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Abstract 
This article underscores the importance of integrating machine learning analytics to enhance 
preventive maintenance methodologies, particularly emphasizing condition-based maintenance 

(CBM) within the wind energy domain. Through empirical evidence derived from wind turbine data, 

the paper outlines the efficacy and applicability of Machine Learning in Operations (MLOps) for 

predicting the residual operational life of wind turbine bearings. While the study's principal domain is 
renewable energy, especially wind power, it employs a specific wind turbine dataset for exhaustive 

model testing, leading to the proposition of an innovative ensemble model tailored for high-speed 

wind turbine bearing prognosis. The introduced model, "The Data Interpretation Algorithm for 

Forecasting Time Series" (DIAFS), crafted for assessing wind turbine bearing conditions, is 
predicated on an adaptive polynomial model approximation. It emerges as an indispensable asset for 

maintenance professionals implementing CBM methodologies. 
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1. Introduction 

THE E.U.'s 2050 energy roadmap mandates member states to advance infrastructure for long-

term energy system decarbonization. Estimates suggest a global population increase of 2 billion 

by 2050, requiring 47% more energy for a total of 10 billion people. Given the current energy 

system's inadequacies and climate goals, there's an urgent need for sustainable energy practices 

(energy.ec.europa.eu). In this context, aspects of the wind farms, especially the components, 

such as the wind turbines, are critical to investigate. Wind turbines (W.T.) are complex 
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equipment with a design lifetime of approximately 20 years. However, its life span and 

availability can be augmented by the implementation of condition monitoring and preventive 

maintenance techniques related to operation and maintenance activities. As a result, this means 

that with effective operation and maintenance, these W.T.s are operational to be able to produce 

energy. In addition, Operating and maintenance (O&M) costs are part of a large amount of a 

wind farm's Levelized Cost of Electricity (LCOE). Thus, the reduction of O&M costs provides 

possibilities to control the LCOE in an effective way. Therefore, the optimization of operation 

and maintenance are critical factors in controlling the LCOE.  

Consequently, one of the few measures of reducing the cost of production is to cut the cost 

of operation, including maintenance. It is the second-highest or even the highest element in 

operating expenses in some industries. Swanson [1] mentions that companies have started to 

undertake more efforts to improve quality and productivity as well as reduce costs to achieve 

world-class performance. This has led to examining the activities of the maintenance function. 

The author mentions that effective maintenance is crucial for many operations since it extends 

the life of the equipment, improves availability, and conserves/retains the equipment in 

appropriate conditions. Thus, if a company uses maintenance properly, it increases its 

production and revenue by increasing its availability [2]. This is so because the availability 

change allows the company to vary its production level and output. This, in turn, influences 

sales revenue and production costs. At the same time, the maintenance costs are affected since 

unplanned and preventive maintenance varies. In addition, the positive impact of the digital 

transformation efforts and their respective ICTs on maintenance and, thereby, productivity has 

been realized by academia and industry alike [3]. 

 Additionally, it's well known that condition-based maintenance (CBM) preventive 

maintenance strategy is preferred wherever it is technically feasible and financially viable. The 

heart of CBM is condition monitoring (CM), which in principle, involves data acquisition, 

processing, analysis, interpretation, and extracting useful information. The information helps to 

identify whether asset health has deviated from the normal. If so, then fault diagnosis and 

prognosis usually follow. Finally, a decision is taken regarding when and what maintenance 

tasks are to be performed.  

The CBM is now the most widely employed strategy in the Wind Farm industry [4–7]. 

Condition monitoring and maintenance can be performed with, for instance, vibration analysis, 

acoustic emission, sensory signals and signal processing methods, statistical methods, trend 

analysis, time-domain analysis, fast-Fourier transform (FFT), wavelet transforms, fault tree 

analysis (FTA) [8-9].  

When it comes to renewable energy sources, such as wind farms, the efficiency 

improvement in energy production goes hand in hand with the possibility of providing 

predictive maintenance to the different energy production equipment. For instance, to provide 

service to various equipment, the level of energy production is stable and can utilize its full 

potential without fluctuations due to equipment breakdowns. Although, a disadvantage of using 

wind farms is that they do not always produce energy. It requires storing energy when 

production diminishes because of changed weather conditions. Therefore, battery storage 

systems offer the possibility of having a more stable output of power to match the required 

demand. Obtaining energy while minimizing pollution/contamination and costs is worrying 

many due to climate change and global warming. In this aspect, renewable energy is an 

excellent alternative. Continuously, the fluctuations in energy production as a result of different 



weather conditions have led to the option of moving the wind turbines offshore since the 

conditions are better suited, i.e., higher and stable wind speeds are experienced [10]. The 

importance of renewable energy in the future is a fact; for instance, Balischewski et al. [11] 

mention that renewable energy production in the case of wind power accounted for 

approximately 12% of Germany's total power production in 2015. In addition, in 2019, wind 

energy generated enough electricity to cover 15% of Europe's power demand (windeurope.org). 

Thus, the wind-energy sector has grown significantly among renewable energy sources in the 

last two decades. The most common fault in wind turbines is linked to gearbox failures, though 

the bearing errors are overrepresented [12].  

Furthermore, it is well known that difficulties arise when implementing the entire cycle of 

condition-based maintenance (CBM). It is connected with specific issues regarding CBM 

characteristics, such as the amount of data produced, data integrations, and the lack of experts. 

Consequently, these issues have been tried to be solved over time, namely with the support of 

various ICTs, such as expert systems, decision support systems, artificial intelligence, and 

distributed intelligence [13].  

Consequently, the main contributions of this paper are connected with the use of machine 

learning (ML) algorithms supported with MLOps, e.g., machine learning in operations. Its 

contributions are the following: 

•A Machine Learning (ML) pipeline that uses training data from wind turbines. This design 

identifies patterns and creates a model that can handle new data without breaking. 

• A new ML model for predictive maintenance for wind turbine bearings. This model 

monitors the condition of wind turbine bearings using an adaptive polynomial model to 

approximate time series data. The data is split into two: level and trend. For forecasting, it 

considers past data trends. We also employed the Holt-Winters Exponential Smoothing method 

for more precise forecasting. The high R-Squared values of proposed model suggest it 

effectively predicts new data. 

• In addition, two ML stacking models were developed. One combines regression and k-

nearest neighbors (knn) with a regression tree, while the other combines regression with support 

vector regression (svr) and a regression tree. These combinations reduce predictor correlation 

and enhance model generalization. Notably, the second model has a low Root Mean Square 

Error, indicating minimized errors in predictions.  

Overall, the approach described in this article is comprehensive and provides an effective 

solution for wind turbine-bearing data analysis and forecasting. The research methodology is 

built as follows: 

1. Dataset preprocessing. 

2. Models' development. 

3. Results evaluation. 

4. System architecture development. 

5. System development and testing. 

The contribution mentioned above is presented further in section 4 of the paper. 

Accordingly, section 2 highlights some aspects of the domain of interest. Then, later in section 

3, the machine learning analytical capabilities are explained, and the term MLOps, i.e., machine 

learning in operations, is presented; hence, the section discusses what would be needed to 

achieve analytical capabilities supported by the MLOps in the field. Further on, in section 4, a 

case example using Wind turbine failure data is provided, namely for a bearing fault considering 



the essential aspects of implementing MLOps in the domain. Finally, in section 5, the 

discussions and conclusions are given. 

2. Preventive Maintenance of Wind Turbines 

Despite the widespread adoption of wind turbines, the effective prediction of bearing failures 

remains a significant challenge, leading to unplanned downtimes and reduced turbine 

availability. Therefore, operation and maintenance, and specially condition-based maintenance, 

become key aspects to consider in this context.  

Thus, one of the most common faults in wind turbines is connected with gearbox failures, 

but where the bearing errors are overrepresented [12]. It is known that the main bearing failures 

are vital factors to consider when it comes to increasing wind farms' reliability and availability 

[14]. Furthermore, it is one of the critical reasons that condition monitoring on the bearings is 

crucial. Hence, the failures of rolling element bearings (REBs) considerably influence the entire 

machinery; therefore, it is of primary importance to perform effective condition monitoring of 

REBs not to incur lost production time and economic losses. Moreover, it is crucial to be able to 

decide when to perform maintenance actions to the equipment based on condition monitoring 

and its connected CBM approach. In this respect, diminishing energy costs, especially those 

connected with unplanned stoppages, faults, support delays, etc., is crucial.  

Consequently, all the former aspects are related to operation and maintenance practices, 

with considerable potential for cost reductions and innovations. Therefore, it is essential to 

consider the operation and maintenance of the wind industry, especially when it is believed to 

drastically cover a significant part of the E.U.'s total electricity consumption. Further, the 

domain's state of the art and challenges and its wind turbine bearing condition monitoring 

methods can be found in [15]. In addition, a review of the use of machine learning methods for 

wind farm turbines is also highlighted in [16]. The remaining useful life (RUL) is the length of 

time a machine is likely to operate before it requires repair or replacement. By taking RUL into 

account, engineers can schedule maintenance, optimize operating efficiency, and avoid 

unplanned downtime. For this reason, estimating RUL is a top priority in predictive 

maintenance programs. The paper calculates RUL based on methodology from [17]. In this 

case, the availability of wind farms, as mentioned above, is vital to produce energy. Their 

availability can be seen as technical availability, which involves the percentage of time that a 

wind turbine/wind farm is available to generate energy. It is stated as the percentage of the 

theoretical maximum of its availability [18, 19]. The equation below is from the IEC Standard 

61400-26, highlighting the percentage of the theoretical maximum, as mentioned above. This 

formula is widely used in the wind industry and indicates the operational performance of wind 

turbines/wind farms.  

 

Availability = 1 – (Unavailable Time)/(Available Time + Unavailable Time) 

 

Thus, low availability can be poor wind farm reliability performance or a below-standard 

maintenance action. Therefore, an effective operation and maintenance approach (O&M ) is 

crucial to be able to make the conditions of optimal availability of the wind turbine, which at the 

same time can produce the expected amount of energy.   



Consequently, the efficiency improvement in energy production goes in hand with the 

possibility of providing predictive maintenance to the different energy production equipment. 

For instance, to provide service to the various equipment by doing so is the level of energy 

production stable and can utilize its full potential without fluctuations because of equipment 

breakdowns. It is, therefore, crucial to optimize the O&M. Thus, preventive maintenance based 

on the CBM approach provides an understanding of when it is suitable to maintain the 

equipment to avoid unplanned stoppages; in this case, the energy production and try to keep the 

wind turbines available so they can be operational and receive service when it is needed. It is, 

therefore, key to understand the various offshore wind turbine operation and maintenance 

approaches and how they might impact O&M [20]. Consequently, it is essential to find tools, 

such as machine learning algorithms supported with Mlops, to support the preventive 

maintenance of wind turbines.. 

3. Machine Learning Analytical Capabilities via Mlops 

In the application of machine learning methodologies, it is imperative to source appropriate 

datasets and subsequently undergo rigorous data preprocessing. This involves the acquisition of 

relevant data, subsequent cleansing procedures, and preparation for analytical diagnosis. 

Periodic retraining of models is essential to ensure their robustness and accuracy. Furthermore, 

for optimal performance, it's paramount that models autonomously adapt their parameters based 

on data-driven insights, especially in response to dynamic changes in the input dataset [21,22]. 

This self-adjustment capability ensures the model's relevance and precision across varying data 

landscapes, which are all key aspects. ML is used where it can be applied to learn by comparing 

and correlating numerous similar patterns from various data sources to develop models to 

understand and foresee different things of interest [23-24]. ML learning learns from experience 

based on big data or specific datasets. It can detect different patterns in the labeled and not 

labeled data, i.e., supervised and unsupervised learning, and from where the results are not 

known [25]. The role of the ML in industrial asset management is to provide further information 

about when to provide services to the production equipment to keep production running and 

avoid unplanned stoppages. The increase in the use of A.I. and ML depends on, for instance, 

emergent technologies, such as new sensor technologies, the Internet of Things (IoT), and big 

data, which goes hand in hand while intending to reach industry 4.0 and all that it involves in 

the digitization process. The characteristics of these technologies are that they increase the 

amount of data that is created, gathered, and possible to analyze. Several different machine-

learning algorithms have been tested and suggested [23-25]. However, in the domain of 

industrial asset management, i.e., condition monitoring and maintenance and its related CBM 

approach, the specific tools and techniques have been successfully used for several years. 

Hence, they are slow and rather conservative and belong to a vertical market, e.g., to 

acquire/adopt new emerging technologies. However, the domain still leans on its well-accepted 

signal processing technologies, among others, for the CBM approach. Therefore, it is essential 

to understand if those suggested ML algorithms have a place in a running CBM strategy, i.e., if 

they are suitable for operation, namely the so-called MLOps (Machine learning in operations). 

Nevertheless, there are efforts to use machine learning methods for wind farms turbine, 

especially for blade fault detection or generator temperature monitoring [16]. The use of 

machine learning for wind turbine bearing fault detection in [26, 27] is reported. However, the 



implementation and use of the MLOps approach are not considered. Thus, these new ICTs, such 

as the IoT, big data, and machine learning, involve substantial modifications in several aspects 

for their successful implementation and use, i.e., how the maintenance department creates, uses, 

and manages their different Information Systems (I.S) & digital capabilities. The current work 

considers the use of the bearings faults as a case to highlight the use of ML in the domain of 

interest. MLOps come into the picture to provide organizations with the capabilities embedded 

in those technologies, in this case, machine learning into MLOps for industrial asset 

management. The term MLOps was coined by Sculley et al. [28] in the article titled "Hidden 

technical debt in machine learning systems." In this case, the needs of MLOps emerge, i.e., 

machine learning in operations, e.g., a term that is derived from the DevOps for machine 

learning. It highlights critical issues in machine learning and the gap from the pilot development 

into the actual deployment, which needs to consider many more aspects. This is highlighted in 

Figure 1 below. As seen in Figure 1, there is a need to cover several elements to implement ML 

successfully into operations in the domain. 

 
Figure 1: Highlights the small fraction of real-world machine learning systems composed of 

ML codes, as seen by the dotted box in the middle (modified from [28]). 

 

At the same time, the prerequisite surrounding infrastructure is vast and multifaceted. The 

different business needs to organize continuous cooperation and interaction between all 

participants in the processes of working with machine learning models, from business to 

engineers and Big Data developers, including Data Scientists and ML specialists. MLOps is 

important for industries with needs of streaming data processing, such as wind turbines 

remaining useful life forecasting. Thus, MLOps provides organizational and business 

capabilities, i.e., automation, engagement, insight/decision-making, and innovation [25]. Hence, 

one of the main challenges in connection with Artificial Intelligence and machine learning, in 

this case, is that many of the systems are in the experimental phases, and few of them are 

deployed in production because of their complexities. Furthermore, deployment entails multiple 

factors, such as data and system integration with existing technologies, architectures, and legacy 

infrastructure. In addition, modification of business processes and the organizational culture, 

adequate employee skills, data engineering, organizational change management, etc. [29]. 

Consequently, as a result, the total production deployment is a lengthier process than pilot 

projects and has higher costs. It is, therefore, crucial to have a clear strategy, vision, and purpose 

for taking advantage of the inherent organizational intellectual skills and material resources 

[29]. Thus, digital transformation and its solutions must be combined with people and a smart 

approach to successfully digitalizing the area of interest. Hence, the focus should be on 



optimizing maintenance throughout the asset life and based on the operations' needs with 

suitable digital solutions. 

IV. Creating analytics capabilities for wind farms supported by the 

MLOps approach 

This section outlines the process of implementing MLOps for wind turbines equipped with 

sensors on their bearings. Initially, the MLOps framework facilitates the integration of resources 

from diverse origins. Additionally, the selection of an appropriate model may vary based on the 

source of data. A schematic representation of the MLOps pipeline is provided in Figure 2. 

 
Figure. 2: The general scheme of the MLOps pipeline. 

 

The reason for monitoring the ML model is to understand how it solves the business 

problem. Concerning wind farms, data quality is crucial. Often this data is presented as a time 

series. In addition, seasonality may be different for different data sources because wind farms 

are situated in different places with various conditions. Despite its "flexibility" in finding 

relationships in large datasets, the ML model has many vulnerabilities.  

Therefore, effective monitoring of machine learning models is essential for several reasons. 

First, the quality and structure of input data play a pivotal role in the accuracy of the model. 

Second, as models evolve, their performance can degrade over time, necessitating consistent 

evaluations. Third, there are challenges related to interdependent models and unique pipeline 

configurations. Fourth, there may be instances of abnormal values or predictions that the model 

has not previously encountered, emphasizing the need for robust outlier detection mechanisms. 

Additionally, understanding the model's inner workings and decision-making process is vital, 

particularly in contexts where interpretability is crucial. In many scenarios, there's ambiguity 

regarding the true values in queries a priori, leading to uncertainty about the precise class or 

cluster to which a particular component belongs. Furthermore, the time required for model 

computations, potential unavailability of deployment endpoints, alterations in the application's 

business logic, susceptibility to cyberattacks, and potential data losses all underscore the 

importance of rigorous monitoring. Such considerations are fundamental in ensuring the model's 

accuracy and reliability throughout its lifecycle.  

In the present study, we analyzed a dataset obtained from a 2MW wind turbine's high-speed 

shaft driven by a 20-tooth pinion gear [30]. Vibration signals, each lasting 6 seconds, were 

captured daily over a span of 50 consecutive days. Notably, on March 17, two measurements 

were taken and are considered as separate days for this analysis. Over these 50 days, an inner 



race fault emerged, leading to the bearing's failure. In its compact form, the dataset has a 

measurement time step of 5 days. The Remaining Useful Life (RUL) computed using the 

methodology from [17] is utilized as a time series. Various models have been employed for data 

analysis, and a novel ensemble has been explicitly introduced for prognostics and RUL 

forecasting of wind turbine high-speed bearings. The structure of this research is outlined as 

follows: 

1. Time Series Analysis: Classic time series models are employed for a primary data 

investigation. 

2. Data Interpretation Algorithm Development: A novel Data Interpretation Algorithm 

for Forecasting Time Series is crafted based on the modified adaptive mono-

parameter Braun model. Data is segmented into levels and trends. The Holt-Winters 

Exponential Smoothing method, tailored for time series data with both trends and 

seasonal variations, is employed. This method facilitates forecasting by leveraging 

previously observed weighted changes. 

3. Predictive Modeling: Classical predictive machine learning models are utilized 

alongside the development of a new ensemble schema. The innovative stacking 

model we developed suggests deforming meta-features based on pairwise 

multiplication results. These are then integrated with the training dataset in a meta-

model. 

4. Result Analysis and MLOps Architecture Development: A comparative analysis of 

the results is conducted, leading to the formulation of an MLOps architectural 

framework. 

Initially, classical time series models are applied. The polynomial trend model essentially 

functions as a multiple regression equation, making the methods and procedures of regression 

analysis, as discussed in the initial segment of this publication, largely relevant for its 

delineation. The AutoRegressive Integrated Moving Average (ARIMA) constructed time series 

is illustrated in Fig. 3. It begins with a visualization of the vibration signals in the time domain. 

Forecasts are generated for the subsequent five values (depicted by the red line). This 

visualization offers forecasted data without any smoothing. 

 
Figure. 3: The diagram of ARIMA 

 

For time-series forecasts, Root Mean Squared Error (RMSE) measure is used. It is equal to 

17.93.  

Next, based on vibration level, RUL is calculated. 



To decrease RMSE, smoothing is proposed. The adaptive mono-parameter Braun model is 

used for stationary time series based on simple exponential smoothing: 

 

y ̂_(t+1)=S_t,S_t=αy_t+(1-α) S_(t-1),t=1,2,3,…,  (1) 

 

where y ̂_(t+1) is the prognostic value of time series level in time (t+1), S_t is the exponential 

mean, α is the adaptation coefficient, and y_t is the current time series value. 

In this context, the model's value is derived from a weighted average of the current actual 

value and preceding model values. This weight is commonly referred to as the smoothing factor. 

It dictates the rate at which the most recent observable data point diminishes in influence. A 

lower weight ensures that prior model values exert a stronger influence, leading to a smoother 

data series. Taking the adaptation coefficient α and the warning period τ, it is necessary to 

approximate the series using an adaptive polynomial model. 

The novel method for predictive maintenance of wind turbine bearing is developed in the 

paper. 

This method consists of the following steps: 

1.  Zero-order time series analysis (р = 0); 

2. First order time series analysis (р = 1); 

3. Assess the accuracy and quality of forecasts; 

4. Make a forecast. 

The first two steps of proposed method are presented below. 

Step 1. 

The procedure for Step 1 was developed as a sequence of the following steps: 

Let y ̂_0= y_0. 

Append array y  ̂using the following formula:  

y ̂_(t )= α*y_t+(1-α)* y ̂_(t-1)  ,   (2) 

where y ̂_(t ) is an actual value, and y _̂(t-1) is the previous number from the prediction array. 

Repeat step 2 for all values in the dataset. 

Step 2. 

1. Let x=1, y ̂_0= y_0, l_0= y_0, and .b_0= y_1-y_0, where y is our initial dataset. 
2. Define new level value using the formula: l_x= αy_x+(1- α)(l_(x-1)+b_(x-1) ). 
3. Define new trend value: b_x=β(l_x-l_(x-1) )+(1-β)b_(x-1). 
4. Define our prediction y ̂_(x+1)=l_x+b_x. 
5. Define x=x+1 and repeat steps 2-5 until x<n. 

 

The results of proposed method are given in Table 1. 

The performance of the time series models on the presented testing data is given below: 

1. Exponential Smoothing: MAPE is appr. 8.5 % 

2. Proposed method: MAPE is appr. 2.2 % 

3. Holt's Trend Method: MAPE is appr. 6.6 % 

4. ARIMA: MAPE is appr. 3.1 % 

5. TBATS: MAPE is appr. 3.2 % 

The Exponential Smoothing model did well by achieving a lower MAPE of 8.5 percent. All 

the other models outperformed them by producing lower MAPE. However, the DIAFS model 



emerged as the winner based on its test data with MAPE performance, which was close to 2.2 

%. 

 

Next, machine learning predictive models are used for data analysis. 

First of all, kurtosis was calculated. The kurtosis measure describes the tail of distribution – 

how similar are the outlying values of the distribution to the standard normal distribution? For 

example, the standard normal distribution has a kurtosis of 0.  

Stochastic variables and numerous uncertainties can substantially complicate the problem. 

To circumvent these challenges, various ensembles are proposed. An ensemble method in both 

statistics and machine learning leverages multiple trained algorithms to achieve superior 

predictive performance than what could be attained by any single algorithm alone. In contrast to 

a statistical ensemble, a machine learning ensemble encompasses a distinct finite set of 

alternative models but typically allows for much more flexible structures. The central premise is 

to employ fundamentally diverse models to enhance the capability of processing unfamiliar 

data. The results derived from regression, KNN, ANN models, and the proposed ensemble of 

predictive models were subsequently compared.  

Bagging is an ensemble technique where models are trained in parallel on different random 

subsets of the training data. The final decision is derived from the majority voting of the 

ensemble classifiers, selecting the class predicted by the majority.  

Boosting involves training an ensemble of models sequentially, where each subsequent 

model focuses on instances that the preceding classifier misclassifies. While boosting typically 

yields more accurate results than bagging, it can be susceptible to overfitting.  

Stacking involves partitioning the training set into N blocks. N-1 blocks are used to train a 

set of base models, while the Nth block, paired with outputs from the base classifiers (referred 

to as meta-features), trains another model. One limitation of the traditional stacking approach is 

the disparity between the meta-features in the training sample and the actual responses from 

specific regressors. In classical stacking, non-overlapping unique values may exist between 

training and testing meta-features. Our developed stacking model seeks to address this by 

deforming meta-features based on pairwise multiplication outcomes. These transformed 

features, combined with the training dataset, feed into a meta-model, mitigating weak predictor 

result correlations and enhancing model generalization.  

Regression analysis utilized three condition indicators: RMS, Kurtosis, and E.I. Performance 

of each regression model was assessed using RMSE, R^2, and adjusted-R^2. Among the models 

tested, SVR, polynomial regression, and a single-hidden layer ANN with 12 neurons emerged 

as the superior weak predictors. Conversely, the tuned KNN model underperformed, as shown 

in Table 1. 

 

Table 1.  

Models' Performance Metrics. 

Model/Metrics RMSE R2 Adj.R2 

Polynomial regression 0.164 0.595 05.77 

ANN 0.217 0.881 0.875 

Knn 13.94 0.945 0.942 

SVR 0.203 0.884 0.880 



Proposed model 0.212 0.954 0.944 

Bagged regression 0.321 0.942 0.893 

Stacking (regression and knn +regression tree as  metaregressor 0.932 0.921 0.921 

Stacking (regression and knn +random forest as  metaregressor 0.157 0.744 0.742 

 

The results derived from our proposed ANN model showcase its capability to predict the 

remaining useful life of a bearing, a feat attributed to the synergy between the regression and 

ANN models through the optimal condition indicator. The DIAFS model also exhibits 

promising results, boasting the highest R-Squared and Adjusted R-Squared values, suggesting 

its potential in forecasting novel observations. Although the ANN model provides accurate 

predictions and is corroborated by other research [12, 16], its performance remains reliant on 

the regression model. This dependency underlines why ensemble models typically surpass 

standalone ANN models. The second stacking model boasts the lowest RMSE, signifying 

minimal residuals. However, its R^2 value doesn't mirror this superiority, underscoring the 

necessity of the regression model in optimizing the ANN's predictive efficacy. 

In the implemented system, forecasts are pre-calculated using a pre-trained ML model for 

incoming data and stored in a dedicated database. Subsequent input requests access this 

database for predictions. Architecturally, this mirrors the Lambda pattern, blending "hot" real-

time data processing with "cold" historical data processing, typically residing in a Data Lake on 

Apache Hadoop (Fig. 4). 

 

 
 

Figure 4: Lambda-architecture for ML-system in MLOps. 

 

The Lambda Architecture encompasses both a conventional batch data pipeline for fast-

streaming real-time data and a serving layer designated for query responses. Ingressed batch 

data populates a batch layer, prepping it for indexing. Several pre-trained ML models then 

analyze this data concurrently. The models listed in Table 1 are incorporated. The serving layer 

facilitates the pre-result voting process, selecting the best model or a suitable combination for 

the given data. The selected model subsequently processes incoming stream data. 

5. Conclusions 

This research introduces a predictive model rooted in MLOps methodology to determine wind 

turbine bearings' Remaining Useful Life (RUL). The model efficiently detects degradation 



patterns in real time, adjusting its parameters in response to new data, and offers a fully 

automated configuration, enabling its deployment across multiple wind turbines. As such, it 

emerges as an indispensable tool for condition-based maintenance. 

Our ensemble stacking model, incorporating regression, SVR, and random forest techniques, 

has demonstrated commendable generalization capabilities. The model's effectiveness is 

underscored by its proficiency in leveraging condition indicators, which were appraised using 

criteria like monotonicity and trendability. 

The incorporation of MLOps in this research has facilitated the following: Enhanced 

innovation through holistic machine learning lifecycle management; Reproducible and robust 

model iterations tailored for enterprise settings; Efficient tracking using advanced dataset and 

model registries; Improved traceability and accountability through detailed logging; 

Streamlined model workflows ensuring consistent delivery; Generation of unbiased models 

emphasizing feature importance, assessed using uniform distribution metrics. 

Our research further proposes new model for monitoring wind turbine bearing conditions. 

DIAFS's adaptability, anchored in an adaptive polynomial model, facilitates real-time 

refinement, promising accurate and timely predictions. This algorithm not only refines the 

precision of forecasting but also augments maintenance strategies. Through DIAFS, potential 

issues can be preemptively identified, optimizing resource allocation and reducing operational 

downtimes. Such a data-driven approach, focusing on empirical evidence, leads to significant 

cost savings, increasing wind turbines' overall efficiency and lifespan. Furthermore, the 

scalability inherent to DIAFS ensures its applicability within the expanding world of wind 

energy. 

While the primary application of the ensemble model is in wind turbines, its adaptable 

architecture ensures relevance across varied industrial maintenance scenarios, such as managing 

Rolling Element Bearings (REBs) failures. Beyond the technical abilities mentioned above as a 

digital transformation driver, this study recognizes the pivotal role of workforce adaptation to 

these evolving digital tools. 

Lastly, future research will focus on adapting the developed models to analyze raw data in 

real time. Additionally, it would be interesting to extend the MLOps pipeline to facilitate real-

time monitoring of wind turbines, thereby enabling faster fault detection and the potential 

implementation of predictive maintenance strategies.  
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