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Abstract 
                       In this research, we introduce an approach to collision detection and trajectory validation in static 

scenes by harnessing the power of deep neural networks (DNNs). Traditional methods have 
frequently encountered challenges with high computational and memory demands, limiting their real-

time applicability, especially in robotics and simulation environments. Our newly developed model 

addresses these constraints by delivering a swift and memory-efficient solution. Leveraging data from 

a Bullet physics simulator for training, our approach not only preserves high accuracy but also 
achieves significant improvements in both speed and memory usage compared to conventional 

simulation techniques. This innovation marks a substantial step forward, offering promising avenues 

for advancing real-time applications in robotics and simulation domains, potentially revolutionizing 

how these systems operate and perform. Furthermore, the adaptability and scalability of our model 
suggest broader applications beyond the current scope, paving the way for future research in related 

fields. The integration of deep learning techniques could lead to more intelligent and responsive 

systems, enhancing overall system reliability and performance. 
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The validation of robotic trajectories in complex static scenes stands as a pivotal yet intricate 

task in the realm of robotics and automation. As robots become increasingly integrated into 

various sectors, from manufacturing to healthcare, ensuring the accuracy and safety of their 

movements becomes paramount. Long paths, in particular, present significant challenges due to 

the intricate interactions with the environment. Traditional methods employed for trajectory 

validation, such as dynamic simulation, grid lookup tables, and simplification strategies, have 

shown limitations. These constraints often manifest as high computational loads, extensive 
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memory requirements, and compromises in accuracy, making real-time application infeasible in 

many scenarios[1, 2]. The advent of deep learning technologies offers a promising avenue to 

address these challenges. Deep neural networks (DNNs) have demonstrated remarkable 

capabilities in handling complex tasks across diverse domains, including computer vision, 

natural language processing, and now, robotics. By leveraging the power of DNNs, it becomes 

possible to devise more efficient and accurate solutions for collision detection and trajectory 

validation. In this context, this paper introduces a deep learning-based solution tailored to 

navigate the complexities of validating robotic trajectories in static scenes. Our approach aims 

to predict collision states and determine nearest geometry distances with heightened efficiency 

and a reduced memory footprint. By doing so, we aspire to elevate the standards of trajectory 

validation, paving the way for safer and more reliable robotic operations in complex 

environments[3-6]. This research contributes to the ongoing efforts in advancing robotics by 

harnessing the potential of deep learning, ultimately aiming to revolutionize the field's 

capabilities and expand its horizons[7,8]. 

1. Analysis of literary sources 

 The idea of Neural Radience Fields or NeRF is shown in [1]. The main point there is 

volumetric representation of some scene, also stored in DNN. The model in NeRF is more 

complex, with 5 degrees of freedom, where X, Y, Z is the position and two angles representing 

the direction ray. However it also needs much more complex architecture and longer training 

time.  

This research presents a novel approach to collision detection and trajectory validation in 

static scenes by employing deep neural networks (DNNs).  

Traditional methods for collision detection and trajectory validation face challenges like high 

computational and memory demands[4]. 

These challenges limit their real-time applicability, especially in robotics and simulation 

environments. The research introduces a model that harnesses the capabilities of DNNs[9,10]. 

This model aims to overcome the computational and memory constraints of traditional 

methods[11, 12]. Data from a Bullet physics simulator is used for training the DNN, ensuring 

high accuracy while improving speed and memory usage. The proposed approach offers a swift 

and memory-efficient solution. It achieves significant improvements in speed and memory 

usage compared to conventional simulation techniques [13,14,15]. The innovation presented in 

the paper represents a substantial advancement in real-time applications for robotics and 

simulation. 

The adaptability and scalability of the model suggest potential applications beyond the 

current scope, indicating its versatility and broad applicability [15]. 

The paper's approach to utilizing DNNs for collision detection and trajectory validation is 

innovative. By leveraging the power of deep learning, the research aims to address the 

limitations of traditional methods, potentially leading to more efficient and reliable systems. 

The improvements in speed and memory usage can have significant practical implications. 

Faster and more memory-efficient collision detection and trajectory validation can enable more 

responsive and reliable robotic systems, which is crucial for real-time applications. 

The adaptability and scalability of the proposed model open up possibilities for future 

research in related fields. The integration of deep learning techniques could lead to the 



development of more intelligent and responsive systems, enhancing overall system performance 

and reliability. 

This research presents a promising approach to tackling challenges in collision detection and 

trajectory validation in static scenes. The integration of deep learning techniques offers potential 

advancements in the field of robotics and simulation, paving the way for future innovations and 

research. 

2. Methods and means 

Our research focused on the validation of robotic trajectories, a critical task that requires 

rigorous optimization for effective implementation.   

2.1. Description and justification of selected machine learning models 

Motivated by the necessity to represent the room geometry in a more compact and efficient 

manner, we sought to approach the problem from a novel perspective. Given the importance of 

ensuring safe robot navigation and the need to choose safer trajectories, our research 

concentrated on these aspects. For our work, we utilized the Bullet Physics Library, 

encapsulated within the PyBullet wrapper, and PyTorch for training neural networks due to its 

popularity and our familiarity with it. We set certain constraints for our experiments: the scene 

and robot were predefined, and only one scene, one robot, and one model were considered for 

simplicity. Bullet Physics is a modern physics engine that operates in three-dimensional space. 

It is provided with open-source code, which allows for easy analysis and study. The physics 

engine is designed for realistic simulation of object collisions. It is a set of tools that allows for 

the use of pseudo-realistic behavior of complex objects for gaming, engineering, or scientific 

purposes. Fig. 1 describes the main actions performed by the engine. The world is updated using 

the stepSimulation command. This command checks the update frequency of the world through 

OS tools, then determines the kinematic positions and velocities of all objects, applies gravity, 

and determines the substeps necessary for Bullet to function correctly. 



 
 

Figure 1: Random forest functional model playback. 

 

Steps are the number of specified time intervals that fit into one Simulation Step. If the 

world updates quickly, there are fewer Steps, and vice versa. In other words, we have an infinite 

simulation loop (step) within which its small Steps rotate. Thus, a piecewise simulation is 

performed based on some system tick, its internal time. 

Within each step, a set of actions is performed that determine the position of the object. 

Damping of objects is necessary partly due to the discreteness of the simulation: issues with 

infinitely small speeds need to be resolved, for example. Movement prediction of points is 

carried out by integrating the velocity of the mesh points of the object; subsequently, this data is 

used for further calculations. will get acquainted with the first classes. The base class 

btCollisionWorld is the foundation of Bullet. On top of this class, the 

btDiscreteDynamicsWorld class is implemented, which describes the specific implementation 

of collision physics. Inside the Discrete World (DW), auxiliary classes 

btClosestNotMeConvexResultCallback and btSingleSweepCallback are implemented, which 

implement the interaction between the DW and other objects. 

The btRigidBody class is essential for physical bodies interacting within the engine. 

The btDbvtBroadphase class implements the main stage of interaction analysis, using two 

dynamic hierarchies/trees of volume constraints based on the AABB (axis-aligned bounding 

box) algorithm. One tree is used for static objects, and the other is for dynamic ones: objects can 



move from one hierarchy to another. In principle, the entire interaction analysis is distributed by 

the author into BroadPhase and NarrowPhase. 

The btDbvt class is closely related to the previous one: it represents a fast-acting tree for 

computing interaction volume constraints based on an axis-aligned parallelepiped. Otherwise, it 

looks for interacting object pairs. It can quickly insert, delete, or update nodes. Nodes can 

dynamically rotate around the hierarchy, changing the structure of the main topology. The 

btContinuousConvexCollision class (belongs to Narrow Phase) performs time estimation for 

collision during angular and linear movement. Its main task is to maintain consistent motion. 

Currently, it uses the idea of conservative motion by Brian Mirtich, with the future addition of 

the Minkowski algorithm (already implemented in the library) planned. The 

performDiscreteCollisionDetection algorithm is executed next after the DPS, and it is 

presented in the picture below. It involves the well-known classes btCollisionWorld and 

btDbvtBroadphase, as well as several new ones. 

Next, the perform DiscreteCollisionDetection and calculateSimulationIslands functions 

are executed. The performDiscreteCollisionDetection function is intended for analyzing the 

interaction of objects of different types according to predefined algorithms: for sphere-sphere 

interaction, its own algorithm, etc. All these algorithms are predefined. 

The process of loading a mathematical model looks as follows: 

1. Creating the model in Blender; 

2. Exporting to an fbx file; 

3. Loading into Static Mesh through the UE editor; 

4. In the target object AActor, we add the model to UStaticMeshComponent; 

5. Next, we unload it into btCollisionShape, more precisely into btConvexHullShape; 

6. Then we associate btRigidBody with the obtained shape. 

I'd like to draw attention to the following point: two different but coinciding in 

coordinates points of the object arise, UStaticMeshComponent and btCollisionShape. 

They coincide in this example for clarity but remain completely independent entities. The 

stage is set from the beginning, all the geometry is known in advance. The robot is also 

defined from the beginning, at the moment no moving parts are provided. One scene - one 

robot - one model. To start with, a function was chosen that the neural network will be 

trained on. 

 𝑓(𝑥, 𝑦, 𝑡ℎ𝑒𝑡𝑎) −>  𝑑𝑖𝑠𝑡,  

 

to scene geometry if not in collision and 0 if collision. 

This function is continuous and strictly non-negative, which allowed us to employ certain 

techniques (more on this later). x, y,θ represent the robot's absolute position in the world and its 

rotation around the Z-axis. 

This function was chosen for the following reasons: 

It is important to be able to compare the "safety" of two positions, as in the standard 

implementation through the same simulation; this would take a lot of time. Hence, it usually 

limits itself to merely checking "collision or no collision." 

The first step was dataset generation. PyBullet has built-in functionality that allows checking 

the distance between objects, so it was utilized. The data generation speed was approximately  

2-10 thousand values per second for a relatively simple scene with a basic robot (just a cube). 



It's also worth mentioning that Bullet lacks parallel data processing capabilities, 

necessitating the creation of separate threads/processes to improve efficiency. 

For the neural network architecture, a standard DNN with four hidden layers of sizes 256, 

256, 256, and 64 was chosen. These values can vary, both decreasing and increasing, depending 

on the speed/complexity requirements. In practice, it was observed that there is no single 

"fixed" architecture. 

After each layer, there is a ReLU activation layer, even after the last one, which usually 

doesn't happen. This might be possible because the target function is very similar to ReLU, as 

the distance linearly increases from the edges of the geometry, and elsewhere, it equals 0. Input 

parameter transformations were also made: 

1) θ→sin(θ),cos(θ) 

2) Encoding input parameters with high-frequency functions allowed the model to train 

faster and perform better in areas with strong variations in the target function: 

np.sin(y), 

np.cos(y), 

np.sin(13 * x + 17 * y), 

np.sin(19 * x - 15 * y), 

np.sin(23*x+y), 

np.sin(29*y-x) 

 

2.2. Indicators of model performance evaluation 

Assessing the performance of a machine learning model is a crucial aspect of model 

development. Therefore, it is essential to understand how the success of a machine-learning 

model can be gauged. 

Evaluation metrics are tailored to specific machine learning tasks, with various metrics 

available for classification problems. Employing diverse metrics to evaluate performance 

enables the comprehensive assessment of a model's efficacy before deploying it for real-world 

data processing. 

Since the task at hand is essentially a function regression task, it is possible to visualise 

accuracy of the model with plots. In this case 2D heatmaps with fixed theta (rotation of the 

robot) will do great job at showing the accuracy of the trained model. 

The confusion matrix allows you to tabulate the number of correct and incorrect predictions 

made by the model compared to the actual classifications in the test set, showing the types of 

errors that occur. This matrix evaluates the model's effectiveness in classifying test data with 

known true values, typically in an n x n format, where n represents the number of classes. It is 

constructed after the test data has been predicted. In our case the confusion matrix will be 2 x 2 

(Collision/No collision) 

There are four possible outcomes of classification prediction: 

- True positive outcomes (TP). These are actual positive results that are predicted to be 

positive. 

- False negatives (FN). These are actual negative results that are predicted to be negative. 

- False positives (FP). These are actual negative results that were predicted to be positive 

(type one errors). 



- False negatives (FN). These are actual positive results that were predicted to be negative 

(type two errors). 

 

3. Numerical experiments 

3.1. Description of the training data 

Two scenes were created for the training (Figure 2).  

   
 

Figure 2: The cube is presents as a Robot 

 

5000000 data entries were generated of the following structure: 

X,Y, θ, Result. X and Y are the absolute coordinates of the robot center. θ is the measure of 

clockwise rotation of the robot along the Z coordinate. 

This means that the robot has three degrees of freedom in our simulation, which are usually the 

most important for ground based robots which can't travel along Z axis and can't rotate their XY 

plane. θ is given in radians. 

Result is the measure of distance from the robot to the nearest geometry of the scene, 

excluding the floor. The floor is omitted since it is expected that robot contacts the floor at all 

times and this will not give any meaningful information. Figure 2 also shows the scenes with 

the floors omitted. This measurement is in meters. Result field in 0 if the robot is in collision 

with the world in this respective position. Since the data is generated, the model was trained on 

all of it. It was not trained on the grid-like visualisation shown later. 

 

3.2. Results of data analysis and preliminary processing 

The standard approach to dealing with angle inputs, is to return their sin and cos values. 

Having made a few tries of training the model on just (X,Y, sin(θ), cos(θ)), it was found that raw 

position may not give effective accuracy, and the model struggled with correctly capturing some 

regions where the border between Collision and Not collision lied. To avoid unnecessary model 

complication, It was decided to add some high frequency features to the model input. The 

chosen features were  

 

                sin(y), cos(y), sin(13 * x + 17 * y), sin(19 * x - 15 * y), sin(23*x+y),sin(29*y-x) 



 

This input does not give the model any new data, however including this helped the 

network train faster and be more precise. These parameters were chosen mostly at random and 

were not optimized for. 

 

3.3. Evaluation the efficiency of the trained model. 

Plots of the target function for the scenes shown in Figure 2 are provided below. 

 

 

Figure 3: Plots of the target function for the scenes shown in Figure 2. 

First one is shown at angle θ = 45, second one is shown at angle θ = 0. Three plots are 

Ground Truth: taken from a simulation, Model prediction: predicted values from the model, 

Absolute difference: the absolute difference between first two plots. Purple values are 0. Yellow 

values are the largest and on first two plots are around 1.5 meters. The maximum absolute 

difference is around 2 centimeters. 



 

 

Figure 4: The confusion matrix for the trained model showing Collision vs No collision 

classification. 

The model could have been trained explicitly for this purpose, however it would lose the ability 

to compare different trajectories based on their distance. This confusion matrix shows 99.8% 

accuracy. This is the raw result without any finetuning. The amount of FN (Actual Collision 

predicted as No collision) can be reduced to almost 0, by introducing some Threshold.  

4. Discussion of study results 

Results of this study show a promising lead into the field of compact scene representation 

and into the field of autonomous mobile robots. There is a lot of room for improvement 

regarding the architecture, feature engineering, training processes etc. 

The main problem with this particular implementation is rather long training time  (around 1 

hour) from start to finish, which can disqualify it from some realtime online tasks. However it is 

most likely possible to reduce the training time significatly to the order of a couple minutes 

given adequate hardware and some training refining. 

The main advantage for this model is its speed and small memory footprint. The ability to 

quickly construct and validate trajectories is the key to robot relocation tasks. This can get very 

hard for a complex scene with a complex robot if employing a traditional simulation method.  

Also the obvious drawback is that the scene needs to be static in order for this to work, 

which excludes a lot of possible use cases. A solution to this problem is a combined approach, 

where only the dynamic elements of the scene are simulated (doors for example).  

 

 

 

 



Table 1. 

Comparison of the different methods for this particular task 

 

 

 

 

 

Table 1 shows a comparison of different methods on a range of properties, and it shows that 

each method is better than other at some things and each can be leveraged depending on the 

specifics of the task.  

The lookup table is the fastest, but it needs an extraordinary amount of memory if the 

resolution is high or the scene dimensions are large. It also suffers from quatisation, which leads 

to smaller precision. Simulation is the most versatile, since it can support dynamic scene 

updates and does not need to precalculate anything. However the speed can be not enough in 

some cases. Our method can provide higher speed than a simulation at the cost of training time 

and exclusion of dynamic items from the scene. 

5. Summary and Conclusion 

In this research proposed an approach to collision detection and trajectory validation in 
static scenes using deep neural networks (DNNs). The limitations of traditional methods, such 
as high computational and memory demands, have constrained their real-time applicability, 
particularly in robotics and simulation environments. However, our newly developed model 
offers a swift and memory-efficient solution, addressing these constraints effectively. By 
leveraging data from a Bullet physics simulator for training, our approach not only maintains 

high accuracy but also achieves significant improvements in both speed and memory usage 
compared to conventional simulation techniques. This innovation represents a substantial step 
forward, presenting promising avenues for advancing real-time applications in robotics and 
simulation domains. It has the potential to revolutionize how these systems operate and 
perform, enhancing efficiency. and efficacy. 

.  
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