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Abstract 
Today, numerous construction projects aimed at urban expansion, such as subway systems, 

underground utilities, and transportation tunnels, pose significant environmental challenges, including 

ground settlement, vibration, and alterations in groundwater flow. Accurately predicting potential 
building damage is vital for assessing and mitigating some of these impacts on nearby infrastructure, 

allowing safe development practices. Leveraging Machine Learning (ML) tools facilitates the 

creation of quick and efficient prediction models for building damage assessment. In this paper, the 

authors generated a comprehensive synthetic dataset by conducting nearly 1000 non-linear Finite 
Element Method (FEM) of building damage to tunneling simulations using High-Performance 

Computing. This dataset include eight local and global indicators crucial for evaluating building 

damage resulting from tunneling activities. To address this challenge, we devised a novel 

unsupervised-supervised framework by integrating Principal Component Analysis and Nu Support 
Vector Regression (PCA-NuSVR). We developed algorithms for training and applying the proposed 

framework. Modeling was conducted using 5-fold cross-validation and results were evaluated using 

different performance metrics. Comparative analysis against various existing ML methods, including 

ensemble techniques, revealed the superiority of the optimized PCA-NuSVR framework. Specifically, 
the utilization of this framework led to a notable enhancement in prediction accuracy. The increased 

accuracy offered by the PCA-NuSVR framework underscore its applicability in addressing numerous 

practical challenges within civil engineering. 
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1. Introduction 

Urban expansion requires the urgent development of more efficient transportation methods. 

Underground tunnelling effectively addresses issues like traffic congestion and carbon 

emissions while minimizing surface disruption [1]. However, tunnelling operations cause 

settlements due to the volume difference between the excavated material and the void left after 

lining placement caused by overcut, soil disturbance, and stress relaxation. This volume 

discrepancy propagates through the ground, causing surface-level "Gaussian"-like settlement 

troughs. Buildings near these settlements experience differential settlements, potentially leading 

to aesthetic damage, serviceability concerns, or even collapse in extreme cases [2]. 

Significant research has addressed this issue, notably by Burland [2], [3], who first linked 

induced settlements to building damage and categorized damage levels using the Limiting 

Tensile Strain Method (LTSM). Later, Potts and Addenbrooke [4] integrated Soil-Structure 

Interaction (SSI) effects, demonstrating that buildings' stiffness contributes to their resistance to 

settlements, leading to less conservative damage predictions. 

Recent advancements in tunnelling-induced building damage observed the extensive 

utilization of the FEM [5], [6], [7] and ML-based models [8], [9] to predict the level of damage 

both accurately and in real-time. However, these ML tools have been trained on datasets with 

overly simplified damage criteria and a limited number of simulations, lacking the detail needed 

for comprehensive damage evaluation. While the results of these models appear accurate, the 

assumption of simplified damage criteria and the limited number of simulations massively 

restrict the ML broader applicability.  

Therefore, this paper aims to apply artificial intelligence tools to predict both local and 

global indicators for building damage caused by tunneling. 

The main contribution of this paper can be summarized as follows: 

1. We created a tabular dataset by performing nearly 1000 non-linear FEM models using 

HPC, for the application of artificial intelligence tools in solving the problem outlined in 

the paper.  

2. We developed a novel unsupervised-supervised framework based on the combination of 

Principal Component Analysis (for creating a single unified hyperbody of the object for 

predicting all outputs) and Nu Support Vector Regression (for predicting any output 

using the single hyperbody) to predict values of local and global indicators during 

building damage assessment caused by tunneling.  

3. We optimized the operation of the proposed PCA-NuSVR framework and demonstrated 

its high efficiency compared to several existing machine learning methods, particularly 

ensembles. 

2. Materials and Methods 

In this section, we describe the dataset we created, providing the main characteristics of each 

input and output attribute. We provide a detailed description of the components of the proposed 

PCA-NuSVR framework, outlining the primary steps of its training and application procedures. 



2.1. Dataset descriptions 

In this paper, we created a tabular dataset for 974 observations for solving different scenarios 

of building damage due to tunneling by ML tools, described in detail in [10]. This number of 

simulations with such a level of detail significantly surpasses any of the existing literature's 

amount. Our input space comprises 15 extensively researched parameters checked against 

correlations and conditions, ensuring they are not randomly selected which may cause the 

creation of physically unrealistic or numerically unstable models. Unlike previous models that 

used a simplistic output for damage assessment, our approach addresses both local and global 

damage aspects for each simulation as detailed in figure (Fig. 1).  

 

Figure 1: Damaged structures and corresponding damage variables. (Top figure) Building in 

hogging mode. (Bottom figure) Building in sagging mode (deformations are not to scale). (note: 

max crack width and numbers are only considered at the extreme fibers of the building) 

Local damage aspects include maximum crack width and the total number of cracks at the 

building's extreme fibers, along with an average value between them. Global aspects encompass 

the slope, tilt, angular distortion, and horizontal strain of the building's most damaged segment 

and an average between them. These comprehensive damage assessment criteria were collected 

from various literature works. 

The main characteristics of the created dataset are presented in Table 1. 

 

 

 

Table 1 

The main characteristics of the dataset 

Input/output 

indicators 

Min value Max value Mean value STD 



The parameters defined in the upper part of Table 1 are described as follows: E, Fc, Ft, and 

Gft are the elastic modulus, compressive strength, tensile strength and fracture energy of the 

building material, respectively. "Height" and "Length" are the in-plane global dimensions of the 

building wall. The "Opening rate" refers to the proportion of openings (doors and windows) in 

the building. "Distance" is the horizontal distance from the building’s mid-span to the tunnel 

centerline. E_soil and "Soil_Poisson's" are the soil’s elastic modulus and Poisson's ratio, 

respectively. "Trough width" is a parameter that determines the skewness of the settlement 

trough's shape. The "Friction coefficient" measures the level of friction in the area between the 

soil and the building foundation. VL represents the volume of ground removed during the 

excavation process. "Depth" is the depth of the tunnel from the ground surface, and "Diameter" 

is the tunnel's outer diameter. 

Inputs 

E (MPa) 898,5711 8945,12 4581,735 1933,694 

Ft (MPa) 0,114809 1,153982 0,593067 0,214613 

Gft (N.mm/mm2) 0,00439 0,029956 0,019648 0,006548 

Height (m) 3,20677 19,9489 10,46196 4,655035 

Length (m) 8,012035 59,98123 39,95141 13,64267 

Opening Rate (%) 0,144178 29,9997 14,98655 8,634469 

Distance (m) 0,119889 44,93267 19,07762 10,64186 

E_Soil (MPa) 4,228152 249,6193 145,6298 64,88432 

Soil_Piosson’s (-) 0,100259 0,48962 0,295112 0,110891 

Trough width (m) 3,934761 43,45242 20,39526 7,863501 

Friction coefficient 

(-) 0,002683 0,599851 0,241275 0,155727 

VL (%) 0,203467 4,967174 2,750764 1,222178 

Depth (m) 9,840266 89,65695 49,39985 18,42642 

Diameter (m) 4,994226 17,59923 11,69543 3,105796 

Fc (MPa) 1,685526 25,77523 10,27109 5,008139 

Outputs 

Maximum Crack 
Width (mm) 0 19,5752 3,106571 4,23968 

Total Number of 
Cracks (-) 0 16 2,35262 3,484721 

Local Average (-) 0 14,7876 2,729595 3,551408 

Maximum Slope 
(mm/mm) 0,000002 0,005659 0,001812 0,001422 

Max Tilt (mm/mm) 0,000007 0,005501 0,001742 0,001367 

Max Angular 
Distortion (-) 0,000001 0,002099 0,000278 0,000374 

Max Horizontal 
Strain (mm/mm) 0,000002 0,004241 0,000675 0,000882 

Global Average (-) 7,5E-06 0,004233 0,001127 0,000942 



2.2. PCA-NuSVR cascade scheme 

The proposed PCA-NuSVR framework is based on the idea of combining PCA and NuSVR. 

Let's consider the necessity of using each of these components in the developed framework in 

more detail. 

PCA, as a statistical method, is used to transform input data into a new dataset by replacing 

the original inputs of the problem with new ones, called principal components [11]. Detailed 

mathematical formulations of this method, its advantages, and disadvantages are provided in 

[12]. It should be noted that according to the idea of the proposed framework, PCA in our case 

is performed over both the sum of input and all output variables. As a result, we construct a 

single hyperbody of the object for predicting all 8 output attributes. Additionally, such an 

approach allows us to predict (if necessary) any of the input attributes based on the utilization of 

the aforementioned hyperbody of the object. 

Another advantage of using PCA in the proposed framework is that it ensures the 

decorrelation of the dataset. This is a crucial aspect in our case since such an approach 

eliminates the need to determine whether a series of output attributes to be predicted are 

independent or interdependent. The latter scenario often arises in tasks from the Civil 

Engineering domain. Moreover, applying classical machine learning algorithms to predict each 

of the interdependent output attributes separately is not appropriate. Thus, incorporating PCA 

into the proposed framework will make our approach universal in terms of the aforementioned 

constraint.  

To predict each of the output attributes, the authors utilized Nu Support Vector Regression 

(NuSVR). The Nu-SVR method is a variation of the Support Vector Machine (SVM) method, 

used for regression tasks. The main idea is to construct a regression boundary that is as close as 

possible to each training sample while minimizing the error. The main difference between this 

method and classical SVR is the use of the parameter Nu, which specifies the percentage of 

points that can be excluded from the support vectors. Additionally, Nu-SVR may have fewer 

optimization parameters, reducing its computational complexity compared to SVR with an RBF 

kernel. 

Among the advantages of this method, high efficiency in handling complex dependencies, 

minimal sensitivity to overfitting, and the ability to work with small datasets should be 

highlighted. However, some drawbacks include the need for parameter tuning and high 

sensitivity to outliers in the data. 

The combined use of both aforementioned methods allowed the development of the PCA-

NuSVR framework to solve the problem outlined in the paper. Figure 1 illustrates the flowchart 

of the proposed PCA-NuSVR framework. 

For better visualization of all the framework's steps, the designation "ML System" is 

introduced. Under this term, we understand a set of machine learning methods for prediction 

each of the required output attributes. In our case, the ML System consists of 8 NuSVR 

algorithms. 



 

Figure 2: Flowchart of the proposed PCA-NuSVR framework. 

It should be noted that in general, the ML System can consist of any number of similar or 

different machine learning methods or artificial neural networks. They should be selected 



according to the task at hand, the number of output attributes to be predicted, the quantity, and 

quality of the training data, etc. To expedite the operation of the ML System, parallelization 

algorithms discussed in [13], [14] can be utilized. 

The structure of the developed framework comprises three main components: the preparation 

block, training block, and application block. Since the training block relies on the results of the 

preparation block, for the convenience of visualizing the framework's operation, these two 

blocks are combined. Thus, we have two operating modes of the framework: training mode and 

application mode. 

Let's delve into the training and application algorithms of the proposed PCA-NuSVR 

framework in more detail. 

2.2.1. A training algorithm for PCA-NuSVR framework 

The algorithmic implementation of the training mode of the proposed PCA-NuSVR framework 

based on the available training dataset involves the sequential execution of the following 

procedures: 

1. Normalization of individual n-inputs and m-outputs of the specified training dataset.  

2. Combining normalized inputs and outputs into a new n*m-set of dependent features and 

performing the Fit method of the PCA model.  

3. Training ML System 1 to predict each (from m) output attribute using the initial n-inputs 

of the task.  

4. Applying the pre-trained ML System 1 for intermediate prediction of all m-output 

attributes on the training dataset.  

5. Combining normalized initial inputs and predicted outputs from step 4 into a new n*m-

set of dependent features and performing the Transform method of the PCA model to 

transition into the principal component space and forming a new training dataset based 

on them (creating a single hyperbody of the object for predicting all outputs).  

6. Training ML System 2 for the final prediction of each (from m) output attribute using the 

new, extended, and decorrelated set of independent attributes created in the previous 

step. Performing reverse normalization of each (from m) output attribute (to compute 

training errors). 

2.2.2. Application algorithm for PCA-NuSVR framework 

The algorithmic implementation of the application mode of the proposed PCA-NuSVR 

framework, based on utilizing the current data vector with unknown output or an available test 

dataset, involves the sequential execution of the following procedures: 

1. Normalization of n-inputs of the current data vector with unknown output attributes. 

2. Applying the pre-trained ML System 1 for intermediate prediction of all m-output 

attributes for the current data vector based on the initial training dataset. 

3. Combining normalized initial inputs and predicted outputs from step 2 into a new n*m-

vector of dependent features and performing the Transform method of the PCA model 

from the training mode to transition into the principal component space and forming a 

new extended data vector. 



4. Applying the pre-trained ML System 2 on the current, already extended, and 

decorrelated data vector from the previous step for the final prediction of each (from m) 

output attribute. 

5. Performing reverse normalization of the predicted outputs (to form the final value in the 

case of analyzing the current data vector or to compute method errors in the case of 

analyzing the test dataset). 

 

The main advantages of using the proposed PCA-NuSVR framework are as follows: 

 Formation of a unified hyperbody of the object for predicting each of the required 

output attributes.  

 Decorrelation of the initial dataset by transitioning from the initial inputs of the task into 

the principal component space.  

 Expansion of the input data space of the task by utilizing m-output attributes along with 

n-inputs and transitioning into the principal component space.  

 Elimination of the need to determine whether the m-outputs of the task are interrelated 

or independent. 

All of this ensures the universality of the proposed solution for addressing many civil 

engineering tasks using artificial intelligence means, in case there is a need to predict multiple 

output attributes formed based on the same independent attributes dataset [15]. 

3. Modeling and results 

3.1. Data preprocessing 

The operation modeling of the proposed PCA-NuSVR framework was conducted on a dataset 

created by us based on non-linear FEM models using. To clean the dataset from anomalies, the 

authors used the Z-score criterion. This characteristic helps identify values that significantly 

differ from the mean values in the data. Observations with a Z-score greater than 3 or less than -

3 are outliers and will not be used for training and testing the model. Thus, the final dataset for 

further analysis contains 916 instances (instead of 974), each characterized by 15 input features 

and 8 outputs. 

Next, the data was split into training and test datasets. The training dataset was normalized 

using MaxAbsScaler. According to this method, scaling and transformation of each variable are 

performed so that the maximum absolute value of each variable in the training set is equal to 1. 

This technique does not shift or center the data. It should be noted that normalization was 

performed separately for inputs and outputs. The obtained normalization coefficients were used 

to normalize the inputs and outputs in the test dataset accordingly. Additionally, reverse 

normalization was performed on the predicted data before calculating the errors of the proposed 

method. 

To ensure the reliability of the prediction results, 5-fold cross-validation was performed in 

the work. It should be noted that the described data normalization scheme was performed before 

running each fold. 



3.2. Optimal parameters selection.  

Optimizing the operation of the proposed PCA-NuSVR framework, i.e., tuning its parameters 

for optimal performance, is an important stage of its practical use [16]. In this paper, 

optimization of the NuSVR operation was conducted as the foundational machine learning 

algorithm underlying the framework. Bayesian optimization technique was employed for this 

purpose [17]. Among the parameters optimized were Nu (the ratio of support vectors) and C 

(the penalty parameter for regularization). The optimization aimed at maximizing the R2 score 

during the prediction of each output attribute. The optimal parameters obtained for predicting 

each of the eight output attributes are summarized in Table 2. 

3.3. Results 

The results of the proposed PCA-NuSVR framework for global and local indicators during the 

assessment of building damage caused by tunneling are summarized in Table 2. It should be 

noted that Table 2 presents the prediction results using various performance metrics for a more 

comprehensive analysis of the obtained results. Additionally, the table includes the average 

values after performing a 5-fold cross-validation. 

Table 2 

Values of the performance metrics for predicted global-local indicators via the proposed PCA-

NuSVR framework for the assessment of building damage caused by tunneling  

4. Comparison and discussion 

For comparison of the accuracy of the proposed PCA-NuSVR framework, a series of existing 

machine learning methods were selected: the basic NuSVR used as the foundation of the 

proposed framework; classical SVR with RBF kernel as a very similar method to the previous 

Global-local 

indicator / 

Performance 

metrics 

Total 

Number 

of 

Cracks 

Max 

Tilt 

Max 

Slope 

Max 

Hori-

zontal 

Strain 

 

Local 

Average 

Global 

Average 

Max 

Crack 

Width 

 

Max 

Angular 

Distor-

tion 

 

MaxError 8,0564 0,0024 0,0024 0,0026 6,3711 0,0016 9,5110 0,0010 

MedError 0,5231 0,0002 0,0002 0,0002 0,7213 0,0001 0,9729 4,9E-08 

MAE 1,0331 0,0003 0,0003 0,0003 1,1167 0,0002 1,5912 0,0001 

MSE 2,7193 1,96E-

07 

2,04E-

07 

2,26E-

07 

2,5608 9,5E-08 5,4050 2,8E-08 

RMSE 1,6429 0,0004 0,0004 0,0005 1,5960 0,0003 2,3185 0,0002 

RRMSE 0,0326 0,0150 0,0148 0,0352 0,0284 0,0160 0,0371 0,0294 

R2 0,7760 0,8932 0,8970 0,7067 0,7965 0,8910 0,6972 0,7990 

Optimal Nu 

value 

0,2646 0,8859 0,9919 0,7049 0,2485 0,8861 0,2 0,7958 

Optimal value 

of the C 

parameter 

0.2967 0.9438 2.3817 0.8407 0.5941 0.5941 0.1868 0.5292 



one, and a series of ensemble methods such as Random Forest, Gradient Boosting, XGBoost, 

and LGBM regressor. 

Figures 3 and 4 summarize the comparison results of all investigated methods based on the 

R2 score for assessing the accuracy of predicting the local and global indicators for the 

assessment of building damage caused by tunneling, respectively. 

 

Figure 3: R2-values of the local indicators for the assessment of building damage caused by 

tunneling using different ML-based regressors. 

As evident from Figure 3, the unsatisfactory prediction accuracy of the local indicators is 

demonstrated by ensemble methods such as Random Forest, Gradient Boosting, and XGBoost. 

Somewhat better results were obtained when using classical SVR with RBF kernel and LGBM 

regressor. Significantly higher accuracy compared to the previous methods is demonstrated by 

the basic NuSVR used as the foundation of the proposed framework. However, the smallest 

errors during the prediction of the local indicators for the assessment of building damage caused 

by tunneling were obtained using the proposed PCA-NuSVR framework. It shows an increase 

in R2 from 1.8 to 4.6 depending on the predicted indicator. 

 



 

Figure 4: R2-values of the global indicators for the assessment of building damage caused by 

tunneling using different ML-based regressors. 

Similar results were obtained during the prediction of each of the global indicators (Figure 

4). In particular, NuSVR shows one of the best results compared to all other existing methods. 

However, the proposed PCA-NuSVR framework demonstrates an increase in the R2 value from 

0.9 to 3.8 depending on the global indicators being predicted. 

Among the prospects for further research, three main directions should be considered. The 

first is the replacement of PCA with an auto-associative SGTM neural-like structure with non-

iterative training [18], which will help obtain the principal components much faster compared to 

the basic method. The second direction involves the possibility of nonlinear extension of 

transformed inputs (principal components) to increase prediction accuracy. In this case, the 

second-degree Wiener polynomial can be applied, which is characterized by high approximation 

properties. However, such an approach significantly increases the dimensionality of the input 

data space and may provoke overfitting [19]. Because the inputs in the proposed PCA-NuSVR 

framework are principal components with different variances, it is possible to perform a 

nonlinear extension of inputs only for the first significant principal components (3-5 principal 

components) and add the obtained values as additional inputs to the initial dataset. The third 

direction involves investigating the effectiveness of using artificial neural networks as weak 

predictors of the developed method [20], [21], [22], [23]. Depending on the quality and quantity 

of the training dataset, such an approach can improve the accuracy of solving the problem at 

hand. 



Such an approach will ensure (i) accounting for nonlinearity in the dataset being processed, 

(ii) without significant increase in the dimensionality of the problem, (iii) thus preserving the 

high generalization properties of the proposed PCA-NuSVR framework. 

5. Conclusions 

The authors proposed an innovative unsupervised-supervised framework, termed the PCA-

NuSVR framework, which integrates Principal Component Analysis and Nu Support Vector 

Regression. The framework's methodology is elucidated through the provision of a flowchart, 

accompanied by the development of training and application algorithms. 

The performance evaluation of the framework was conducted on a meticulously 

preprocessed dataset, free from anomalies, and normalized separately for inputs and outputs. To 

ensure the reliability of results, the study incorporated a 5-fold cross-validation approach. 

Subsequent optimization of the proposed PCA-NuSVR framework involved the meticulous 

selection of optimal parameters through the application of Bayesian optimization techniques. 

The optimization process aimed at maximizing the coefficient of determination for each of the 

eight output attributes individually. 

A comparative analysis was undertaken against a spectrum of existing machine learning 

methodologies, including ensemble techniques, revealing the superior efficacy of the optimized 

PCA-NuSVR framework. Specifically, the utilization of this framework yielded a noteworthy 

enhancement in prediction accuracy. This renders the proposed PCA-NuSVR framework 

advantageous for the practical resolution of various challenges encountered within the domain 

of civil engineering. 
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