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Abstract
Science enables progress. Software engineering research and its sub-research fields like software architecture
have high economic relevance (cf. "software is eating the world") and serve as an enabler for technical innovations
in other research fields as well. The ever-increasing amount of research results and insights creates the need for
efficient knowledge documentation and search functions to access relevant information. Till now, scientific papers
have been published digitally as PDF documents. Researchers and practitioners can access these documents via
digital libraries and scientific search engines mostly with a simple keyword-based search. Literature studies in
software engineering show that this procedure (a) requires enhanced information literacy skills even for domain
experts and (b) is very time-consuming for aggregating evidence in written PDF articles to a specific field of
interest. Consequently, we can derive a need for speeding up the information-finding process and effective
knowledge representation as well as aggregation for evidence-based literature studies. As a result, we present
our approach idea for effective knowledge access and discovery in software architecture research by combining
knowledge graphs and large language models, using the complementary advantages of both concepts.
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1. Introduction

In the rapidly evolving field of software engineering (SE) and software architecture (SWA), researchers
and practitioners alike are confronted with the task of navigating an ever-expanding universe of
knowledge and the immense growth of the SE literature (cf. Figure 3 in [1]). As there is no dedicated
database for scientific software architecture knowledge, one has to use academic search engines to
access relevant information while struggling with bugs (i.e., faults in the search engines) and usability
issues [2]. It is a challenging and time-consuming task to find the required information for each unique
inquiry. There are ways, however, to speed up the information-finding process. Traditional methods of
information retrieval are heavily reliant on keyword-based searches that also require manual sifting
through matching documents. Additionally, this method is reliant on exact keyword matches as it
lacks the sophistication needed to understand the context of queries, overall leading to time-consuming
searches and incomplete or irrelevant results.

In this context, knowledge graphs (KGs) represent a leap forward in the way we manage and retrieve
information [3]. By structuring data in an interconnected network of entities and their relationships,
KGs can offer a context-aware system that can help leverage the limitations of traditional keyword-based
searches. The key strength of KGs lies in their ability to semantically connect information, which means
they can set the context and relationships between different pieces of data. This semantic understanding
enables more accurate and relevant search results, as the system can interpret the intent behind a query
rather than merely matching keywords. In the domain of software engineering research, KGs can
streamline the process of literature reviews and state-of-the-art surveys (cf. [4]). With the connections
presented by the KG, researchers can quickly identify influential works, related research topics, and the
development trajectory of specific technologies or methodologies. This is made possible by analyzing
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Figure 1: Summarization of the pros and cons for LLMs and KGs according to Pan et al. [3]

the connections between research papers, authors, and their affiliations, thereby uncovering the network
of knowledge that shapes the field. One example of such a KG is the knowledge management system
Open Research Knowledge Graph (ORKG). The ORKG offers different views and management options
to extract and organize scientific knowledge from published papers. For this, the ORKG relies on users
who (manually) add papers to the system. As a core object, ORKG uses a domain model that specifies a
Research Contribution [5]. A Research Contribution is linked to a Research Problem, a Research Method, a
Research Result and to Research Material. To create domain-specific descriptions of publications in a
dedicated research field, users of ORKG can use templates. Users can then perform subsequent tasks
like comparisons and (literature) reviews. However, these tasks are manual.

With the uprising of Large Language Models (LLMs), another transformative tool is being integrated
into the knowledge retrieval process [3]. LLMs provide an advanced capacity for natural language
understanding and generation, which complements the structured, semantic connections provided by
KGs. LLMs excel in the interpretation of nuances of natural language queries. This allows the user
to ask complex questions in their own words rather than relying on specific keywords. This ability
reduces the barriers to accessing information and, thus, speeds up research tasks. However, LLMs
tend to hallucinate and fabricate information in their responses, making them less reliable. This is also
reflected in current state-of-practice tools (i.e., closed source with unknown database) like Elicit [6],
SciSpace [7, 8], and Consensus [9] that lack of transparency due to the black-box nature. They suffer
from the aforementioned limitations, as summarized by Pan et al. [3].

Our idea is to combine the capabilities of LLMs with the structured data of KGs and, thus, use the
complementary advantages of each concept (as depicted in Figure 1). Combined, LLMs will be able to use
the semantic networks to provide informed, more precise and contextually relevant responses to queries.
Furthermore, we can cross-check and verify responses with the data of the KGs, reducing well-known
negative behaviors of LLMs like hallucinating. This synergy enhances the way information is processed,
understood, and retrieved by leveraging the search for information to a semantic, context-aware level.

Consequently, we address the research question (RQ): How to construct an approach that combines
the advantages of knowledge graphs and large language models to ease knowledge access (in software
architecture research)?

The paper is structured as follows. Section 2 introduces example use cases where we plan to use the
approach and where it can be beneficial. In Section 3, we detail the approach by answering our RQ and
outlining preliminary work and results. Related work is discussed in Section 4. Lastly, we conclude the
paper in Section 5.



2. Example Use Cases

In this section, we present example use cases for our approach, where we think it can be beneficial.

1. Use Case (Find Papers by Topic): The user is interested in topic 𝛼 and wishes to find a list of
papers to read about it.
Prompt/Natural language query: Please find papers that are about topic 𝛼.
Expectation: The system generates a list of papers including persistence identifier (DOI) that are
related to the specified topic 𝛼. The list is sorted by their relevance to topic 𝛼.

2. Use Case (Find Papers by quoted Sentence): The user recalls reading a particular sentence in a
paper but cannot remember which paper it was. They can only memorize it semantically and cannot
reproduce the full sentence.
Prompt/Natural language query: Please find papers that are related to the following sentence 𝛽.
Expectation: The system generates a list of papers containing related sentences, sorted by relevance.

3. Use Case (Paper Summarization): The user has a lot of papers they need to read through and
would like to receive help to capture the essence of each paper quickly.
Prompt/Natural language query: Please summarize the key points of the paper with title 𝛾.
Expectation: The system generates a structured summary with the key aspects of the paper titled 𝛾.

4. Use Case (Search for Methods used in Topic): The user wants to do research for topic 𝛿. They
would like to find out about state-of-the-art methodologies that are applied in this topic.
Prompt/Natural language query: Tell me more about methodologies that are used for topic 𝛿.
Expectation: The system returns a structured answer that lists and explains each methodology.

5. Use Case (Search for Benchmarks / Datasets for Topic): The user searches for benchmarks,
datasets, or input tools for topic 𝜖. They would like to find external resources and artifacts to evaluate
the new solution approach.
Prompt/Natural language query: Which replication artifacts are commonly used for topic 𝜖.
Expectation: The system returns a structured answer that lists and explains each kind of used artifact.

3. Approach

In this section, we present our idea and architecture to combine KGs and LLMs to enhance and ease
scientific knowledge access in software architecture research for researchers and practitioners by
answering our research question (cf. Section 1). The process is shown in Figure 2. There are two
main parts of the approach: (1) Knowledge graph generation and population, and (2) knowledge
retrieval. We call this approach Knowledge Augmented Retrieval And Generation ENgine (KARAGEN).
The corresponding open-source repository [10] comprises artifacts and projects related to our approach.

3.1. Architecture

First, we plan to support generating and populating KGs like ORKG by aiding the users with the help
of LLM-based classification. In this semi-automated process, when users add papers to the KG, the
classification approach recommends the required information to add research works and publications to
the KG. For example for ORKG, this process includes filling out the respective template or data schema.
We describe a preliminary example for this in Section 3.2.

Second, KARAGEN supports knowledge retrieval by querying and processing the information from the
KGs using LLMs. Users can state their query in natural language. An LLM-based component processes
the query. The processing can include several processing steps (e.g., Named Entity Recognition) as
well as generating queries to the KG to retrieve the relevant data. For each of the retrieved dates, a
knowledge enhancement component can (optionally) further use LLMs to transform and generate
information. For example, the component can summarize research content, classify it or use similar
enhancement strategies. Finally, KARAGEN uses all this information to generate an output for the
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Figure 2: Overview of the Knowledge Augmented Retrieval And Generation ENgine (KARAGEN)

users, ranking data initially based on information from the KG and later including feedback from the
LLM. KARAGEN can also add sources to the generated output as the origin of the data is known.

While the approach has similarities to existing retrieval augmented generation (RAG) approaches,
there are notable differences. RAG approaches use vector stores that contain natural language texts
together with their embeddings. These embeddings are used to retrieve entries with similar embeddings
to a given query. We implemented such an approach in a prototype that is briefly introduced in
Section 3.3. We plan to enhance the prototype by adding information retrieval from the KG. The approach
can then enhance this information and, thus, potentially increase the usefulness and correctness of the
outputs as depicted in Figure 2. Adding KG into the process allows us to employ error detection strategies
and proof-checking of results before returning them to the users to strengthen correctness. These
strategies include cross-checking LLM-generated results with the KG, where possible. Additionally,
confidence scores, calculated from the confidence of the LLM and/or KG towards some data, allow us to
filter low-confidence results based on an individual threshold that can be set by the user.

3.2. Data Schema for Software Architecture Research

Konersmann, Kaplan, and Kühn et al. [11] introduced a data schema for the description of SWA research.
They provide a compact description and characterization of this research field and give an overview
of the evaluation and replicability of SWA research objects. In a community effort, they labeled 153
papers in SWA research according to the data schema depicted in Figure 3. This schema offers a
description approach for a paper’s content as well as the respective meta-data such as bibliographic
information. Central is the Research Object under investigation w.r.t. a certain Property, evaluated with
an Evaluation Method. This schema fosters knowledge description and representation in SWA research
and contributes to an ORKG template (cf. Section 1) in this research field to support the corresponding
ORKG observatory1. We already constructed a prototype for semi-automatic classification as depicted
in Figure 2 (green box). For this, we implemented a classification framework based on a blackboard
pattern (cf. Schmidt et al. [12]) supporting (i) prompting techniques and (ii) fine-tuning language models
with hyperparameter searches. This approach is universal by flexibly allowing various input data and

1https://orkg.org/observatory/Software_Architecture_Research [Last accessed on 2024-03-18]
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Figure 3: Data schema for describing software architecture research papers. Dashed arrows indicate inferred
relations. Extended from [11].

schemas, so it enables handling evolutionary changes and extensions in the data schema. Moreover, we
can specify variations points (w.r.t. among others data split and data augmentation techniques as well
as the aforementioned classification paradigms) in the experimental setup with focus on open-source
language models like Llama2, Mistral, and Mixtral. Initial experiments with small datasets (based
on [13]) show promising results, but we require further experiments with more data for reliable results
and conclusive statements.

3.3. Software Architecture Research Discovery Engine

The Software Architecture Research Discovery Engine project is aimed at enhancing the capabilities
of an LLM through a modular functional approach (cf. parts of the yellow box as depicted in Figure 2).
In this project, we want to leverage LLMs for a variety of tasks, such as summarizing papers, locating
specific information, and conducting semantic searches within scientific literature (cf. example use cases
in Section 2). The project is currently a work in progress and is in an experimental stage. The prototype
uses papers from the European Conference on Software Architecture (ECSA)2. This enables us to explore
the capabilities of synergy between the LLM and its connection to a scientific data source. Although this
initial dataset does not constitute a KG, we will include a structured KG in the future. Furthermore, the
modular functional approach, facilitated by LangChain [14], enables the creation of an agent equipped
with a diverse toolkit, overseen by an LLM. This LLM is tasked with evaluating the toolkit and selecting
the most appropriate tool based on the given prompt’s intention. Our implementation leverages this
framework to offer varied functionalities that address the mentioned use cases in Section 2. This design
philosophy ensures that, as new use cases emerge, the system can be seamlessly expanded. We plan
to further enhance the agent’s capabilities by integrating a KG, thereby broadening the scope of its
functionality and improving its effectiveness in navigating and processing scientific literature.

4. Related Work

In the following, we identify and present three main research areas related to our work.

Scientific Knowledge Graphs in Related Research Fields. First, we regard an approach that
builds upon the ORKG in the research field of requirements engineering (RE) as a related field to SWA.
Karras et al. [4] investigate this KG as a technical infrastructure by building, publishing, and evaluating
an initial KG for empirical research in RE – the so-called KG-EmpiRE. For this, they collected papers
from the research track of the IEEE International Requirements Engineering Conference and extracted

2https://link.springer.com/conference/ecsa [Last accessed on 2024-03-18]

https://link.springer.com/conference/ecsa


data from 570 papers that report on empirical research. Derived from this, they build and publish the
initial KG-EmpiRE that the research community can constantly maintain, (re-)use, update, and expand.

Structured Forms and Description Approaches for Scientific Knowledge Representation
in Software Architecture. Second, we consider structured forms and description approaches for
software architecture research and its superordinate research field software engineering. In this context,
we refer to the data schema for software architecture research of Konersmann, Kaplan, and Kühn et
al. [11]. The authors made a first attempt to describe this research field. Based on the labeling in a
community effort, there are already limitations of the schema identified. However, there is existing work
by Kaplan et al. [15] to overcome these limitations and holistically evolve the initial aforementioned
schema by enhancing the respective entities and relations to enrich the corresponding KG.

Access to Software Architecture Knowledge. Lastly, we present state-of-the-art/state-of-practice
access approaches to software architecture knowledge. In this context, we differentiate between two
main knowledge sources: (1) scientific, i.e., evidence-based knowledge and (2) practical knowledge in
an industrial context. For the first knowledge source, we refer to the serverless pipeline that is based
on the replication package [13] of the work of Konersmann, Kaplan, and Kühn et al. [11]. The authors
provide – based on the specification of the data schema – a React webpage Visulite (Visualization of
Literature) [16] to enable researchers to have a better overview by browsing scientific SWA literature
in a graphical presentation and interactive analysis of the data. In addition, we regard tools based
on retrieval augmented generation (RAG) like Elicit [6], SciSpace [7, 8], and Consensus [9] as related
(cf. Section 1). However, these tools are closed source, only rely on open-use language models (like
GPT from OpenAI), and lack domain-specific knowledge (i.e., the underlying database is unknown and
the range of the literature corpus in SWA is vague). For the second knowledge source, we refer to the
work of Soliman et al. [17]. The authors introduced a new approach for improving knowledge access
and search functions for architecturally relevant information in online developer communities. They
implemented their approach as a web-based search engine. For this, the authors used a combination of
keyword-based search and a specification of the current step in the software architecture to present
better results to the user. As an underlying technology, they used the index-based search engine Apache
Lucene. The data and information that is used to present new architecture knowledge is based on the
content of Stack Overflow, i.e., not considering scientific software architecture knowledge.

5. Conclusion

In this paper, we outlined our approach idea KARAGEN, the Knowledge Augmented Retrieval And
Generation ENgine, that combines knowledge graphs (e.g., ORKG) and LLMs to ease knowledge access,
e.g., in the research field of software architecture. We expect to combine the benefits of knowledge
graphs and LLMs to improve the overall usefulness and correctness of the answers to user queries in
comparison to current state-of-practice tools. From LLMs, we expect to benefit from their capabilities
to understand and interpret nuances of natural language queries as well as generate coherent natural
language output. From KGs, we expect to benefit from the curated and structured knowledge within
the KGs to retrieve and check information. In the next steps, we plan to integrate a prototype into our
existing work. We then will evaluate the prototype. While we expect the approach, in general, to work
for any research area, we will initially limit the study to software architecture research.
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