are used
to observe the driver and determine if they are looking
at the infotainment system, the road, the mirrors, or, for
example, other passengers. Several methods can be used
to determine the attention level of the driver, with the

Figure 2: Example of internal image with facial features ex-
traction. The red rectangle is the measured face bounding
box and the blue dots represent the found facial landmarks.
The face of the subject has been blurred according to privacy
regulations.

most classical metric being the gaze direction, generally
assessed by analyzing facial features such as the face
mesh. Other approaches are however available, for in-
stance, the position of the hands and arms, which can be
used to assess whether the driver keeps their hands on
the steering wheel or in other positions, such as holding
a phone [2].

On the other hand, other approaches solely focus on ex-
ternal factors by studying the surrounding environment
and collecting information about the vehicle’s movement
(speed, position) to study the driver’s reactivity in spe-
cific circumstances. For example, various sensors such
as cameras and lidar, applied to the external part of the
vehicle, can allow the observation of the driver’s reaction
in certain situations [10]. Another classical study when
analyzing the external environment surrounding the car
is the analysis of road elements present in the scene via
neural networks such as YOLO [25, 26].

While poor in number compared to decoupled ap-
proaches, some studies simultaneously analyze both in-
ternal and external images of the vehicle while assessing
driver attention to the road from the driver’s perspec-
tive. In cases where interior cabin images are associ-
ated with external frames, the driver’s viewpoint is often
recorded using glasses or equipment that track eye move-
ments, which directly indicates what is being observed
[27]. There are also some recent datasets created in a
controlled setting that simulate common driving situa-
tions, such as the DGAZE dataset with its corresponding
algorithm I-DGAZE [28].

Regarding specifically the gaze detection task, various
approaches are used in simulated or real environments,
both indoors and outdoors [29]. In most literature works
and datasets, recordings are made using a personal com-
puter’s webcam while the subject looks at specific points
on the screen for certain moments. With this regression
problem, the aim is to recognize the precise gaze position
on the monitor by studying the direction of the pupils
and gaze triangulation [30, 22, 31, 32, 33, 34]. These types
of problems can, however, also be approached through
classification. For example, images can be taken of a sta-
tionary subject in front of a personal computer screen,
ideally divided into a 9-cell grid, and the gaze position
can then be returned not as precise point coordinates,
but instead as the ID number of the observed cell (clas-
sification) [21]. In such cases, pupil characteristics are
generally extracted and then classified using classic ma-
chine learning methods such as Support Vector Machines
(SVMs), Convolutional Neural Networks (CNNs), or Deep
Neural Networks (DNNs). This last approach in particu-
lar has inspired our choice to implement a classification
algorithm, given the problems and requirements already
described and specific to the field of driving.

Other existing algorithms for studying gaze position
start, as previously mentioned, from datasets of tens
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of thousands of photos collected using a personal com-
puter’s webcam, and then extract facial information from
the given images to crop eye images and pass them to
networks such as VGG-16 [22]. In addition, information
related to head position (rotation angles - roll, pitch, yaw)
can also be considered [20]. It is particularly of note that
to improve regression on the viewpoint position it is
fundamental to collect images from multiple subjects, in
multiple vehicles, and under different weather conditions.
Finally, additional approaches make use of recordings
in simulated environments using various technologies,
from simulators to simple computer-played videos. For
example, the user’s gaze position can be recorded while
watching driving videos shortly before certain incidents,
in order to understand which objects the driver (simu-
lated in this case) would have focused on [29].

3. Methods
This research explores an innovative method for recogniz-
ing gaze patterns while driving to evaluate driver atten-
tion. Subsequently, we focused on the internal aspect of
the vehicle, where we trained and tested neural networks
for gaze classification. Our experimentation involved
various models, including SVM, ClassNET, VGG16-based
Net, and HEGClass Net. Additionally, we conducted a
training phase for the external aspect using a custom
dataset comprising traffic sign objects. Once we obtained
results for both components, we merged the two mod-
ules to conduct a comprehensive analysis of video record-
ings obtained during real-world driving scenarios. This
integrated approach facilitated a more holistic compre-
hension of gaze behavior and its correlation with driver
attention in typical driving situations.

3.1. Dataset
A variety of images and videos were gathered and uti-
lized at different stages of development to construct cus-
tom datasets tailored to our research objectives. These
datasets can be categorized into four distinct collections:

• Gaze Directions and Head Posture Dataset
(GDHPD): This dataset comprises images cap-
tured by us, featuring individuals in a driving
environment. The images are utilized to catego-
rize the gaze position of individuals within a grid
consisting of nine cells, including the exterior of
the grid.

• People Driving Dataset (PDD): This dataset
consists of both external and internal videos,
recorded by our team, showcasing the driving
activities.

• Traffic Objects Dataset: This dataset is a modi-
fied version of the Mapillary Dataset, containing
images depicting various traffic signs.

• Traffic Signs Dataset in YOLO format (TSDY):
This dataset comprises images sourced from
the German Traffic Sign Detection Benchmark
(GTSDB), available for download from Kaggle.

To create our dataset, we maintained a consistent
equipment setup as depicted in Figure 3. For both the
Gaze Directions and Head Posture Dataset and People
Driving Dataset we utilized a city car, while an iPhone
15 camera was employed to capture internal images and
record internal videos. The iPhone was strategically posi-
tioned behind the steering wheel to ensure clear visibility
of the driver while minimizing extraneous details. Fur-
thermore, we positioned a GoPro Hero10 camera at the
center of the car’s dashboard to capture external footage
throughout the drive.

For the GDHPD, we compiled images from distinct
subjects, consisting of two males and two females. In
some cases, subjects wore glasses, while in the other
they did not. The image collection process encompassed
various times of the day and diverse lighting conditions,
resulting in a total of 1012 images. Table 1 provides a
breakdown of the distribution of these images.

Subjects were positioned inside a car, with their seat-
ing adjusted to achieve a standard driving posture. Sub-
sequently, images were captured while subjects varied
their gaze and head positions. To facilitate classifica-
tion, we devised a virtual grid dividing the external view
and the driver’s gaze into a 9-cell configuration. This

Figure 3: The setup of the city-car environment used during
the collection of images and videos. In red, the virtual grid
represents how the gaze position area is divided into ROIs,
each associated with a region number from 1 to 9 (the area
outside the virtual grid is labeled 0). In orange, the GoPro
Hero10 used to record the external street. In blue, the iPhone
15 used to record the driver.
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GDHPD dataset specifications
Classes Male Female Total

0 50 64 114
1 50 64 114
2 51 71 122
3 51 71 122
4 48 60 108
5 48 60 108
6 50 50 100
7 51 50 101
8 51 61 112
9 50 61 111

Total 500 612 1012

Table 1
The Gaze Directions and Head Posture Dataset (GDHPD)
dataset collects the gaze positions of different drivers. The
collection contains a total of 1012 images, 500 for males and
612 images for females.

grid facilitated the association of head and eye positions
with specific regions of the external images, enabling
the identification of Regions Of Interest (ROIs) during
experimentation.

The dataset comprises ten classes: the nine cells of the
grid, alongside an additional class representing situations
where the subject’s attention is not directed towards the
road (e.g., face turned sideways, gaze directed upwards
or downwards, etc.).

The PDD dataset comprises videos captured during
driving sessions, utilizing the same recording setup as
the previous dataset. Subjects were filmed while driv-
ing under various conditions, capturing both the driver
and the road view simultaneously. To ensure synchro-
nization, the videos underwent pre-processing using a
third-party software, DaVinci Resolve. Synchronization
was achieved through voice cues, guaranteeing precise
alignment between internal and external footage.

Subsequently, the videos were segmented into sub-
clips of 30 seconds each to streamline subsequent pro-
cessing steps. Each of the extracted sub-clips was anno-
tated with labels indicating whether the driver exhibited
a "CAREFUL" or "NOT CAREFUL" driving style, along
with information regarding the driver’s use of glasses.
After pre-processing, the external images displayed a
resolution of 1440x1080, while the internal images were
resized to 1080x1920.

For traffic sign detection and recognition, the primary
dataset utilized was the Traffic Object dataset from the
Mapillary Traffic Sign Dataset, encompassing tens of
thousands of images sourced from roads worldwide. Fo-
cusing solely on Italian/European traffic signs, around
3,000 images were selected from the dataset after filter-
ing out images with significantly different sign shapes
or contents. The chosen images offer a varied range of
brightness, positioning within frames, and contextual

variations.
The corresponding JSON files were then converted into

TXT files and formatted to suit YOLO’s training model re-
quirements. This conversion process involved extracting
relevant information such as bounding box coordinates
and class labels of traffic signs, facilitating model train-
ing for sign recognition and localization. To simplify
the classification task, the dataset’s labels were modi-
fied to include three super categories: ’PROHIBITORY’,
’DANGER’, and ’MANDATORY’.

These categories encapsulate the majority of relevant
traffic signs essential for driving safety, thus streamlining
the training process. Similarly, the Traffic Signs Dataset
in YOLO format (TSDY) was used as a refined version of
the larger GTSDB dataset. Comprising 750 images with
labels already expressed in YOLO format, each image
had a resolution of 1360x800. The number of classes was
reduced to four: ’PROHIBITORY’, ’DANGER’, ’MANDA-
TORY’, and ’OTHER’, simplifying the classification task
and enhancing the focus on critical sign types relevant
to driver safety.

3.2. Gaze Classification
Several algorithms, were analyzed to identify the ap-
proach with the best trade-off between accuracy in gaze
direction prediction and generalization capabilities, al-
lowing to efficiently recognize images with varied con-
trast and/or brightness or different drivers. The structure
takes as input an image (either singular or an extracted
frame from the recording) and generates a label predic-
tion through two different but subsequent sub-models.
The head-pose estimation algorithm is common for all
tested approaches, while the classification algorithm has
been severely varied in model type, structure, and input
during the search for the optimal solution.

3.2.1. Head-Pose Estimation Part

The face detection is performed through a pre-trained
Multi-task Cascaded Convolutional Network (MTCNN)
model, used for both face detection and alignment in
literature [35]. MTCNN consists of a cascade of convo-
lutional networks (P-Net, R-Net, and O-Net), for face
landmarks identification. The model first identifies the
bounding box of the face region through candidate gen-
eration with P-Net and refinement with R-Net and then
extracts the main 5 landmarks of the face (left and right
eye, nose tip, and mouth corners) with O-Net. Among
similar methods, such as Haar Cascade Classifiers [36],
MTCNN has shown the best results even in the presence
of glasses, partially occluded eyes and beards, and has
therefore been selected as our chosen method.

The identified landmarks are then used to analytically
calculate the roll, pitch and yaw angles of the driver’s
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head, while the extracted pupil positions will be used
as input features for the final classifier to determine the
observed ROI. This feature is fundamental for our clas-
sification task compared to other facial features and is
therefore particularly important to determine accurately.

3.2.2. Classification Part

Our approach involves classifying observed ROI and road
signs through a classification method. The field of view
is divided into nine sections, with an additional label
for identifying any gaze position outside these sections
(e.g., distracted driving or maneuvering). We’ve explored
various methods for analysis, ranging from traditional
SVM to CNNs, all accurately adapted for our application.
We will first introduce our novel method, followed by an
overview of other models considered in the analysis.

The standout classification model is HEGClass (Head-
Eyes-Gaze Classifier), a hybrid approach outlined in this
paper. It takes cropped face images from head-pose esti-
mation, along with head rotation angles and pupil cen-
ter coordinates, as inputs. This combined approach has
yielded high precision in classifying the Region of Inter-
est toward which the gaze is directed. In the HEGClass
network, as depicted in Figure 4, initial features are ex-
tracted from cropped face RGB images using a pre-trained
VGG-16 network. The features are then flattened and
concatenated with a normalized array containing head
roll-pitch-yaw and pupil center coordinates. This com-
bined feature vector of dimension 4096+7 passes through
two fully connected linear layers, followed by ReLU ac-
tivation functions, and finally through a last fully con-
nected linear layer with Softmax activation to determine
class membership among the 10 possibilities (9 ROIs for
frontal regions and 1 for others). Model training utilized
our GDHPD dataset, with 10 epochs to mitigate overfit-
ting, 32 samples per batch, Cross-Entropy loss function,
and Adam optimizer.

The first classical model used for comparison is Sup-
port Vector Machine (SVM). In our scenario, where we’re
classifying 10 distinct classes, we employed an SVM with
a polynomial kernel of degree 4, regularization param-
eter set at 100, and coefficient set to 10. Training ex-
clusively used images from the GDHPD dataset. We ex-
tracted roll, pitch, yaw, and pupil centers from the images
with MTCNN. Then, using Haar Cascade Classifier [36],
we isolated eye patches from each grayscale image and
passed them through a pre-trained ResNet to obtain 2048
features for each eye. These two sets of features were
then averaged to create a unified array of 2048 elements
containing information from both eyes. The resulting
samples underwent L2 normalization before being fed
into the SVM for both training and testing phases.

Using the same 2048 features extracted ResNet and roll,
pitch, yaw and pupil centers, we also trained the ClassNet

network. This Classifier Network architecture consists of
two convolutional layers with ReLU activation functions,
followed by a max pooling layer, and culminates in two
fully connected layers with ReLU and Softmax activation
functions. Training of ClassNet spanned 300 epochs,
employing the MSE loss function (Mean Squared Error)
and Adam optimizer.

Finally, the last experimental iteration involved em-
ploying the VGG-16 architecture. Training data consisted
of 1012 samples from the GDHPD dataset, each composed
of the face image tensor, alongside head rotation angles
(roll, pitch, yaw), and pupil centers. In this setup, fea-
tures from each image were directly extracted within the
classification network from the RGB image of the entire
face, rather than solely from the eyes. Additionally, other
features (roll, pitch, yaw, and pupil centers) obtained pre-
viously through MTCNN were incorporated alongside
the 512 features of the image in the first fully connected
layer. Training was executed over 100 epochs, using sim-
ilarly to the HEGClass model the Cross-Entropy Loss
function and Adam optimizer.

3.3. YOLO Training for Traffic Signs
For the detection and recognition of traffic signs, we start
from the pre-trained YOLOv8 model, with experimenta-
tion also conducted using the YOLOv5 model prior to
transitioning to the v8 version. Fine-tuning of YOLOv8
was carried out using two distinct datasets: Traffic Ob-
jects and TSDY. The final set of weights chosen for the
application was derived from the dual fine-tuning of
YOLOv8 with both datasets.

The initial fine-tuning with the Traffic Objects dataset
involved 1802 images for training and 919 for validation.
Despite starting with 3000 images, adjustments were
made to the training and validation sets due to imbal-
ance issues within the original dataset, which persisted
even after categorizing labels based on sign categories as
described in the Dataset section. Subsequently, proceed-
ing from the fine-tuned weights, the model underwent
retraining with images from the TSDY dataset, utilizing
600 images for training and 141 for validation.

The dual fine-tuning approach resulted in enhanced
performance, as evidenced by improved final accuracy
and heightened generalization capabilities in detecting
road signs, even in images sourced from the PDD dataset
and exhibiting varied lighting conditions. To further en-
rich the diversity and generalization capabilities of the
fine-tuned YOLO model, diverse image augmentation
techniques from the Albumentations library were em-
ployed during training to simulate real-world conditions,
including Blur, MedianBlur, and CLAHE (Contrast Lim-
ited Adaptive Histogram Equalization). To streamline the
training process, the Stochastic Gradient Descent (SGD)
optimizer was utilized, with an initial learning rate of
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Figure 4: Model of our novel approach HEGClass. The base of the model is a standard pre-trained VGG-16 network, which
receives as input the cropped image of the subject’s face. In the first fully connected layers 7 additional features [Roll, Pitch,
Yaw, rx, ry, lx, ly] are added to arrive at the final ROI prediction (with 10 classes with values [0,9]).

0.01.
Post-training, the model returns a text file for each

image processed, containing one line per detected sign
alongside its position. By processing the pixel coordi-
nates from this file, sign position information was ex-
tracted to reconstruct the sign’s center and edges within
grid cells. In instances where signs spanned multiple
cells, multiple coordinates were necessary for accurate
identification.

3.4. Application: Merging the Methods
The final application, depicted in Figure 5, comprises
two primary components and generates a CSV report
detailing the overall behavior of a driver. It requires
as input an internal video capturing the driver and an
external video recording the street view. For ease of
analysis, synchronization of a 30-second video between
the two components is necessary.

After inizialization, external frames undergo analysis
using the YOLOv8 model trained on road signs, produc-
ing a text file detailing the detected signals along with
their specifications, including the Regions of Interest
(ROIs) where these signals are located. For frames with
at least one detected sign, the corresponding internal
image is used to extract information via the GDHPD

module. The image and information are then passed
through the network to classify the driver’s gaze posi-
tion. Upon obtaining the prediction of the observed cell
in a given frame, it is compared with the position of the
corresponding sign. In frames with multiple detected
road signs, each corresponding ROI is considered active,
thus rendering the driver alert when focusing on any of
them without favoring any type of signal.

Given that a single road sign can span multiple cells, 5
points characterize the object’s position: the four corners
and the center. If the driver looks at a cell containing a
partial view of the sign, accounting for the peripheral
vision of human eyes we consider them attentive. More-
over, in the absence of signals or when the driver’s gaze
is directed to cells 4/5/6 (representing the entire road
surface), they are still deemed attentive to the street. If
gaze is directed to cells 7 or 8, indicating focus on the
car’s dashboard or infotainment system, the driver’s en-
gagement is noted accordingly.

Finally, a CSV file is generated to store the analysis
results from the 30-second videos. Each row contains
data including the frame count (consistent across internal
and external videos), the number of road signs detected
in that frame, the cell number(s) housing the detected
signals, the predicted cell value from the driver’s gaze
network, the number of observed signals following ROI
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Figure 5: Pipeline of the application presented in the paper.
The internal and external videos are simultaneously processed
to extract relevant features (facial landmarks and road signs
bounding boxes respectively). The features are then used
to determine the active ROIs, which are then compared to
generate the attention level of the driver.

matching, and an indication of the driver’s attentiveness.

4. Results
The objective of this research is to develop a comprehen-
sive system capable of analyzing an individual’s atten-
tion while driving using only two synchronized videos
as input. Given the scarcity of references on the simulta-
neous analysis of internal and external perspectives, all
subsequent evaluations and comparisons will focus on
the individual components constituting the final system.
Nonetheless, through extensive testing conducted with
the PDD dataset, comprising approximately 194 videos
each lasting 30 seconds, the final application demon-
strates commendable performance.

4.1. Gaze Classification
For what concerns face detection and landmark extrac-
tion for facial rotation angle calculation, the MTCNN
model outperformed the Haar Cascade Classifier. This
superiority stems from MTCNN’s ability to handle vari-
ous facial orientations, which is crucial for our GDHPD
dataset as it contains images with rotated or profiled faces.
Additionally, MTCNN’s prediction of landmarks, includ-
ing the center of the pupil, proved vital for training the

Gaze Classifiers Results
Method Accuracy F1-Score

HEGClass 96 94,3
SVM 74,5 74

ClassNet 56 45,6
VGG16-based Net 81 79

Table 2
Accuracy and F1-Score of all the tested and compared methods
for Gaze Classification. Our novel approach shows the overall
best results between all the analyzed methods.

final classification network. However, occasional failures
in face detection or slight misplacements of landmarks
introduce minor errors in this initial phase.

For predicting gaze direction, a zone-based classifi-
cation approach was chosen over regression due to the
difficulty in precisely determining the exact point on the
road the individual is looking at, coupled with the hu-
man eye’s ability to perceive a broad area. Despite testing
various methods, the SVM-based approach struggled to
exceed a 70% accuracy level, likely due to the similarity
in feature values across the 1012 samples, particularly
those derived from ResNet for eye images.

Transitioning to neural network-based methods, the
ClassNet network yielded lower accuracy than SVM, even
after experimenting with different feature combinations.
Training a network based on VGG-16 architecture from
scratch yielded better results with an accuracy level of
81%. However, the limited size of our dataset and com-
putational constraints hindered achieving satisfactory
performance through this approach. Hence, we adopted
the hybrid HEGClass approach, achieving an impressive
96% accuracy and 94.3% F1-score without additional data.
Comprehensive accuracy and F1-score results are shown
in Table 2.

4.2. YOLOv8 Classification and Detection
Through dual fine-tuning of the YOLOv8 network by us-
ing the Traffic Object Dataset and the TSDY dataset, an
impressive final F1-score of around 95% was achieved,
with an example of prediction on the PDD dataset shown
in Figure 6. We have observed an interesting phe-
nomenon when training the network solely with the
Traffic Objects dataset, where the F1-score is significantly
lower. Specifically, the training of YOLOv8 with the
Traffic Objects dataset yielded an overall accuracy of
approximately 65%-70%. Performing the same process
with YOLOv5, instead, showed unexpectedly a higher
accuracy (around 80%), albeit with occasional misclassifi-
cations of elements such as empty spaces between tree
branches. In any case, for the scope of this project this
comparison is not particularly relevant, given the much
higher accuracy with dual fine-tuning.
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Figure 6: Frame extracted from the PDD dataset predicted by
the fine-tuned model YOLOv8. The predicted traffic signs and
the correlated label and accuracy are highlighted in orange.

Despite the substantial improvement in generalization
capabilities achieved through dual training, errors in sign
recognition persist. Certain objects along the road may
be mistaken for road signs, such as advertisements con-
taining elements that, with low resolution, could be con-
fused. While this issue is present, its impact on the overall
results remains manageable and could potentially be mit-
igated with a wider variety of images. Another challenge
arises from grouping signs of different shapes and colors
into the same class, creating a bias in their classification.
Additionally, signs containing other signs within them
may only become relevant in specific situations, such
as parking signs reserved for disabled individuals. For
this reason, some signs were excluded from the training
phase.

Given the high accuracy values in detection, adjusting
the confidence threshold can help alleviate misclassifi-
cation issues. Signs may be recognized even when ro-
tated, facing the opposite direction of the lane, or located
in irrelevant areas. In such cases, they are counted as
points of inattention. Due to class imbalance, accurately
classifying the type of road sign remains a challenge.
Consequently, for our purposes, only information related
to the bounding box defining the sign’s position is ex-
tracted, without specifying the type of sign. Despite
attempts to simplify the dataset to recognize only one
class, "TRAF_SIGN", challenges persisted between detect-
ing signs and identifying unrelated environmental areas.
Therefore, the decision was made to revert to using the
original labels.

4.3. Overall Analysis
The final results of the application, pertaining to the pre-
diction of the driver’s average attention while viewing a
video, exhibit high performance across most cases, with
a few notable exceptions. Tests were conducted on 191
videos, each lasting 30 seconds, sourced from the PDD

dataset. Following initial evaluations, videos compro-
mised by low light conditions (such as those filmed in
almost night-time environments) or excessive blurring
of frames, rendering accurate prediction unfeasible, were
eliminated.

In instances where images lack clarity, are blurry, or ex-
hibit excessive shaking, the predominant predicted class
is 0, indicating the model’s failure to accurately identify
the correct gaze position. Moreover, during nighttime or
low-light scenarios, accurate gaze evaluation is signifi-
cantly impeded by diminished brightness. Additionally,
YOLO struggles with precise detection of relevant signs,
often leading to confusion. Classes 5 and 6 are frequently
identified as the gaze position during driving, aligning
with the fact that these areas correspond to central re-
gions of the windscreen. In some situations, such as
when the vehicle is stationary at a traffic light or in traf-
fic congestion, the system may recognize the same signs
across multiple frames. However, drivers may not con-
sistently attend to them throughout, as they may have
already observed them and they may not be of immediate
significance at that moment.

5. Conclusions
This work aimed to develop and assess a comprehensive
system for evaluating attention to traffic signs in driving
environments. We accomplished this by creating two
new datasets (GDHPD, PDD) and modifying two exist-
ing ones (Traffic Objects, TSDY) to better suit our task
requirements. The final application was divided into two
parts, utilizing YOLOv8 for sign prediction and MTCNN
+ HEGClass for gaze position classification.

Despite encountering challenges during various train-
ing and testing phases, as described in the Results section,
the overall accuracy of the final system remains very
high, notwithstanding the partial errors accumulated by
its constituent parts.

These challenges serve as valuable insights for future
research endeavors. Opportunities for improvement in-
clude implementing mechanisms to track seen and un-
seen signals, enhancing prediction accuracy in diverse
lighting and atmospheric conditions through dataset aug-
mentation or pre-processing techniques, and expanding
datasets to ensure greater completeness.

Overall, this work presents significant potential for fur-
ther refinement and advancement, promising avenues for
enhancing the performance and robustness of attention
evaluation systems in driving contexts.
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