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Abstract 
Vehicle detection in aerial photography is a crucial step in image processing for many applications 
such as large area screening. However, compared to ground-based object detection, it remains a 

challenging task due to the small size of the vehicles and the complex background. Our paper 

proposes an approach using a double focal loss convolutional neural network (MFL CNN). In this 

algorithm, we use feedforward communication to improve feature learning in a CNN framework. In 
addition, the focal loss function replaces the conventional cross- entropy loss function in both the 

regional proposal network (RPN) and the final classifier. 

When developing the algorithm, large-scale data sets of leading scientific companies and universities 

were used. Featured datasets include EAGLE and XWHEEL. They consist of a large number of aerial 
photographs of locations with a large number of vehicles, and have a large annotation of classes to 

identify different vehicles. 

By investigating the performance of our model on existing datasets such as XWHEEL and EAGLE, 

we demonstrate that our MFL outperforms baseline models in vehicle detection. 
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1. Introduction 

Viewing aerial images covering large areas is critical for many applications such as 
surveillance, reconnaissance or rescue operations. These applications require accurate 
identification of all relevant objects, such as vehicles in the camera's field of view, before the 
scene can be analyzed and interpreted. To reduce the burden on image analysts, a system of 
automatic object detection is needed. 

Typically, vehicle detection in aerial photographs is performed using methods that include 
manual features and a classifier or a cascade of classifiers within a sliding window approach [1, 
2, 3, 4]. Recently, several authors [5, 6, 7] proposed to use convolutional neural networks 
(CNN) to classify candidate regions. However, calculating convolutional functions for each 
candidate window separately is computationally expensive [5]. 

So, methods such as Fast R-CNN [5] and Faster R-CNN [8] showed the most effective 
results on standard test data sets for detection, significantly reduced the computational time for 
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training and testing. Instead of calculating convolution functions separately or using multiple 

scales, a single convolution feature map is now used for the entire image. 
The performance of both methods strongly depends on the so-called object proposal 

methods, which are used to generate a set of candidate regions as input data for classification. 
The set of candidate regions should be as limited as possible to reduce the computational effort, 
while ensuring coverage of all objects. However, both detectors and object proposal methods 
were developed for datasets that are significantly different from aerial photographs . In general, 
the images of these datasets, such as Pascal VOC2007 [9], contain only one or a few objects 
located mainly in the center and occupying a large part of the image. While aerial photographs 

may include several randomly located objects whose size is in the range of a few pixels. 
For a clearer idea, you can view Figure 1. 

 

Figure. 1. The image resulting from the annotation of cars (depicted in cyan) and non-cars 
(represented in purple). 

In addition, all these methods localize vehicles due to the use of a sliding window, which 

leads to significant computational costs. Window sizes and steps of their movement must be 
carefully adjusted to adapt to different sizes of objects of interest in a given data set [10]. 
To solve these problems, we developed a special framework for vehicle detection in aerial 
photographs , shown in Figure 2. This framework, known as a convolutional neural network 
with dual focal loss (MFL), has three main components: 

1. Addition of pass-through coupling from surface to deep layers, allowing for the study of 
detailed features with a large amount of information. 

2. The use of the focal loss function in the regional proposal network (RPN) instead of the 
standard cross-entropy is aimed at solving the problem of class imbalance [11]. 



3. Replacing the cross-entropy function with the focal loss function in a classifier to solve 

the problem of learning on light positive and heavy negative examples. 

 

Figure. 2. Summary of the suggested MFL algorithm, comprising three primary components: 1) To 

study the features, a pass connection from the lower layer to the upper layer is added, which contains rich 

detailed information. 2) Instead of the traditional cross-entropy, the RPN employs the focal loss function. 

[11]. 3) The classifier utilizes the focal loss function as a substitute for cross-entropy. 

2. Related Work 

In the computer vision and photogrammetry literature, object detection and classification are 
widely studied as fundamental problems. The majority of current methods can traditionally be 

categorized into three primary stages: first, they decide which areas contain objects of interest, 
then they extract features and carry out classification. Many of these methods use a sliding 
window search strategy to generate regions where these objects are likely to be located. 

These methods scan images using windows of different scales and locations, which leads to 
high computational and time complexity, and many of them are inefficient. But Uijlings [12] 
presented an algorithm known as selective search, which combines the advantages of both 



exhaustive search and segmentation. This method is widely used in combination with Deep 

methods Convolutional Neural Networks (DCNN) for object detection, which made the works 
of Girshick [13] and [14] famous. In addition, Ren [15] introduced the RPN (Regional Provider 
Network), which has gained wide acceptance as an approach for generating regional proposals.  

Prior to the process of classification, each potential region is identified by features. 
Kembhavi [16] used scale -invariant feature transform ( SIFT ) to detect vehicles, Gleason [17] 
and Han [18] developed methods based on histogram of oriented gradients ( HoG ), and Bai 
[19] applied Haar -like signs for this purpose. Despite the effectiveness of their methods, this 
approach using manually created features is not always effective enough in separating vehicles 

from complex backgrounds [20, 21, 22, 23]. In recent times, approaches utilizing Deep 
Convolutional Neural Networks (DCNN) have experienced notable success in the industry of 
object detection and classification [13, 24, 25, 28]. 

After obtaining the features, they are submitted to the input of the classifier. The two most 
widely used classifiers, known for their efficiency and reliability, are stood out by the Random 
Forest (RF) and Support Vector Machine (SVM). [25]. So far, these have served as the ultimate 
classifiers in certain CNN-based approaches [13]. Softmax is now the preferred classifier in 

DCNN-based methods due to its ability to offer normalized probabilistic predictions. 
Subsequently, cross entropy (CE) is employed to compute losses, which then drive the updating 
of network parameters [26]. 

Approaches that have progressed through these three phases are referred to as two-stage 
methods: the first stage is the proposal of a candidate region, the second stage is object 
classification. Such two-stage CNN-based methods show the highest results in accuracy. 
Compared to them, methods that do not require additional operations to offer regions, as follows 

Single Shot Multibox Detector (SSD) [27] and You Only Look Once (YOLO) [28], are single-
stage . They work faster than two-step methods, but at the expense of accuracy. Especially the 
detection of small-scale objects is a challenge for these approaches. This problem limits their 
application for vehicle detection in aerial photographs . Therefore, we use a two-step method in 
our algorithm. 

The effectiveness of a method based on deep learning, which has millions of parameters, 
depends significantly on a large amount of training data. In the past, several large datasets have 
already been presented for various tasks, such as ImageNet [29] for object classification, 

Cityscapes for semantic segmentation, etc. [30] consisting of tens of thousands of images for 
model training. Many of the existing reference datasets contain a variety of vehicles, but they 
are presented as ground images and are not up to the task of training aerial vehicle detection 
systems . Some well-annotated datasets for aerial imagery exist , such as VEDAI [31] and 
XWHEEL. But objects in VEDAI are easily detected due to the sparse number of vehicles and 
simple background, while XWHEEL, although more complex, is limited to 39 images, of which 
only 17 (with 8625 vehicles) are used for training. This amount of training data is limited for 

CNN models. 

3. Proposed Algorithm 

The description of the proposed algorithm is shown in Figure 2. This algorithm is a 
modification of the Faster R-CNN standard [15]. For a general object detection procedure, we 
recommend referring to the work of Ren [15]. In our work, we opted for ResNet [32] as the 

fundamental framework for feature learning due to its superior efficiency, reliability, and 
effectiveness in the learning process [33]. 



3.1. Skip Connection 

In the field of object segmentation, it has been determined that features extracted from smaller 
layers contain more complex details [34]. In a specific scenario of vehicle detection in aerial 
images, where the size of the vehicle is approximately 30 × 50 pixels, provided that the ground 

distance (GSD) is 10 cm, the size of the output ResNet object maps after the fifth fusion layer is 
32 times smaller than the input size [32]. This reduction in size creates a potential risk of not 
noticing small vehicles projected onto these maps due to their reduced scale. In addition, the 
fusion operation at this stage leads to a noticeable loss of detail. In regions characterized by 
dense traffic, these factors can make it difficult to distinguish individual vehicles. For example, 
objects derived from shallower layers have more complex details than objects from deeper 
layers. In densely populated areas, detail becomes a key factor in distinguishing individual 

vehicles. Therefore, we use an approach that combines features from smaller layers, 
characterized by greater detail, with features from deeper layers, which provide more 
representative information. This methodology is depicted in Fig. 3, given an input image size of 
748 × 652 pixels. The object maps after the fourth and fifth merging layers have dimensions of 
48 × 56 × 1080 and 24 × 28 × 2160, respectfully. To facilitate the fusion, the smaller maps are 
enlarged to 48 × 56 × 2160 and then reduced to 1080 channels using a 1-to-1 convolution. 
Subsequently, both feature maps are combined as strip maps. 

3.2. Loss Function 

The cross-entropy (CE) function is widely used for object classification and reduces the 
unevenness between positive and negative examples. However, this feature is not efficient 
enough in distinguishing between simple and complex classification examples, especially in 
detecting vehicles in aerial photographs . For example, the facades of buildings may look too 
similar to cars. 

The focal loss function has been applied to solve the problem of class imbalance [11] in 

object detection models such as YOLO [27] and SSD [28]. They showed that single-stage 
models have a problem with excessive background objects that are difficult to distinguish from 
vehicles. Two-stage models, such as RPN, solve this problem in the first stage by filtering 
candidates that are likely to be background, but in complex conditions, such as densely 
populated areas with cars, this approach is not always effective [15]. A new MFL model was 
developed, inspired by the concept presented in [9]. This model includes the focal loss function 
not only at the region proposal stage, but also at the classification stage, solving the problems 
associated with the complex nature of the task. 

The traditional CE loss per classification (for ease of use, we will take binary classification 
as an example), which is formally defined as: 

𝐷𝐾𝐿 (𝑗, 𝑞) =  − log(𝑗𝑡) (1) 

where 

𝑗𝑡 = {
𝑗               if 𝑞 = 1

1 − 𝑗  in another case
  

 

where j is the predicted probability that this candidate will receive a +1 label, and q is the truth 

label: q ∈  {-1,+1}. 



 

Figure. 3. The gap CNN architecture involves scaling up feature maps from conv5 to sizes 
corresponding to feature maps from conv4. Next, the number of feature channels is reduced 
using a 1 × 1 convolution layer to 1024. At the final stage of the map, the attributes of objects 

from layers 4 and 5 are combined. 

Introducing a modulating coefficient, denoted as (1 - jt ) ψ, together with an adjustable 
focusing parameter ψ ≥ 0 into the cross entropy (CE) loss function transforms the loss function 
into what is called the focus loss (FL): 

𝐿𝐹𝐿(𝑗𝑡) = −(1 − 𝑗𝑡)𝜓 log(𝑗𝑡), (2) 



Focal losses have two key characteristics. First, they have little effect on misclassified 

examples with low significance (jt) when the modulating coefficient approaches 1. Conversely, 
as the value of jt increases (jt → 1), the modulating factor approaches 0, which leads to a 
decrease in losses for correctly classified examples. Second, increasing the focusing parameter 
(ψ) increases the influence of the modulating factor. The cross-entropy (CE) function can be 
considered as the partial case at ψ = 0. It is important to note that the contribution of easy 
examples decreases while the contribution of hard examples increases during the learning 
process. For example, at ψ = 20 the losses for the example classified with jt = 0.92 are 1% of the 
CE losses and only 0.1% of them at jt = 0.973. 

3.3. Multiple Focal Loss CNN 

In our MFL algorithm, we have introduced a pass-through connection that combines features 
from both the lower (4) and upper (5) layers. This strategic design incorporates a focal loss 
function in both the Regional Proposition Network (RPN) layer and the eventual classification 
layer, effectively eliminating class imbalance and solving the problem of distinguishing between 
easy and difficult examples in our particular task. As mentioned earlier, the final feature maps 
are reduced by a factor of 16 from the original image size.  

To generate candidate proposals, we follow a process in which nine anchor points are 
generated at the center of each pixel in the object maps. These landmarks span three different 
scales (90:30, 60:30, 30:30) and three varying scales (9:3, 6:3, and 1:1) based on the initial input 
images. Each landmark is marked as a true or false example depending on its crossover with a 
baseline value formally defined using the intersection-over-association (IoA) metric: 

IoA =
S(P∩G)

S(P∪G)
,  

where the value in the numerator is the area of intersection between the square of the date and 
the square of the true data, and the value in the denominator is their union. Proposals with an 

IoA value greater than 0.75 are marked as positive samples, while those with an IoA less than 
0.12 are marked as negative. Suggestions that go beyond the image are considered unacceptable. 
During the training phase, each collection consists of 72 successful and 72 unsuccessful 
samples.  
The loss function for training the Region Proposal Network, which applies focal loss, is 
calculated using the following formula: 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
∑ 𝐿𝑐𝑙𝑠−𝐹𝐿(𝑝𝑖 ,𝑝𝑖

∗)

𝑁𝑐𝑙𝑠
+

𝜆 ∑ 𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖,𝑡𝑖

∗)𝑖

𝑁𝑟𝑒𝑔
, (3) 

L cls -FL denotes the focal loss for classification as described in formula 2, L reg denotes the loss 
for restricted area regression. pi denotes the expected chance that sentence i belongs to the 
background, and, while pi

* denotes its corresponding basic truth tag. N cls represents the sum of 
the samples, and N reg - represents the sum of the total number of correct samples. The parameter 
λ is applied to a loss weighting for the restricted regions regression. A plain L1 weighted loss 

method similar to L reg [15] is used: 

𝐿𝑟𝑒𝑔(𝑣𝑖 , 𝑣𝑖
∗) = 𝑅(𝑣𝑖 − 𝑣𝑖

∗), (4) 

and 



𝑅(𝑗) = {
0.5𝑗2             𝑖𝑓 |𝑗| < 1

|𝑗| − 0.5    𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
, 

 

v = ( v x , v y , v w , v h ) denotes the normalized detailed information about the boundary region 
for the positive sample, and t* denotes the corresponding basis truth. The formal definition for 
each of these elements is as follows: 

𝑣𝑥 =
𝑃𝑥−𝐴𝑥

𝐴𝑤
,               𝑣𝑦 =

𝑃𝑦−𝐴𝑦

𝐴ℎ
, 

(5) 

𝑣𝑤 = log
𝑃𝑤

𝐴𝑤
,           𝑣ℎ = log

𝑃ℎ

𝐴ℎ
, 

𝑣𝑥
∗ =

𝑃𝑥
∗ − 𝐴𝑥

𝐴𝑤
, 𝑣𝑦

∗ =
𝑃𝑦

∗ − 𝐴𝑦

𝐴ℎ
, 

𝑣𝑤
∗ = log

𝑃𝑤
∗

𝐴𝑤
,            𝑣ℎ

∗ = log
𝑃ℎ

∗

𝐴ℎ
, 

where (Px, Py) represents the coordinates of the center of the intended limit frame, while (Pw, 
Ph) indicates the intended width and height of the frame. Also, there is information about the 
binding bounding box A = ( A x , A y , A w , A h ). P* denotes information about the truth of the 
limited frame. 

The RPN layer generates a set of candidates that are likely to be objects of interest, such as 
vehicles in this case, and defines bounding boxes for them. After that, the objects that match 
these frames are cut from the object maps and passed through the ROI layer to equalize their 
sizes. 

In the final segment of the network, the classifier uses these properties to set labels and make 
predictions about the constraint frames. The loss function for this subnetwork of the classifier, 
which relates to each candidate, is formulated as follows: 

𝐾(𝑃, 𝑀) = 𝐿𝑐𝑙𝑠−𝐹𝐿(𝑃, 𝑃∗) + 𝜓2𝑃∗𝐿𝑟𝑒𝑔(𝑀, 𝑀∗), (6) 

where M is defined as: 

𝑀𝑥  =
𝑃𝑥−𝐴𝑥

𝐴𝑤
,                  𝑀𝑦 =

𝑃𝑦−𝐴𝑦

𝐴ℎ
,, 

(7) 

𝑀𝑤  = log
𝑃𝑤

𝐴𝑤
,               𝑀ℎ = log

𝑃ℎ

𝐴ℎ
, 

𝑀𝑥
∗ =

𝑃𝑥
∗ − 𝐴𝑥

𝐴𝑤
,            𝑀𝑦

∗ =
𝑃𝑦

∗ − 𝐴𝑦

𝐴ℎ
, 

𝑀𝑤
∗  = log

𝑃𝑤
∗

𝐴𝑤
,              𝑀ℎ

∗ = log
𝑃ℎ

∗

𝐴ℎ
, 

The regions of predictions, anchors, and basic truths are denoted by Px, Ax, and Px*, 

respectively, and the sub-indices y, w, and h fulfill similar functions. The parameter ψ2  is equal 
to 1 to ensure that both classification and limiting frames are equally affected. In the process of 
training, the subnetwork of the classifier is trained in a proportion of 1:3 for successful and 
unsuccessful samples, following the standard training methodology [15]. 



3.4. EAGLE Dataset 

In this topic, we will look at a dataset that was used for training called EAGLE. The dataset is 
used to detect vehicles of various types, including determination of vehicle direction using aerial 
images. 

The dataset comprises a collection of high-quality air photos reflecting a variety of real-
world scenarios, including variations in imaging detectors, angles, hours, heights, density (from 
5 to 45 cm in pixels on the terrain), climate and illumination conditions, and city and villages 
[35]. The data for the set was acquired in the period from 2006 to 2019. EAGLE contains 
215,986 annotated vehicles in 318 aerial images covering both small vehicles (such as police 
cars, ambulances, passenger cars, transporters, minivans, and off-road vehicles) and large 
vehicles (including vans, trucks, buses, heavy trucks, construction vehicles, fire trucks, and 

trailers). The annotations include orientation boxes marked with four points [35]. The pictures 
are presented in the form of files with the JPG extension, the size of which is 5616 x 3744 
pixels, and the annotation file is presented in XML format. The annotation contains the 
corresponding coordinates of all four corners of the vehicle, as well as the degree of orientation 
from 0° to 360°, which indicates the angle of inclination of the vehicle. In addition, for each 
example, the clarity (completely/partially/poorly) and the ability to determine the orientation of 
the vehicle (clear/unclear) are indicated [35]. 

4. Experiments 

In this topic, we present the experimental setup and subsets of data used to implement the 
suggested method and compare it with the most advanced object detectors. 

4.1. Dataset and Experimental Settings 

Our approach is evaluated on the EAGLE and XWHEEL datasets. Table 1 presents statistical 

information about these data sets. Both sets use the state-of-the-art Faster R-CNN object 
detector, which creates a robust baseline for the input data. 

Table 4.1 

Statistics of EAGLE dataset and XWHEEL dataset. 

 Training Set Testing Set Image Size 

EAGLE 159 images 

(108,215 vehicles ) 

106 images (70 433 

vehicles ) 

5475 × 3345 

XWHEEL 39 images (8704 

vehicles ) 

17 images (3347 

vehicles ) 

5472 × 3456 

 

To make efficient use of GPU memory, each initial image from the dataset is split into small 
pieces of the same size. The resulting fragments have a resolution of 376 × 377 pixels. The 
position information in the annotations is adjusted to match the corresponding truncated areas. 

An XWHEEL dataset annotates every transport object by identifying a box that closely fits it. 
To set up our experiment, we converted the initial annotations into regular square frames 
defined by a midpoint, altitude, and wide.  

Keras implementations of deep learning models use TensorFlow as their backend. [36]. The 
ResNet-50 network serves as the foundational architecture for feature learning in both Faster R-
CNN and our model. For RPN training, we use a training rate of 0.00001. It should also be 
noted that our algorithm can use other CNN architectures, such as VGGnet [37] or Google 



Incejtion [38]. It is important to note that CNN structures are pre-trained on the ImageNet 

dataset [39]. 
To evaluate the results of the experiment, the accuracy and F1-balance metrics are used, 

which are officially defined as follows: 

Recall =
TP

TP + FP
 

(8) 

Precision =
TP

TP + FN
 

(9) 

F1 =
2 × Recall × Precision

Recall + Precision
. 

(10) 

TP, FN, and FP denote respectively truthfully correct, negatively correct, and positively valid 
results. In addition, the connections among IoA and recall, accuracy, and precision, respectively, 

are also discussed. 

4.2. Results on EAGLE Dataset 

We evaluated our MFL method on the demanding EAGLE dataset. We used the state-of-the-art 
Faster R-CNN object detector to create a reliable base estimate [15]. In addition, as a weak 
baseline estimator, we used the traditional HOG + SVM method [40]. 

Figure 4 shows how the rate of correct identification varies compared to the accuracy of the 
three algorithms: MFL, Faster R-CNN, and HOG + SVM, using different IoA values on the 

EAGLE dataset. It is obvious that methods based on deep learning (MFL - green line and Faster 
R-CNN - red line) significantly outperform the traditional method (HOG + SVM - black line). 
Regarding the ratio between recall and precision, our MFL method is found to be more efficient 
than Faster R-CNN. These curves show that IoA = 0.3 is the optimal balance point for future 
experiments, providing high speed and accuracy at the same time - a commonly accepted value 
for object detection tasks. The experimental output of these approaches is presented in Table 2 
(at IoA = 0.3), where it is shown that our method performs better than the others. 

Table 4.2 

Analysis of basis lines and MFL model in EAGLE. 

 HOG RCNN MFL 

Recall 24.95% 88.28% 89.07% 
Precision 11.84% 63.58% 68.79% 

F1 0.1606 0.7392 0.7763 

We have performed extensive ablation studies to demonstrate the benefits of using pass-

through coupling and focal loss functions. Initially, two frameworks were trained that used a 
dual focal loss function. One of them had a connection of character cards with a pass, and the 
other did not. The results are shown in Figure 5. We noticed that boundary field predictions 
made using the cross-linked feature map structure were significantly more accurate than in the 
case where there is no cross-connection. Also, individual vehicles were better distinguished 

from others thanks to the use of small signs. Then, two additional feedback structures were 
trained, one using the CE loss function and the second one using the dual loss function. The 
quality output is shown in Fig. 6. The framework trained using the CE feature showed a 
tendency to misidentify many background objects that look similar to vehicles as real vehicles. 



At the same time, the algorithm using double focal loss for training proved to be significantly 

more effective in distinguishing these complex negative examples from real vehicles.  
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Figure. 4. Correlation between IoA and recall rate (1), IoA and accuracy (2), and recall rate and 
accuracy (3) for MFL, Faster R-CNN, and HOG + SVM models on the EAGLE dataset. 

   
(1)  (2) 

Figure. 5 . A comparative analysis of region boundary prediction for a network without a gap 

(1) and a network with a gap (2) shows differences in the quality of prediction. It is worth 
noting that the frames provided by the network with the connection of object map skips are 

significantly more accurate than those created by the network without connection (highlighted 
in yellow). Other parameters remain unchanged. 

   
(1) (2) 

Figure. 6. Comparison of the efficiency of car detection by different frameworks trained by two 
different loss functions - CE loss (a) and FL (b). Other parameters remain the same. 
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(1) (2) 

Figure. 7. Examples of false detection by our model are shown in red thin line, displaying the 
detection results. Cars that were missed are marked in green, while false positives are in blue. 

Figure 7 shows examples of shortcomings in the work of the proposed detection method. 
Although our detection approach showed significant improvements in accuracy and detection 
rate compared to the baseline methods, some vehicles still remain undetected, especially in quiet 
parking lots depicted in Figure 7(1). Otherwise, certain items that look like vehicles are falsely 

identified as vehicles, as shown in Figure 7(2). 
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Figure. 8. Correlation between response and accuracy (a), IoA and accuracy (b), and IoA and 
response rate (c) for MFL and Faster R-CNN on the XWHEEL dataset. 
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Figure. 9. Comparison of the detection quality between the results of Faster R-CNN (a) and 
MFL (b) on the XWHEEL dataset. 

Our model was tested on the XWHEEL dataset as well. Fig. 8 shows the correlation between 
recall speed and accuracy for both RCNN and the proposed method. Furthermore, Fig. 8 
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emphasizes that our method outperforms the benchmark RCNN in both recall speed and 

accuracy. 
To further evaluate the performance, we evaluated RCNN and MFL, especially in scenarios 

with densely parked cars in the XWHEEL dataset, as shown in Figure 9. Qualitative results 
show that MFL (Figure 9(2)) discovered more detached vehicles and provided more accurate 
constraint frames than RCNN (Figure 9(1)). 

To prove the effectiveness of our approach for detecting objects in air photos, we conducted 
a comparative analysis of our experimental results with some other methods such as Hyper 
Region Proposal Network [41], Fast Multiclass Vehicle Detection [3] and Shallow YOLO [21] 

on the XWHEEL dataset. The outcomes of these comparisons are presented in Table 3. Our 
method significantly outperforms FMVD and Shallow YOLO in all three metrics. Compared to 
HRPN, our approach shows only a small superiority (2% for F1). However, it is worth noting 
that HRPN uses a cascade of classifiers improved by extracting negative examples. This likely 
results in increased computational overhead and may cause a class imbalance problem. Our 
method operates with the focal loss function, so it avoids such problems. 

Table 3 

Comparison of experimental results between FMVD, Shallow YOLO, HRPN and our approach 

on the XWHEEL dataset. 

 FMVD Shallow HRPN MFL 

Recall 66.91% 65.8% 75.82% 78.53% 
Precision 82.36% 54.21% 88.39% 89.56% 

F1 0.7383 0.5944 0.8163 0.8368 

 

5. Conclusion 

In this paper, we deployed a customized MFL architecture for the purpose of vehicle detection 
in aerial imagery. Our approach combines feature properties from the lower and upper layers of 

the network to improve the ability to distinguish individual vehicles in crowded scenes. To 
solve the problems associated with class imbalance and example complexity, we chose the focal 
loss function in both the feature region suggestion and classification phases instead of using 
cross-entropy. During training, we used the large EAGLE dataset, which includes annotations 
for all vehicles in the scene, covering a large number of objects. Experimental results 
demonstrate the superiority of our method over the classical ones on two datasets. In the future, 
we plan to extend MFL to recognize vehicle types and determine their orientation. 
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