
23	
	

Towards Simplifying the Use of Self-Services 

Kaspars	Kalnins1	and	Marite	Kirikova1	

1	Institute	of	Applied	Computer	Systems,	Riga	Technical	University,	6A	Ķīpsalas	Street,	Riga,	LV-1048,	Latvia	
	

Abstract	
While	largely	applied	to	different	platforms,	self-service	intelligence	(or	self-service	analytics)	
still	 faces	 challenges	 in	 its	 practical	 usage.	 As	 the	 amount	 of	 data	 and	 types	 of	 analytics	 has	
increased,	 a	 new	 requirement	 emerges	 to	 store	 existing	 analytics	 results	 so	 that	 they	 can	be	
accumulated	and	reused.	Therefore,	 it	 is	necessary	 to	develop	a	method	 to	provide	a	process	
where	the	analytics	results	obtained	from	the	platform	are	automatically	saved	to	the	database	
so	that	users	without	technical	knowledge	can	implement	this	with	a	low-code	and	self-service	
BI	approach.	In	this	work,	various	literature	sources	are	studied,	resulting	in	a	feature	list	 for	
implementing	a	low-code	approach;	and	a	process	model	is	developed	for	the	method.	The	paper	
focuses	on	Oracle	BI	as	a	platform	that	allows	users	to	analyse	data	of	different	nature.	

Keywords		
Oracle	BI,	low-code,	self-service,	self-service	intelligence	

1. Introduction 

People	with	the	skills	and	abilities	to	process	data	quickly	and	efficiently	are	increasingly	in	
demand	in	many	sectors	[1].	Many	industries	need	to	start	thinking	about	creating	a	data	
culture	 in	 their	 companies	 so	 that	 everyone	 understands	 that	 data	 is	 an	 asset	 to	 the	
company	[2].	This	asset	serves	as	a	foundation	for	further	development	because	data	can	
be	used	to	create	information	and	knowledge	in	a	particular	context	[2].	It	is	also	essential	
to	understand	that	analytical	data	must	be	available	to	be	served	to	managers	as	quickly	as	
possible	to	make	decisions	[3].	As	the	amount	of	data	being	processed	worldwide	grows	
and	 is	 projected	 to	 reach	 180	 ZB	 by	 2025	 [4],	 it	 is	 necessary	 to	 understand	 what	 the	
company	should	do	with	it,	whether	to	store	it,	process	it,	delete	it,	etc.	Considering	all	this,	
Business	Intelligence	(BI)	should	be	an	integral	part	of	companies	today	[1].	BI	tools	can	
structure	and	transform	data	into	a	business	asset.	While	the	amount	of	data	increases,	it	is	
often	 not	 the	 data	 itself	 that	 is	 important	 to	 the	 industry	 but	 the	 information	 that	 BI	
produces.	Therefore,	to	save	resources,	companies	do	not	store	data	for	the	long	term	but	
only	as	long	as	the	information	is	extracted	using	BI	tools.	After	the	data	has	been	processed	
with	the	BI	tool,	the	data	is	deleted,	and	analytical	information	is	stored,	which	serves	as	a	

	

	Baltic	DB&IS	Conference	Forum	and	Doctoral	Consortium	2024	
		kaspars.kalnins_2@edu.rtu.lv	(K.Kalnins);	marite.kirikova@rtu.lv	(M.Kirikova)	
		0000-0002-1678-9523	(M.Kirikova)	

	
©	2023	Copyright	for	this	paper	by	its	authors.	
Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).	 

	

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



24	
	

source	 of	 knowledge	 for	 future	 decision-making.	 It	 is,	 therefore,	 more	 important	 for	
companies	today	to	focus	on	the	ability	to	process	and	store	the	results	of	BI	solutions	[4].	

Self-service	intelligence	has	been	seen	as	a	solution	to	this	problem	[5].	However,	the	
challenges	in	the	use	of	this	approach	have	also	been	reported	[5].	Therefore,	this	paper	
focuses	on	applying	self-service	intelligence	in	business	intelligence.	To	do	this,	we	use	the	
Oracle	BI	platform,	which	offers	a	wide	variety	of	ready-made	self-service	tools	[6],	and	we	
attempt	to	define	a	method	for	extending	Oracle	BI	functionality.	Specifically,	the	goal	of	this	
research	is	to	define,	using	a	low-code	and	self-service	BI	approach,	a	method	that	would	
allow	a	user	without	technical	knowledge	to	save	analytics	results	 in	an	automated	way.	
Extrapolation	of	findings	to	other	BI	platforms	or	tools	is	beyond	this	paper's	scope.	

The	paper	is	organised	as	follows.	In	section	2	we	describe,	in	more	detail,	the	problem	
addressed	 in	 the	 paper	 and	 formulate	 the	 research	 questions.	 Section	 3	 illustrates	 the	
method	of	literature	analysis	while	the	literature	analysis	results	are	presented	in	Section	4.	
The	brief	concluding	remarks	are	available	in	Section	5.	

2. Knowledge Debt in Self-Service Business Intelligence 

Companies	need	experts	to	use	BI	tools,	but	not	all	companies	have	them.	Many	companies,	
therefore,	choose	to	proceed	without	these	tools	[3].	BI	contains	such	components	as	a	data	
warehouse,	 data	 extraction,	 pre-processing,	 and	 result	 output	 system	 [7].	 Even	with	 an	
automated	BI	output	system,	users	need	additional	methods	to	process	the	data	after	the	
first	processing.	The	final	analytical	reports	are	produced	by	end-users	with	a	background	
and	position	outside	the	IT	sector	[8].	Typically,	BI	staff	is	divided	into	casual	and	power	
users.	 Casual	users	 are	 the	 employees	of	 the	 company	who	need	 the	 results	of	 the	data	
analysis	to	make	decisions.	Power	users	are	experts	who	perform	technical	operations	to	
obtain	 the	 results	of	 the	data	analysis.	 In	a	 typical	process,	 the	 casual	user	 requests	 the	
power	user	to	develop	the	analytical	solution.	However,	as	the	quantity	of	data	increases	
and	the	need	to	view	the	data	from	different	perspectives	increases,	companies	need	more	
technical	resources	to	develop	the	analytics.	As	a	solution	to	this	problem,	a	Self-Service	
Business	Intelligence	(self-service	BI)	trend	has	developed,	where	casual	users	should	be	
able	to	create	analytics	solutions	without	the	involvement	of	technical	staff.	However,	since	
BI	 development	 requires	 specialised	 knowledge,	 casual	 users	 must	 possess	 such	
knowledge.	Because	of	technical	difficulties,	BI	tools	should	be	as	little	as	possible	based	on	
technical	expertise	for	implementing	self-service	BI	in	the	company	[5].	

In	BI,	data	is	structured	and	stored	in	a	data	warehouse.	Next,	the	data	is	structured	into	
models	using	analytical	tools,	and	pre-processing	is	performed.	The	final	step	is	producing	
the	analysis	output	through	reports	and	statements	(Figure	1.	a).	It	should	be	noted	here	
that	the	power	user	maintains	the	Data	Warehouse	and	the	analytical	tools,	while	the	casual	
user	handles	the	final	output.	According	to	the	self-service	BI,	the	aim	is	for	the	casual	user	
to	be	able	to	use	the	analytical	tools	for	data	management	(Figure	1.	b).	Studies	have	shown	
that	companies	are	more	productive	by	adopting	this	practice	[1].	

One	of	 the	 self-service	BI	 tools	available	 today	 is	Oracle	Analytics	Server	 (Oracle	BI).	
Oracle	BI	gives	users	the	tools	to	perform	analytics	[9].	Even	if	Oracle	BI	with	self-service	
solutions	 allows	 the	 development	 of	 analytical	 solutions	 using	 a	 low-code	 or	 no-code	



25	
	

approach,	the	system	does	not	allow	the	possibility	for	a	casual	user	to	save	analytics	results	
in	 an	 automated	way	 for	 further	 analytics	 creation.	 The	 user	 has	 to	manually	 save	 the	
analytical	result	data	from	the	system	daily,	as	Oracle	BI	does	not	offer	such	functionality.	
Manual	operations	are	 appropriate	 if	 they	need	 to	be	performed	occasionally.	However,	
with	the	increasing	amount	of	data	processing,	the	number	of	such	manual	activities	also	
increases,	and	as	a	result,	the	company	loses	staff	resources	on	manual	activities.	

	 	
Figure	1:	Data	processing	 flow	 in	BI:	a)	using	regular	approach;	b)	using	self-service	BI	
approach.	

It	is	essential	for	BI	tools	to	provide	not	only	data	analysis	but	also	the	transfer	of	results	
via	service-oriented	architecture	(SOA)	or	microservice	architecture	[10].	It	 is,	therefore,	
essential	 to	explore	 the	possibilities	of	 enhancing	 the	Oracle	BI	 functionality	 so	 that	 the	
casual	user	can	organise	automated	storage	of	analytics	results	using	a	low-code	approach,	
i.e.,	 to	 implement	solutions	using	as	many	graphical	tools	as	possible,	without	additional	
coding.	It	is	also	necessary	to	investigate	the	process	of	saving	the	data	of	such	analytical	
results	so	that	the	user	can	use	a	self-service	BI	approach,	i.e.,	to	minimise	usage	of	technical	
knowledge.	Therefore,	the	hypothesis	is	that	by	combining	Oracle	BI	with	web	server	and	
database	systems	into	service,	a	method	can	be	created	to	store	analytical	results	with	low-
code	and	self-service	BI	approaches.	The	following	two	questions	are	further	researched:	
(RQ1)	“What	Oracle	BI	low-code	features	are	available	for	development?”	and	(RQ2)	“What	
is	the	Oracle	BI	self-service	process	to	enhance	functionality	for	storing	data	of	analysis?”.	

The	answers	to	these	questions	would	help	to	identify	the	methods	for	providing	more	
comfortable	self-service	BI	solutions.	As	BI	platforms	differ,	at	this	stage	of	research	we	have	
focused	on	one	platform	only.	

3. The Analysis of Related Works 

To	carry	out	the	research,	the	literature	review	method	was	used	based	on	Levy	and	Ellis	
[11].	Initially,	background	information	was	gathered,	and	research	questions	were	stated	
(Section	2	of	this	paper).	The	review	process	was	then	accomplished	in	three	stages	[11]:	
input,	processing,	and	output.	During	the	input	stage,	literature	was	searched	and	selected	
from	various	sources.	The	information	in	the	selected	sources	was	comprehended,	applied,	



26	
	

analysed,	synthesised,	and	evaluated	during	processing.	In	the	output	stage	(Section	4	of	
this	paper),	research	findings	were	synthesised	into	new	knowledge	[11].	

Initially,	 the	 keyword	 list	was	 determined	according	 to	 the	 achievable	 goal:	 Big	 data	
analytics,	 SQL—to	 look	 for	 articles	 with	 data	 processing;	 OBIEE—the	 acronym	 for	 the	
Oracle	 BI	 platform;	 low-code,	 self-service	 BI—to	 find	 solutions	 for	 casual	 users;	
microservices,	SOA—to	find	articles	with	service	solutions;	PHP	low	code—to	look	for	web	
server	solutions.	Various	combinations	of	keywords	were	used	to	search	for	the	literature	
in	electronic	resources	such	as	Scopus	and	Google	Scholar.	The	results	from	search	engines	
were	used	to	look	for	documents	in	the	electronic	databases.	Also,	the	year	of	publication	
was	considered	to	understand	if	this	literature	source	is	up-to-date.	By	analysing	the	first	
search	 results	 with	 keywords	 OBIEE,	 it	was	 understood	that	 articles	 before	 2017	 were	
related	 to	 the	older	Oracle	BI	platform's	 technical	 specifications,	which	are	 irrelevant	 to	
technological	 solutions	 nowadays.	 Therefore,	 all	 articles	 published	 before	 2017	 were	
filtered	off.	For	each	found	related	work,	an	abstract	was	read	to	see	if	it	was	related	to	the	
achievable	goal.	If	the	abstract	was	unrelated,	then	the	article	was	excluded.	For	each	found-
related	work,	a	forward	search	was	performed.	If	another	literature	source	had	cited	the	
article	and	if	the	abstract	was	relevant	to	the	topic,	then	the	source	was	included	in	the	list.	
By	forward	search,	nine	articles	were	found.	Similarly,	like	a	forward	search,	a	backwards	
search	was	 performed	 to	 see	which	 literature	 sources	 the	 paper	 used.	 If	 the	 topic	was	
relevant,	then	it	could	be	added	to	the	list.	By	backwards	search,	no	articles	were	found.	
Afterwards,	literature	sources	were	excluded	if	they	were	found	unrelated	to	the	research	
topic	by	reading	the	whole	article.	

Table	1	shows	the	distribution	of	retrieved	articles	by	publisher.		

Table	1	
Article	distribution	by	publisher	

Publisher	 Search	results	 Selected	
literature	

ACM	Digital	Library	 4	 3	
Australasian	Journal	of	Information	Systems	 1	 1	
CSIMQ	 1	 1	
IEEE	Xplore	Digital	Library	 3	 2	
IGI	Global	 1	 1	
John	Wiley	&	Sons	 1	 1	
O’Reilly	 1	 1	
Pearson	Education	 1	 1	
Science	Direct	 1	 1	
Springer	Link	 8	 4	
Taylor	&	Francis	 1	 1	
Oracle	 1	 1	
Total	 24	 18	
	
In	Table	1,	we	can	see	that,	after	the	search,	24	articles	were	identified,	but	only	18	were	

relevant	to	the	topic	after	their	deeper	analysis.	39%	of	the	articles	are	conference	papers	



27	
	

(Figure	2.	a).	Table	2	shows	the	distribution	of	literature	by	type,	and	Figure	2.	b	shows	its	
distribution	by	years	of	publishing.	

	

	
Figure	2:	Literature	distribution	by:	a)	type	in	percentage;	b)	by	year.	

Table	2	
Literature	distribution	by	type	

Type	of	source	 Number	of	sources	
Book	 6	
Conference	paper	 7	
Journal	paper	 4	
Web	page	 1	

	
In	 literature	processing,	 information	synthesis	was	carried	out	by	extracting	relevant	

knowledge	 from	 the	 articles	 and	 then	 combining	 it	 in	 a	 substantive	way	 to	 answer	 the	
research	questions.	 The	 research	 results	 obtained	 after	 the	 synthesis	 are	 described	 and	
discussed	in	Section	4.	

4. Research Results 

The	answers	to	the	stated	research	questions	are	organised	in	Sections	4.1	and	4.2;	and	the	
results	are	discussed	in	Section	4.3.	

4.1. Oracle BI Low-Code Features 

Based	on	the	[12],	[13],	and	[14],	for	a	low-code	approach	to	be	implemented	in	a	BI	system	
(platform	 or	 tool),	 the	 system	must	 contain	 several	 features.	 Table	 3	 lists	 the	 required	
essential	 features	 and	 evaluates	 whether	 Oracle	 BI	 contains	 them	 in	 its	 functional	
description	[6],	 [9].	Additionally,	 the	above-mentioned	 literature	sources	emphasise	that	
low-code	 platforms	 (in	 our	 case,	 the	 self-service	 BI	 platform)	 need	 excellent	 system	
performance,	real-time	behaviour,	high	data	processing,	and	code	automation.	



28	
	

Table	3	
Oracle	BI	low-code	features	
No	 Features	from	[12]-[14]	 Oracle	BI	platform	(system)	characteristics	

according	to	[6]	and	[9]	
1. 	Requirement	modelling	

support	
The	Oracle	BI	platform	does	not	contain	functionality	
that	enables	requirements	management.	

2. 	Visual	development	tools	 Oracle	 BI	 supports	 visual	 designers	 with	 drag-and-
drop	properties,	and	the	Deliver	functionality	provides	
a	fillable	form	with	which	it	will	be	possible	to	adjust	
the	process	and	use	advanced	coding	components	to	
obtain	non-standard	solutions.	

3. 	Reusability	support	 Oracle	 BI	 supports	 SOA	 and	 Microservices	
integrations,	which,	according	to	the	[15],	means	that	
functionalities	are	reusable.	

4. 	Data	source	specification	
management	

The	Oracle	 BI	 system	 allows	 connection	 to	 different	
sources	and	model	data	structures.	

5. 	Interoperability	support	 The	Oracle	BI	 system	allows	connections	 to	external	
systems	for	both	sending	and	receiving	data.	

6. 	Business	logic	specification	
mechanism	

The	 Oracle	 BI	 system	 does	 not	 have	 built-in	
functionality	to	manage	business	rules.	

7. 	Development	automation	
features	

The	Oracle	BI	system	allows	agent-based	automation	
processes.	

8. 	Collaborative	development	
support	

Oracle	 BI	 does	 offer	 collaboration	 possibilities	 for	
developing	a	single	solution.	

9. 	Artificial	intelligence	 There	 is	 no	 possibility	 for	 AI	 directly	 influencing	
Oracle	BI	system	processes	or	solutions.	

10. 	Testing	and	verification	
support	

It	is	possible	to	organise	tests	in	the	Oracle	BI	platform.	

11. 	Deployment	support	 Oracle	Middleware	manages	application	deployments.	

12. 	Security	support	 The	Oracle	BI	system	fully	secures	both	the	apps	and	
the	platform.	

13. 	Lifecycle	management	
features	

The	Oracle	BI	 system	does	not	 provide	 functionality	
for	the	historical	development	of	solutions.	

14. 	Analysis	environment	 The	 Oracle	 BI	 system	 provides	 both	 analysis	 and	
reporting	functionality.	

15. 	Extensibility	 Oracle	 BI	 enables	 connections	 to	 other	 extensions	
using	SOA	or	Microservices	principles.	

16. 	Scalability	 The	 Oracle	 BI	 system	 allows	 control	 of	 connections,	
traffic,	and	server	load.	

	

4.2. Oracle BI Self-Service Process 

Oracle	BI	functionality	allows	the	user	to	invoke	software	agents	to	send	data.	The	agents	
can	call	SOA	or	HTTP	request	processes.	As	SOA	is	usually	integrated	into	a	specific	business	
process,	 then,	 in	 such	 cases,	 the	 SOA	 approach	 cannot	 be	 used	 to	 create	 different	 non-



29	
	

standard	 processes	 for	 data	 storage,	 as	 the	 results	 of	 each	 analysis	may	 be	 relevant	 to	
another	business	process	in	the	enterprise	[15].	To	gain	flexibility	and	use	the	self-service	
BI	approach,	 it	 is	necessary	to	use	the	microservice	approach,	which	 in	Oracle	BI	can	be	
done	using	the	HTTP	request	functionality	[6].	

Since	Oracle	BI	agents	call	an	event,	it	is	the	reason	to	use	an	event-driven	microservices	
approach	[15],	[16].	According	to	the	challenges	of	using	BI	tools	[8]	and	implementing	self-
service	 BI	 [1],	 [5]	 in	 companies,	 microservice	 as	the	solution	 can	be	 adjusted	to	
meet	the	requirements	of	employees.	The	reusability	of	service	helps	company	managers	
get	to	needed	data	faster	and	make	decisions	[3],	[7]	as	they	will	not	have	to	wait	long	for	
solution	development.	This	approach	gives	 the	 flexibility	 to	 scale	 the	data	 structure	and	
volume	and	be	ready	to	increase	data	processing	volumes	in	the	future	[4].	By	introducing	
low-code	 principles,	 it	 must	 be	 respected	 that	 requirements	 will	 grow	 over	 time.	 The	
possibility	of	extending	 functionality	must	be	 foreseen	[17],	and	microservices	are	more	
flexible	for	such	changes	[15].	

For	designing	a	self-service	support	process	that	makes	it	easier	for	a	user	to	utilise	the	
self-service	approach,	it	 is	necessary	to	understand	who	or	what	is	initiating	the	process	
and	 what	 value	 is	 derived	 from	 it	 [18].	 The	 challenge	 for	 the	 BI	 system	 is	 storing	 the	
analytics	 results	 in	 a	 database.	 In	 this	 case,	 the	 process	 is	 initiated	 by	 the	 event	 of	 the	
availability	of	the	analytical	results,	but	the	objective	is	to	have	these	results	stored	in	the	
database	by	a	specified	date,	which	is	valuable	for	the	reuse	of	these	analytical	results.		

In	 the	proposed	process	(Figure	3),	 the	 first	activity	will	be	sending	analytics	results.	
Since	Oracle	BI	will	 transfer	data	using	the	agent	 functionality,	a	casual	user	must	add	a	
table	name	to	the	agent	parameter	[6].	As	the	service	will	be	reused	for	different	analytical	
reports,	the	user	must	define	which	database	table	to	use	to	store	each	analysis.	Because	
Oracle	BI	will	initiate	HTTP	requests,	we	need	a	web	server	to	do	data	pre-processing	tasks	
[19].	During	the	data	pre-processing	activity,	the	data	must	be	prepared	for	storage	in	the	
database.	Once	the	data	is	ready,	it	gets	stored	in	the	database;	therefore,	the	last	activity	
will	be	storing	the	analytics	results	in	the	database.	

	
Figure	3:	Process	to	save	analytical	data	into	the	database.	

However,	since	we	need	to	make	this	functionality	(that	provides	needed	comfort	for	the	
end	user)	repeatable	for	many	instances,	it	is	necessary	to	foresee	that	each	developed	data	
analytics	task	needs	its	own	data	table	created	in	a	database	to	store	the	data.	Therefore,	in	



30	
	

the	process,	we	have	to	consider	two	cases:	one	when	a	new	table	has	to	be	created	in	the	
database	and	the	second	when	the	table	is	already	available	[20].		

Based	on	the	analysis	of	related	works	discussed	above,	a	simplified	process	model	to	
store	analytics	results	in	the	database	was	created,	as	shown	in	Figure	3.	In	the	web	server	
part	of	this	model,	three	additional	activities	were	added,	checking	the	table	name	to	see	if	
such	in	the	database	exists;	if	not,	then	instructing	the	database	to	create	a	table	or	to	add	
new	 data	 if	 the	 table	 exists.	 These	 activities	 were	 added	 because	 the	 web	 server	
communicates	with	the	database	[19].	Therefore,	the	functions	and	their	detailed	activities	
should	be	defined	in	the	web	server	part.	Also,	additional	functionalities	can	be	specified	
here	if	they	are	required	in	the	future	[17].	

4.3. Discussion 

Evaluating	the	research	results	on	Oracle	BI	low-code	features,	Table	3	shows	that	almost	
all	 parameters	 are	 satisfactory	 for	 extending	 the	 functionality	 of	 the	 Oracle	 BI	 system	
following	low-code	principles.	Features	such	as	requirement	modelling	support,	business	
logic	specification	mechanism,	and	lifecycle	management,	which	Oracle	BI	did	not	support,	
depend	more	on	the	company	if	they	have	integrated	such	features.	The	absence	of	these	
features	may	 need	 to	 be	 addressed	 later	 by	 understanding	 that	 these	 are	 not	 technical	
features	 that	prevent	 implementing	solutions	at	 this	part.	Artificial	 intelligence	 features,	
which	also	are	not	supported	directly	by	Oracle	BI,	can	be	implemented	into	the	process	
part,	outside	of	Oracle	BI,	as	additional	functionality	managed	by	the	web	server	if	needed,	
as	it	was	researched	previously	for	the	Oracle	BI	self-service	process.	

The	research	helped	to	develop	a	process	model	for	Oracle	BI	self-service.	The	model's	
main	feature	is	that	casual	users	can	use	the	functionalities	in	an	automated	way	through	
the	microservice.	The	only	task	for	casual	users	would	be	configuring	the	agent,	where	the	
table	name	as	a	parameter	should	be	added,	and	pointing	to	which	database	table	process	
should	 store	analytical	data.	 It	 should	also	be	noted	 that	 the	established	process	 can	be	
extended	 with	 additional	 functionalities	 in	 the	 web	 server	 activity	 field	 and	 additional	
parameters	 in	 the	 agent	 if	 required.	 Therefore,	 the	 possibility	 of	 adding	 different	
parameters	to	an	agent	in	combination	with	the	possibility	of	a	web	server	to	define	new	
functions	allows	 the	development	of	various	kinds	of	 logic	 in	 the	backend.	Using	 such	a	
combination	allows	the	creation	of	a	method	to	extend	the	Oracle	BI	platform’s	functionality	
by	keeping	self-service	BI	and	a	low-code	approach.	As	a	result,	the	user	will	not	have	to	
code	anything.	The	user	can	invoke	changes	by	adding	parameters	to	the	agent	to	trigger	
appropriate	 web	 server	 functions.	 Even	 though	 the	 process	 has	 been	 modelled,	 it	 is	
currently	impossible	to	say	what	each	activity	will	have	as	inputs	and	outputs	because	the	
literature	does	not	cover	exact	solutions	for	systems	to	communicate	with	each	other.		

The	research	results	allowed	the	development	of	a	method	to	create	a	service	that	will	
extend	 the	 Oracle	 BI	 functionality	 to	 store	 analytics	 results	 in	 a	 database	 using	 an	
automated	approach.	Still,	the	results	indicate	that	several	features	are	unavailable	in	Oracle	
BI,	which	can	cause	problems	in	implementing	a	low-code	approach.	Also,	how	the	systems	
will	communicate	must	be	clarified	to	close	the	gap	in	the	process.	Therefore,	to	solve	these	
problems,	 it	 is	 necessary	 to	 investigate	 what	 additional	 functionalities	 need	 to	 be	



31	
	

implemented	 in	 the	 enterprise	 to	 provide	 the	missing	 features	 and	 extract	 the	 process	
activities	so	that	the	input	and	output	for	each	activity	can	be	defined	precisely.	

5. Conclusion 

The	objective	of	the	current	research	was	to	find	a	method	to	extend	Oracle	BI	functionality	
to	allow	a	casual	user	without	technical	knowledge	to	save	analytics	results	in	an	automated	
way	using	a	low-code	and	self-service	BI	approach.	To	carry	out	the	research,	two	research	
questions	were	stated:	“What	Oracle	BI	low-code	features	are	available	for	development?”	
(RQ1)	and	“What	is	the	Oracle	BI	self-service	process	to	enhance	functionality	for	storing	
analysis	data?”	(RQ2).	

As	a	result,	a	 list	of	existing	and	missing	Oracle	BI	 low-code	features	was	acquired	to	
answer	RQ1.	The	available	features	of	the	system	confirm	that	a	low-code	approach	can	be	
achieved	by	extending	the	system	with	appropriate	functionality.	However,	as	discussed	in	
Section	4,	the	features	that	need	to	be	added	can	be	implemented	with	additional	external	
resources	 if	needed.	The	process	model	resulting	 from	the	research	(RQ2)	shows	all	 the	
necessary	activities	to	be	performed	for	the	results	of	Oracle	BI	analytics	to	be	stored	in	the	
database.	The	process	is	expected	to	be	run	using	an	event-driven	microservice	approach.	
The	process	model	is	designed	to	be	used	by	the	casual	user	with	a	low-code	and	self-service	
BI	approach,	and	it	is	also	open	to	expanding	its	functionality	in	the	future	in	case	of	new	
requirements.	By	combining	agent	and	web	server	features,	the	method	was	developed	to	
extend	Oracle	BI	functionality,	which	allows	casual	users	to	keep	working	by	applying	self-
service	BI	and	a	low-code	approach.	During	the	development	of	the	process	model,	a	gap	
was	also	identified,	as	the	proposed	method	is	too	general	to	define	inputs	and	outputs	for	
each	activity.	

Further	research	needs	to	be	done	to	find	solutions	for	the	missing	feature	of	the	low-
code	 approach	 in	 Oracle	 BI,	 as	 well	 as	 to	 investigate	 how	 the	 systems	 in	 this	 platform	
communicate	with	 each	 other	 to	 be	 able	 to	 define	 inputs	 and	 outputs	 for	 each	 process	
activity.	 It	 is	also	 intended	 to	check	whether	 the	method	presented	 in	 this	paper	can	be	
extrapolated	 to	 other	 platforms	 to	 define	 general	 requirements	 for	 similar	 self-service	
support	in	BI	platforms.	

References 

[1] M.	Pałys,	A.	Pałys,	Benefits	and	Challenges	of	Self-Service	Business	Intelligence	Implementation.	
Procedia	Comput	Sci	225,	795–803	(2023).	doi:	10.1016/j.procs.2023.10.066.	

[2] L.	 Veldkamp,	 Valuing	 Data	 as	 an	 Asset,	 Rev	 Financ	 27(5),	 1545–1562	 (2023).	 doi:	
10.1093/rof/rfac073.	

[3] A.	Mosbah,	M.	A.	M.	Ali,	 N.	M.	 Tahir,	 Empowering	 Small	 and	Medium	Enterprises	with	Data	
Analytics	for	Enhanced	Competitiveness,	in:	Proceedings	–	13th	IEEE	International	Conference	
on	 Control	 System,	 Computing	 and	 Engineering,	 ICCSCE	 2023,	 pp.	 338–342	 (2023).	 doi:	
10.1109/ICCSCE58721.2023.10237151.	

[4] K.	Vassakis,	E.	Petrakis,	I.	Kopanakis,	Big	Data	Analytics:	Applications,	Prospects	and	Challenges,	
in:	Skourletopoulos,	G.,	Mastorakis,	G.,	Mavromoustakis,	C.	X.,	Dobre,	C.,	Pallis,	E.	(eds),	pp.	3–20.	
Springer	International	Publishing	(2018).	doi:	10.1007/978-3-319-67925-9_1.	



32	
	

[5] C.	 Lennerholt,	 J.	 V.	 Laere,	 E.	 Söderström,	 User-Related	 Challenges	 of	 Self-Service	 Business	
Intelligence,	 Information	 Systems	 Management	 38(4),	 309–323	 (2021).	 doi:	
10.1080/10580530.2020.1814458.	

[6] Oracle,	 Visualizing	 Data	 in	 Oracle	 Analytics	 Server.	 2023.	 URL:	
https://docs.oracle.com/en/middleware/bi/analytics-server/user-oas/oracle-analytics-
server.html#GUID-6A05572D-8437-40D1-9A4F-44BC37CE7C1C	

[7] M.	 R.	 Llave,	 A	 Review	 of	 Business	 Intelligence	 and	 Analytics	 in	 Small	 and	 Medium-Sized	
Enterprises,	International	Journal	of	Business	Intelligence	Research	10(1),	19–41	(2019).	doi:	
10.4018/IJBIR.2019010102.	

[8] M.	 Wee,	 H.	 Scheepers,	 X.	 Tian,	 Understanding	 the	 Processes	 of	 how	 Small	 and	 Medium	
Enterprises	 derive	 Value	 from	 Business	 Intelligence	 and	 Analytics,	 Australasian	 Journal	 of	
Information	Systems	26,	(2022).	doi:	10.3127/ajis.v26i0.2969.	

[9] R.	Abellera,	L.	Bulusu,	Oracle	Business	Intelligence	with	Machine	Learning:	Artificial	Intelligence	
Techniques	in	OBIEE	for	Actionable	BI,	1st	ed.,	Apress	Berkeley,	CA,	2017.	doi:	10.1007/978-1-
4842-3255-2.	

[10] D.	P.	Wangoo,	Intelligent	Software	Mining	with	Business	Intelligence	Tools	for	Automation	of	
Micro	 services	 in	 SOA:	 A	 Use	 Case	 for	 Analytics,	 in:	 2020	 7th	 International	 Conference	 on	
Computing	 for	 Sustainable	 Global	 Development	 (INDIACom),	 pp.	 98–101.	 IEEE	 (2020).	 doi:	
10.23919/INDIACom49435.2020.9083682.	

[11] Y.	Levy,	T.	J.	Ellis,	A	Systems	Approach	to	Conduct	an	Effective	Literature	Review	in	Support	of	
Information	Systems	Research.	 Informing	Science,	The	 International	 Journal	 of	 an	Emerging	
Transdiscipline	9,	181–212	(2006).	doi:	10.28945/479.	

[12] K.	Rokis,	M.	Kirikova,	Exploring	Low-Code	Development:	A	Comprehensive	Literature	Review,	
Complex	 Systems	 Informatics	 and	 Modeling	 Quarterly	 36,	 68–86	 (2023).	 doi:	
10.7250/csimq.2023-36.04.	

[13] F.	 Khorram,	 J.-M.	 Mottu,	 G.	 Sunyé,	 Challenges	 &	 Opportunities	 in	 Low-Code	 Testing,	 in:	
Proceedings	 of	 the	 23rd	 ACM/IEEE	 International	 Conference	 on	 Model	 Driven	 Engineering	
Languages	and	Systems:	Companion	Proceedings,	MODELS	’20.	New	York,	NY,	USA:	Association	
for	Computing	Machinery	(2020).	doi:	10.1145/3417990.3420204.	

[14] I.	 H.	 Azmy,	 A.	 Azmi,	 N.	 Kama,	H.	M.	 Rusli,	 S.	 Chuprat,	 A.	W.	 Anuar,	Methods	 for	 Application	
Development	 by	 Non-Programmers:	 A	 Systematic	 Literature	 Review,	 in:	 Proceedings	 of	 the	
2023	5th	World	Symposium	on	Software	Engineering,	WSSE	’23,	pp.	1–8.	New	York,	NY,	USA:	
Association	for	Computing	Machinery	(2023).	doi:	10.1145/3631991.3631992.	

[15] T.	Cerny,	M.	J.	Donahoo,	M.	Trnka,	Contextual	understanding	of	microservice	architecture,	ACM	
SIGAPP	Applied	Computing	Review	17(4),	29–45	(2018).	doi:	10.1145/3183628.3183631.	

[16] A.	Bellemare,	Building	Event-Driven	Microservices,	O’Reilly	Media,	2020.	
[17] T.	 C.	 Lethbridge,	 Low-Code	 Is	 Often	 High-Code,	 So	 We	 Must	 Design	 Low-Code	 Platforms	 to	

Enable	Proper	Software	Engineering.	In:	Margaria,	T.,	Steffen,	B.	(eds.),	Leveraging	Applications	
of	Formal	Methods,	Verification	and	Validation,	pp.	202–212.	Springer	International	Publishing	
(2021).		

[18] M.	 Weske,	 Business	 Decision	 Modelling,	 in:	 Business	 Process	 Management,	 pp.	 241–257.	
Springer,	Berlin,	Heidelberg	(2019).	doi:	10.1007/978-3-662-59432-2_5.	

[19] P.	McFedries,	Web	Coding	&	Development	All-in-One	for	Dummies.	Wiley,	2018.	
[20] L.	Rockoff,	The	Language	of	SQL.	Pearson	Education,	2021.	
	


