
Improvements of Existing Autograding System for
Interactive Learning Functional Programming in Java

Nikola Dimitrijević1, Nemanja Zdravkovic1 and Milena Bogdanović1

1 Faculty of Information Technolgy, Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade,

Serbia

Abstract
In Computer Science, functional programming is a programming paradigm which uses

functions to describe the logic of what the program has to achieve. These are mathematical

function-like constructs (e.g., lambda functions) that are evaluated in expression contexts.

Google Trends currently ranks functional programming as more popular than object-oriented

programming. Also, functional programming is very important in existing popular platforms

like Hadoop and Apache Spark. Many students may ask what are the benefits and why should

they use functional programming in Java. From its beginnings, best practices in Java have

encouraged object-oriented programming, which is an extension of procedural programming -

type of imperative programming. Since version 8 Java introduced Java developers to functional

programming with lambda expressions, method references and predefined functional

interfaces. This Java release effectively notified developers that it's no longer sufficient to think

about Java programming only from the imperative, object-oriented perspective.

The first purpose of this paper is to present the benefits of adopting a functional paradigm to

students which worked with the older versions of Java (6, 7 or earlier) and to the ones working

with legacy code or using newer versions but without switching to functional paradigm.

Secondly, we present some improvements to existing interactive system for online learning of

functional programming in programming language Java, supporting automatic grading of

given assessments. These improvements are aimed at students who already have basic

knowledge of Java programming languages, and want to switch to functional programming.

Finally, we analyzed our solution by comparing its content to multiple commercially available

solutions and point out the advantages and disadvantages of each.

Keywords 1
Functional programming, eLearning, autograding, Big Data

1. Introduction to Functional Programming

Functional programming, a paradigm at the heart of computer science, has seen a resurgence in

popularity and practical application in recent years. Unlike imperative programming, which focuses on

how a program operates (through statements and instructions), functional programming emphasizes

what the program should accomplish, using pure functions and immutable data.

At its core, functional programming is about building software by composing pure functions. A pure

function is one that, given the same input, will always return the same output and does not cause any

observable side effects. This concept is not only central to functional programming but also to the

mathematical notion of a function, making the paradigm highly expressive and predictable [1].

Proceedings for the 14th International Conference on e-Learning 2023, September 28-29, 2023, Belgrade, Serbia

EMAIL: nikola.dimitrijevic@metropolitan.ac.rs (A. 1); nemanja.zdravkovic@metropolitan.ac.rs (A. 2);

milena.bogdanovic@metropolitan.ac.rs (A. 3)
ORCID: 0000-0002-8038-0642 (A. 1); 0000-0002-2631-6308 (A. 2); 0000-0003-0316-4484 (A. 3)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

178

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

One of the key principles of functional programming is immutability. Immutability in this context

refers to the idea that once a data structure is created, it cannot be altered. This principle reduces

complexity and improves the predictability of code. Side-effect-free functions, another cornerstone of

functional programming, contribute to the reliability and maintainability of software, as they do not

alter the state outside their scope [2].

In recent years, functional programming has gained traction in the software development industry,

particularly in the development of large-scale, concurrent applications. Languages like Haskell and

Scala, and features in Java 8 such as lambda expressions, have brought functional programming

concepts to the forefront of software design [3].

Functional programming's emphasis on immutability and stateless functions makes it particularly

well-suited for concurrent and distributed systems. In these systems, managing state and dealing with

mutable data can lead to complex issues. Functional programming alleviates these challenges, making

it easier to write safe and efficient concurrent code [4]. The influence of functional programming

extends to big data processing and cloud computing. Frameworks like Apache Spark and Hadoop

MapReduce, which are fundamental in the processing of large datasets, employ functional concepts

such as higher-order functions and lazy evaluation to efficiently process data across distributed systems

[5, 6]. Functional programming offers a different approach to software development, focusing on pure

functions and immutable data. Its principles are increasingly being integrated into modern software

practices, influencing the development of concurrent, distributed, and big data applications. As the

industry continues to evolve, the relevance and application of functional programming are likely to

expand further.

2. Functional Programming and Big Data

In the rapidly evolving landscape of software development and data processing, functional

programming has emerged as a key paradigm, not just in theory but also in practical applications. This

paradigm shift is particularly evident in the realm of big data and distributed computing, where

functional programming principles have become integral to the design and operation of major

platforms. A prime example of this trend is the significant role functional programming plays in existing

popular platforms like Hadoop and Apache Spark. These platforms, which are at the forefront of

handling large-scale data processing, leverage functional programming concepts to enhance efficiency,

scalability, and fault tolerance. This integration of functional programming into such platforms is not

incidental but stems from several core advantages that this programming style offers in dealing with

complex data processing tasks [5, 6].

2.1. Immutability and Parallelism

Functional programming promotes the use of immutable data, which is crucial for efficient parallel

execution of operations. In the context of distributed systems like Hadoop and Apache Spark,

immutability allows data operations to be executed in parallel without the risk of state conflicts or the

need for complex locking mechanisms. This is particularly important in big data processing, where

parallelism plays a key role in achieving high performance [6].

2.2. MapReduce Paradigm

Hadoop utilizes the MapReduce paradigm, deeply rooted in functional programming. MapReduce

consists of map and reduce functions, which are concepts taken from functional programming. The map

function processes input data and transforms it into intermediate results, while the reduce function

aggregates these results into the final output. This model is naturally suited to the functional style of

programming, where functions are first-class citizens and shared state is avoided [7].

179

2.3. Apache Spark and Functional API

Apache Spark, often used for big data processing, provides an API that is strongly inspired by

functional programming, especially in its Scala interface. Spark uses concepts like RDD (Resilient

Distributed Dataset) and Datasets, which enable functional operations such as map, filter, reduce, and

aggregate on distributed data sets. These operations allow developers to write code that is both

expressive and efficient for parallel execution [5].

2.4. Scalability and Resilience

The functional approach in Spark and Hadoop contributes to better scalability and resilience of the

systems. Side-effect-free functions are easier to test and understand, which is crucial in complex

distributed systems. Also, the functional approach facilitates the re-execution of operations in case of

failures, important for system resilience [8].

Functional programming plays a key role in the design and implementation of modern distributed

data processing systems, such as Hadoop and Apache Spark. The principles of functional programming,

such as immutability, problem decomposition into functions, and avoidance of shared state, are essential

for the efficiency, scalability, and resilience of these systems.

3. Curriculum for Functional Programming in Java 8 and Beyond

This curriculum is meticulously crafted to guide learners through the intricacies of functional

programming in Java, particularly emphasizing the transformative features introduced in Java 8 and

further refined in subsequent versions. As Goetz [9] insightfully points out, the advent of Java 8 marked

a paradigm shift in Java programming, steering it towards the functional programming approach1.

Additionally, Schildt [10] provides a comprehensive beginner's guide to Java, which is an invaluable

resource for understanding the basics and nuances of Java programming. Warburton [11] further

complements this by offering a focused exploration of lambda expressions and functional programming

in Java 8, making it accessible to a broader audience.

This curriculum is ideally suited for individuals who have a foundational understanding of Java and

are keen to explore the realm of functional programming, which has become increasingly relevant in

modern software development. In this journey, learners will delve into the essence of functional

programming as conceptualized in Java, starting from the basic principles and gradually progressing to

more advanced features and concepts. The curriculum not only covers the theoretical aspects but also

provides practical insights and applications, ensuring a holistic understanding of functional

programming in the context of Java's ongoing evolution.

Table 1
Curriculum for Functional Programming.

Module Title Topics

Module 1 - Introduction to Functional
Programming in Java

Overview of Functional Programming
Evolution of Java: From Imperative to
Functional
Functional Programming Concepts: Pure
Functions, Immutability

Module 2 Syntax and Structure of Lambda Expressions

180

Lambda Expressions and Functional Interfaces Functional Interfaces in Java (Function,
Predicate, Consumer, Supplier)
Method References and Constructor
References

Module 3
Streams API

Introduction to Streams
Stream Operations: filter, map, reduce, collect
Advanced Stream Operations: flatMap, sorted,
distinct
Infinite Streams and Lazy Evaluation

Module 4
Collectors and Data Processing

The Collectors Class
Grouping and Partitioning Data
Collecting into Maps and Custom Collections

Module 5
Optional and New Date/Time API

Using Optional to Avoid NullPointerException
New Date and Time API in Java 8
Best Practices with Optional and Date/Time API

Module 6
Parallel Data Processing and Concurrency
Enhancements

Parallel Streams and their Underlying
Mechanism
Fork/Join Framework
Enhancements in Concurrency API

Module 7
Advanced Topics and New Features in Later
Java Versions

Java 9 and beyond: Enhancements in Streams
and other APIs
Reactive Programming with Java
Project Loom and Virtual Threads

Module 8
Project and Practical Applications

Designing a Functional Interface-based
Application
Real-world Use Cases of Functional
Programming in Java
Project: Building a Data Processing Application
using Java Streams

4. Autograder and functional programming
4.1. Overview of autograders

Autograders are software tools that assist educators, including professors and teaching assistants, by

automating the grading process of student assignments. This not only reduces the workload of manually

evaluating each submission but also eliminates potential biases from the grading process. This

technology is particularly beneficial for students in Computer Science (CS) and Electrical Engineering

(EE), where assignments predominantly involve coding tasks. The concept of autograders in these fields

has a history spanning over fifty years [12, 13].

Initially, autograders were basic, capable of assessing only straightforward programming tasks and

primarily supporting procedural programming. These early systems typically provided binary feedback,

labeling student work as either "correct" or "incorrect" based on a rigid set of criteria. The latest

generation of autograders has developed alongside advancements in high-speed internet and web

technologies [14-19]. These systems often feature a web-based application, allowing students to code

directly in a browser without needing a local interpreter, compiler, or integrated development

environment (IDE). This approach also lessens the hardware demands on students' personal or campus

computers. Modern autograders are more versatile, supporting multiple programming languages and

paradigms, including object-oriented and functional programming, unlike their predecessors, which

were mostly confined to procedural programming.

181

Despite the availability of various autograder tools, as noted in the literature [17], many are custom-

designed for specific languages and requirements. Besides tools created for higher education

institutions, there are also specialized autograders in Massive Open Online Courses (MOOCs) and

commercial platforms, often tailored for particular courses or programming language basics.

Autograders face two primary challenges: technical and pedagogical [20]. Technical challenges involve

ensuring security against potentially harmful code in assignments and integrating with the Learning

Management Systems (LMS) of educational institutions. Pedagogically, the inconsistency in grading

systems is a concern. While some autograders still rely on the basic correct/incorrect feedback model,

more advanced systems use a detailed step-by-step test case evaluation. However, there is no

standardized model or widely accepted grading recommendation for these systems.

4.2. Proposed model

We have proposed a system that was primarily developed for learning basic and object-oriented

programming, and in this paper, it has been expanded to include support for functional programming.

The system we propose is built upon an existing autograder system, originally developed for teaching

fundamental programming concepts and object-oriented programming [15-18]. As depicted in Figure 1

on the following page, this system includes:

• Initial Assessment: Students begin by taking a self-assessment on data structures to establish a

starting point. This could be a brief quiz or a set of multiple-choice questions..

• Learning Module: Students are introduced to advanced data structure topics through lessons

provided in written, video, and animated formats.

• Assessment type 1: Students are tasked with a relatively easy to moderately challenging exercise.

They write code in a browser-based text editor, where a Java compiler operates server-side. The

exercise includes some pre-written code.

• Assessment type 2: More challenging exercises are presented, requiring students to write code from

scratch in a text editor without any pre-written code.

• Progress Tracking: After completing the assessments for each topic, the autograder system notifies

students of their success in the current topic. Progression to subsequent topics is contingent on

successful completion of previous ones. At the course's conclusion, students retake the initial

assessment (or a similar one) to gauge their learning progress.

After each of the topics’ assessments, an autograder system informs the student if they have passed

the current topic successfully, and can only continue with the next topic if the previous is passed. At

the end of the whole course, the student completes the same (or similar) baseline test to self-assess their

progress.

182

Figure 1: Components of the learning system model

4.3. Comparison of code using imperative and functional approaches

Within the framework of our developed autograder system, a variety of tasks are designed to enhance

the learning experience of students. One such task is as follows:

The system presents students with a specific challenge: Convert the code shown in Figure 2 into

code that effectively utilizes functional programming, leveraging the Java Stream API, and employing

the methods filter() and collect(). Figure 2 serves as a practical illustration, demonstrating how a

particular programming task can be approached in two distinct ways in Java: the traditional imperative

approach and the modern functional approach. This task, specifically, involves filtering a list of

numbers, retaining only those that are greater than 10. The imperative method is shown as a starting

point, and students are tasked with transforming this into a more streamlined, functional version using

Java 8 features.

This exercise not only reinforces their understanding of functional programming concepts but also

allows them to directly compare and contrast different programming paradigms within Java, thereby

deepening their comprehension and skill in the language. This task is representative of the kind of

practical, hands-on challenges that are integral to our autograder system, designed to provide students

with real-world programming scenarios that enhance their coding skills and theoretical knowledge."

183

Figure 2: Example of code using imperative approach without functional programming

In the functional approach, we use the Java Stream API. The stream() method converts the list into a

stream, the filter() method applies a lambda expression that specifies the filtering condition, and the

collect() method gathers the results and returns them in a list. Figure 3 shows how the same task can be

solved using a functional approach with Java 8.

Figure 3: Example of code using functional approach with Java 8

5. Conclusion

In this paper, we have explored the characteristics of functional programming and proposed a

comprehensive curriculum for functional programming in Java 8 and its subsequent versions. We have

also presented significant enhancements to an existing interactive system for the online learning of

functional programming in Java, emphasizing support for automatic grading of assessments. These

improvements are meticulously designed for students who have a foundational understanding of Java

184

programming and are keen to transition to functional programming paradigms. The introduction of an

automatic grading system has streamlined the learning process, offering immediate and personalized

feedback, which is vital for effective learning. The updated curriculum, encompassing comprehensive

modules on key functional programming concepts in Java, such as lambda expressions and the Stream

API, ensures that learners are thoroughly prepared to comprehend and implement these advanced

programming techniques.

Moreover, the integration of an interactive coding environment within the system fosters hands-on

learning and experimentation, which is crucial for a deep understanding of functional programming

nuances. The system's provision of personalized learning paths addresses the varied needs of students,

accommodating different learning styles and paces.

In conclusion, the enhancements made to the interactive system mark a significant progression in

the realm of programming education. By aligning the system with the latest trends in Java programming

and concentrating on the practical application of functional programming concepts, we have developed

a robust educational platform. This platform not only imparts knowledge but also readies students for

the evolving demands of the software development industry. Our approach effectively bridges the gap

between traditional Java programming and the contemporary functional programming paradigm,

equipping learners with the necessary skills and knowledge to thrive in today's technological landscape.

6. Acknowledgements

This paper was supported by the Ministry of Education, Science and Technological Development,

Republic of Serbia (Project III44006).

7. References

[1] P. Hudak, Conception, evolution, and application of functional programming languages,

ACM Computing Surveys, 1989.

[2] M. Odersky, L. Spoon, & B. Venners, Programming in Scala, Artima, 2010.

[3] P. Van Roy, & S. Haridi, Concepts, Techniques, and Models of Computer Programming,

MIT Press, 2004.

[4] P. Haller, & M. Odersky, Scala Actors: Unifying thread-based and event-based

programming, Theoretical Computer Science, 2009.

[5] Zaharia, M., et al. (2012). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In-Memory Cluster Computing. Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation.

[6] J. Dean, & S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters,

Communications of the ACM, 2008.

[7] R. Lämmel, Google's MapReduce Programming Model — Revisited, Science of Computer

Programming, 2008.

[8] Armbrust, Michael, et al. Spark sql: Relational data processing in spark. In: Proceedings of

the 2015 ACM SIGMOD international conference on management of data. 2015. p. 1383-

1394.

[9] B. Goetz, Java 8: Functional features and libraries, Oracle, 2014.

[10]H. Schildt, Java: A Beginner's Guide, Seventh Edition, McGraw-Hill Education, 2017.

[11]R. Warburton, Java 8 Lambdas: Functional Programming for the Masses, O'Reilly

Media, 2014.

[12]G. E. Forsythe, and N. Wirth, Automatic grading programs, Communications of the

ACM, vol. 8, no. 5, pp. 275-278, 1965.

[13]H. Aldriye, A. Alkhalaf, and M. Alkhalaf, “Automated grading systems for

programming assignments: A literature review,” International Journal of Advanced

Computer Science and Applications, vol. 10, no. 3, pp. 215-221, 2019.

[14]C. Douce, D. Livingstone, and J, Orwell, “Automatic test-based assessment of

programming: A review,” Journal on Educational Resources in Computing (JERIC), vol.

5, no. 3 pp. 4-es, 2005.

185

[15]J. C. Caiza and J. M. del Alamo, “Programming assignments automatic grading: review

of tools and implementations,” In Proc. of the 7th international technology, education and

development conference (INTED2013), pp. 5691, 2013.

[16]G. Haldeman, M. Babeş-Vroman, A. Tjang, and T. D. Nguyen. “CSF: Formative

Feedback in Autograding,” ACM Transactions on Computing Education, vol. 21, no. 3,

2021.

[17]S. Krusche and A. Seitz, “ArTEMiS: An automatic assessment management system for

interactive learning,” in Proc. of the 49th ACM Technical Symposium on Computer

Science Education, pp. 284-289, 2018.

[18]Fangohr, H., O'Brien, N., Prabhakar, A. and Kashyap, A., 2015. “Teaching Python

programming with automatic assessment and feedback provision,” arXiv preprint

arXiv:1509.03556.

[19]D. Radošević, T. Orehovački, and A. Lovrenčić, “Verificator: educational tool for

learning programming,” Informatics in Education, vol. 8, no. 2, pp. 261-280, 2009.

[20]G. E. Forsythe, and N. Wirth, “Automatic grading programs,” Communications of the

ACM, vol. 8, no. 5, pp. 275-278, 1965.

186

