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Abstract  
Machine learning algorithms (MLAs) are used to solve a variety of problems that arise when processing 

satellite images obtained using remote sensing techniques. This emphasizes the difficulty of choosing the 
most appropriate MLA for land use and land cover (LULC) classification, especially when dealing with 

multifactorial urban areas. Therefore, the goal of this study was to evaluate the effectiveness of different 

MLAs in improving the accuracy of land cover classification. This was achieved by studying the 

performance of several algorithms, namely: Random Forest (RF), Classification and Regression Trees 
(CART), Gradient Tree (GTB), Naive Bayes (NB), and K-nearest Neighbors (KNN). The study used 

Sentinel 2 satellite images, which are characterized by high spatial resolution. The Google Earth Engine 

(GEE) was used for pre-processing, training samples and algorithm training, as well as for generating a 

validation sample. Subsequently, the thematic accuracy of the algorithms was evaluated and compared. The 
findings indicate that the RF algorithm achieves the highest accuracy, with an overall accuracy of 94%. 

Although CART, GTB, and KNN also exhibited commendable performance with accuracies exceeding 90%. 

The MLA excels in classifying bare land (CA 94%, PA 97%) and performs well in identifying water bodies 

(CA 97%, PA 88%) and urban zones (CA 95%, PA 93%). It faces challenges with forest areas (CA 76%, PA 
94%), which are often confused with other classes, and it struggles with vegetation (CA 88%, PA 73%), 

leading to a higher misclassification rate for this category. NB demonstrated relatively lower accuracy by 

77%. This study conclusively identifies RF as the superior choice for achieving optimal land cover 

classification in particular for urban surface. 
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1. Introduction 

 Satellite imagery, especially the extensive datasets from Sentinel and Landsat missions, has 
dramatically changed how we observe and analyze the Earth's surface. The high-resolution satellite 

data provided is crucial for monitoring environmental and land cover changes both globally and 
locally [[1],[2],[2]]. The adoption of open data policies by entities such as the United States 
Geological Survey (USGS) and the European Space Agency (ESA), in conjunction with the 
utilization of tools such as GEE, has significantly enhanced the ease of data acquisition and rendered 
sophisticated analyses of LULC more attainable [[8],[9],[11]]. However, the effectiveness of these 
analyses heavily relies on the selection of appropriate classification algorithms, which range from 
basic unsupervised methods to sophisticated machine learning techniques [[13],[14],[25]]. 
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Each algorithm has its strengths and weaknesses and has been extensively tested across various 
landscapes and conditions, leading to diverse outcomes and discussions regarding their comparative 
performance [[11],[18],[24]]. Numerous research endeavors focusing on LULC classification have 
employed MLAs, with a considerable body of literature identifying the RF algorithm as superior in 

terms of OA and the Kappa coefficient [[1],[2],[5],[19]]. The investigations also unveil variances in 
algorithm sensitivities in RF, CART, and GTB which demonstrate heightened sensitivity towards 
agricultural land identification, whereas NB is notably more effective in forest cover classification 
[[2],[20]]. Further corroborating these findings, research [[8],[9]] validates the adeptness of RF and 
GTB in wetlands classification. Moreover, a study [[9],[11]] illustrates that RF and SVM exhibit 
minimal sensitivity to training sample sizes, unlike k-NN. Exploring urban areas, research employing 
band combinations and various vegetation indexes [[16]] asserts RF superior classification accuracy 
in urbanized regions. Interestingly, SVM and NB efficacy in dense urban locales diverges from that of 

CART and KNN, underscoring the significant influence of classifier parameters and sample size on 
accuracy [[17]]. Additionally, NB and KNN performance was found to be highly contingent on 
sample sizes. Echoing these observations, a subsequent study [[23]] determines RF and SVM as the 
paramount classifiers for settlements and vegetation, respectively, with RF and CART excelling in 
bare land classification, and SVM alongside GTB being optimal for water bodies and GTB for forests. 
And this affirming the critical role of choosing appropriate machine learning algorithms for specific 
LULC classifications. 

Building on these findings, this study focuses on urban LULC classification within Kharkiv, 
assessing the effectiveness of MLA such as RF, CART, GTB, NB, and KNN using Sentinel imagery. 
The primary objective is to compare these MLAs to identify the most efficient classifier, thereby 
making a substantial contribution to the field of land cover assessment in urban settings. This research 
not only underscores the critical role of selecting appropriate MLAs for accurate LULC classification 
but also seeks to advance our understanding of their application in urban analysis. 

2. Materials and Methods 

2.1. Data 

The Sentinel-2A and Sentinel-2B satellites are multispectral optical imaging systems. Launched in 
June 2015 and March 2017, respectively, these satellites are operated by ESA as part of the land 
monitoring component of the Copernicus Program, the European Union's Earth observation initiative. 
The primary aim of Sentinel-2 is to provide continuous access to high-resolution satellite imagery at 
no cost for various applications, offering comprehensive coverage with a swath width of 290 km and 
an enhanced revisit capability of every 5 days. The Sentinel-2 satellites are equipped with 13 high-
resolution spectral bands: three in the visible spectrum (B2, B3, and B4) and one near-infrared (B8) 

band, all with a spatial resolution of 10 meters, intended for primary land-cover classification tasks. 
Additionally, vegetation red-edge bands (B5, B6, B7, B8A) with a 20-meter resolution to advanced 
land-cover classification. Furthermore, several short-wave infrared (SWIR) bands, featuring a 60-
meter resolution, are primarily used for atmospheric corrections and cirrus cloud detection [[27]]. The 
main characteristics of the satellite system are shown in Table 1. 

 
Table 1 

Spatial resolution of Sentinel-2 bands used in the classification process. 

Name Description Pixel Size, m Wavelength, nm 

B2 Blue 10 496.6-492.1 

B3 Green 10 560-559 

B4 Red 10 664.5-665 

B5 Red Edge 1 20 703.9-703.8 

B6 Red Edge 2 20 740.2-739.1 

B7 Red Edge 3 20 782.5-779.7 

B8 NIR 10 835.1-833 



B8A Red Edge 4 20 864.8-864 

B11 SWIR 1 20 1613.7-1610.4 

B12 SWIR 2 20 2202.4-2185.7 

 

For the classification process utilizing selected MLA, a cloudless image from June 20, 2022, of the 
Sentinel-2 collection, expressed in spectral reflectance units, was employed. The identifier ID: 
COPERNICUS/S2_SR/20220620T083611_20220620T084448_T36UYA indicates the capture time 
between 08:36:11 and 08:44:48 UTC. This image, precisely located in the region of Kharkiv via the 
Military Grid Reference System code T36UYA, facilitates the identification of its geographical area. 
Metadata analysis revealed cloud cover metrics: CLOUDY_PIXEL_OVER_LAND_PERCENTAGE 
at 0.000572 and CLOUDY_PIXEL_PERCENTAGE at 0.00076. 

 
  

Figure 1: The spatial location of the Kharkiv, Ukraine. 

2.2. Land cover classification. 

The training and validation samples were gathered using a manual interpretation of the original 
Sentinel 2 data as well as high-resolution imagery from Google Earth. The number of training and 

validation samples per class is shown in Table 2. 
 
Table 2  

Land cover classes and training and validation samples. 

 
Class 1 Class 2 Class 3 Class 4 Class 5 

Type LC Water Bare land Forest Vegetation Urban 

Description 
Rivers, lakes, 
reservoirs, and 

other 

Bare soil and 
sand 

Parks and 
trees 

Grasslands 
and shrubs 

Buildings, roads, and 
other artificial 

structures 



hydrographic 
features 

Training 250 200 200 200 270 

Validation 75 75 75 75 80 

 

 
Adhering to established guidelines, a minimum of 50 training samples per class was generated 

[[1],[7],[9]]. The allocation of these samples was proportionate to the prevalence of each LULC class 
within the study area, with a deliberate and even distribution across the territory of Kharkiv. To 
evaluate the accuracy of the resultant LULC maps, a comprehensive accuracy assessment was 
conducted. This involved the compilation of a confusion matrix, from which key descriptive statistics 
were calculated to assess classification efficacy. These statistics included OA, PA, UA, and Kappa, 
providing a robust measure of the classification's reliability and precision [[22]]. 

 
Figure 2: Spectral signature profiles for each land cover class. 

 
According to Figure 2 it is displayed reflectance for water, bare land, forest, vegetation, and urban 

areas across various spectral bands. This helps visualize how each type of surface uniquely reflects 
light across different bands, thus showing that each land cover class has its own brightness 

characteristics. 

2.2.1. Machine Learning Algorithms for Classification 

Random Forest Classifier.  

The RF algorithm is a widely used ML method for land cover classification based on satellite 

imagery. The effectiveness of RF hinges on the size of the training dataset and the quantity of trees 
generated. The RF creates various decision trees by randomly selecting subsets of variables and data 
for training. Its performance is gauged using out-of-bag samples to ensure a robust evaluation. The 
optimal tree count varies from 100 to 500, with the number of variables sampled for each tree being a 
function of the total number of variables' square root [[4],[5]]. In our study, we employed the 
ee.Classifier.smileRandomForest method from the GEE platform, with 150 numbers of trees. 

Classification and Regression Tree. 

Research has demonstrated that the CART technique and its associated software are capable of 

handling large datasets. Utilizing a decision tree, which is a widely recognized decision support tool 



in machine learning, the CART classifier segregates nodes into sub nodes using a threshold value. 
This process continues until terminal nodes are reached. CART categorizes the input data into various 
group sets and constructs trees using all these sets. The robustness of this algorithm is bolstered by the 
sample size used within each group [[6],[12]]. We used ee.Classifier.smileCart method from the GEE 

platform. 
Naive Bayes. 

NB classifiers are based on the Bayesian probability theorem and are known for their simplicity 
and efficiency, especially in classification tasks involving large datasets. The 'lambda' parameter in 
this method allows for tuning the classifier's smoothing parameter, which is crucial for handling 
features that may not be present in the training set but appear in the testing set [[27]]. In our study, we 
employed the ee.Classifier.smileNaiveBayes method from the GEE platform.  

Gradient Tree Boosting. 

GBT method involves creating multiple trees in a sequential manner where each subsequent tree 
attempts to correct the errors of the previous ones. The key parameters that control the behavior of 
Gradient Tree Boosting are: number of trees, shrinkage is known as the learning rate, this parameter 
scales the contribution of each tree, sampling rate and max nodes [[7]]. The loss function 'deviance' is 
used, which is suitable for classification problems as it aims to improve the model's predictive 
accuracy. Setting these parameters carefully help optimize the performance of the GTB model, 
balancing the trade-off between model complexity and generalization ability [[9]]. We employed 

ee.Classifier.smileGradientTreeBoost with number of trees = 100, shrinkage = 0.1, sampling Rate = 
0.8, max nodes = 20, var loss = 'deviance' and seed = 123. 

K-nearest neighbours. 

KNN method is used for classifying objects based on the majority vote of their neighbors, with the 
object being assigned to the class most common among its k nearest neighbors. "Nearest" is 
determined using a distance metric, such as Euclidean distance [[9]]. To create a k-NN classifier on 
the GEE platform, the ee.Classifier.smileKNN where k = 5 the number of nearest neighbors 

considered in the classification, search Method = COVER_TREE which is efficient when working 
with large datasets, metric = EUCLIDEAN the distance metric used to determine the "closeness" of 
neighbors. Euclidean distance reflects the direct distance between points in space. These parameters 
have helped to make the KNN classifier optimal performance with our dataset, ensuring efficient and 
accurate classification. 

3. Results and discussion. 

Following the classification of the Kharkiv city territory using various MLAs, we have developed 
visualizations to depict the efficacy of these methodologies, as illustrated in Figure 3. These maps 
delineate the primary surface classes that were identified. The outcomes indicate that specific MLAs, 
such as RF, CART, and GTB, achieved the highest precision, with the corresponding accuracies 
detailed in the provided Table 3. Additionally, the visualizations facilitate a clear comparison of the 
classification results for each class and allow for the evaluation of each algorithm's precision. 

Notably, although the KNN algorithm exhibited relatively high accuracy, it predominantly 
misclassified urban areas as bare land and vegetation. Conversely, the NB algorithm demonstrated 
inferior performance, both in terms of accuracy and visualization, often misidentifying urban regions 
as water bodies. 



 
Figure 3: Visualization of the classification results based on different MLAs on the Sentinel-2 

satellite image of 20.06.2022 for the territory of Kharkiv, Ukraine. 

 
Table 3  
Evaluation of LULC classification accuracy utilizing MLAs. 

 
RF CART NB GTB KNN 

OA 0.94 0.91 0.76 0.92 0.93 

Kappa 0.92 0.88 0.7 0.9 0.91 

 
Upon analyzing the classification results in terms of the average CA and PA per class, it is evident 

that the algorithms RF, CART, GTB, and KNN excel in classifying bare land, achieving a CA of 94% 
and a PA of 97%. They also perform well in recognizing water bodies, with a CA of 97% and a PA of 
88%, and urban areas, with a CA of 95% and a PA of 93%. However, challenges arise in the 
identification of forests, which have a CA of 76% and a PA of 94%, often leading to confusion with 
other classes. In this study, such confusion predominantly occurred with the vegetation class, which 

has a CA of 88% and a PA of 73%, resulting in a higher rate of misclassification for this category. 
The use of NB algorithm highlights significant confusion in distinguishing between forest CA 59%, 
PA 79%  and vegetation CA 55%, PA 44% classes. All algorithms to some extent mistakenly classify 
water pixels as forest or urban, while urban pixels are slightly misclassified as bare land. The 
confusion matrix is shown in the Table 4. 

    
Table 4  

Confusion matrix of LULC classification based on MLA. 

M
ap

 d
at

a Reference data 

RF classifier Water RF Bare RF Forest RF Vegetation RF Urban RF 

CA 1 0.96 0.82 0.98 0.95 

PA 0.88 0.99 0.99 0.85 0.98 



water 66 0 6 0 3 

bare land 0 74 0 0 1 

forest 0 0 74 1 0 

vegetation 0 1 10 64 0 

urban 0 2 0 0 78 

CART 
classifier 

Water 
CART 

Bare 
CART 

Forest 
CART 

Vegetation 
CART 

Urban 
CART 

CA 1 0.94 0.79 0.92 0.93 

PA 0.87 0.99 0.95 0.76 0.98 

water 65 0 5 0 5 

bare land 0 74 0 0 1 

forest 0 0 71 4 0 

vegetation 0 4 14 57 0 

urban 0 1 0 1 78 

NB classifier Water NB Bare NB Forest NB Vegetation NB Urban NB 

CA 0.86 0.88 0.59 0.55 0.94 

PA 0.87 0.93 0.79 0.44 0.75 

water 65 0 0 6 4 

bare land 0 70 0 5 0 

forest 0 0 59 16 0 

vegetation 0 1 41 33 0 

urban 11 9 0 0 60 

GBT classifier Water GBT Bare GBT Forest GBT Vegetation GBT Urban GBT 

CA 1 0.94 0.82 0.94 0.95 

PA 0.88 0.99 0.96 0.83 0.96 

water 66 0 6 0 3 

bare land 0 74 0 0 1 

forest 0 0 72 3 0 

vegetation 0 3 10 62 0 

urban 0 2 0 1 77 

KNN classifier Water KNN Bare KNN Forest KNN Vegetation KNN Urban KNN 

CA 1 0.96 0.79 1 0.97 

PA 0.91 1 1 0.79 0.97 

water 68 0 5 0 2 

bare land 0 75 0 0 0 

forest 0 0 75 0 0 
 vegetation 0 1 15 59 0 
 urban 0 2 0 0 78 

 
Upon magnifying the scale of the obtained classification maps, specific pixels that were 

misclassified become distinctly observable and it is shown in Figure 4. It is apparent that the 
classifications by RF, CART, and GTB exhibit a similarity in results with high precision, which was 
comparable to Google Earth imagery. Regarding KNN algorithm, it is notably more sensitive in 

classifying urban areas, particularly those with sparse construction where vegetation is predominant. 
Evaluating the classification map generated by the NB algorithm, there is a clear identification of 
pixels that were incorrectly classified, for example, urban territories misclassified as water or 
vegetation. It is plausible that in some instances, this algorithm's performance was affected by pixels 
corresponding to shadows cast by buildings.  



 

 
Figure 4: Visualization of the obvious confusion of classes according to the algorithm. 

 
The main recommendations based on our results for reduce the misclassification rate, it is 

advisable to further refine the classification algorithms, especially in distinguishing between urban 
areas and natural features like water and vegetation [[2],[8]]. This could involve adjusting the 
parameters or incorporating more sophisticated feature extraction techniques. Moreover, 
implementing advanced preprocessing techniques, such as shadow correction and spectral unmixing, 

could mitigate the impact of shadows and mixed pixels, particularly in urban areas [[9],[11],[24]]. 
This may improve the OA of classification, especially for algorithms like NB. Additionally, 
incorporating supplementary data layers, such as vegetation indices, could enhance the classification 
accuracy by providing additional context that helps differentiate between classes [[2],[14],[16],[18]]. 
For algorithms as a KNN, which show higher sensitivity in specific contexts, adjusting the sensitivity 
settings or employing contextual filters could optimize performance, particularly in classifying urban 
areas with varying degrees of development. 

4. Conclusion 

This study has meticulously evaluated the efficacy of various MLA in addressing the complexities 
of LULC classification, with a special focus on urban environments. Utilizing data from Sentinel 2, 
acquired via GEE, it has been meticulously compared the performance of RF, CART, GTB, NB, and 
KNN in classifying different land covers. It is highlighted the RF algorithm's superior accuracy, 

achieving an impressive OA of 94%. Similarly, CART, GTB, and KNN also demonstrated significant 
efficacy, with accuracies surpassing 90%, underscoring the potential of MLAs in high-precision land 
classification tasks in complex urban environments. The meticulous assessment of thematic accuracy, 
including CA and PA, provides a granular understanding of each MLA's performance, revealing their 
capabilities in identifying specific land covers while highlighting areas of confusion, such as between 
forests and other classes or the misclassification of urban areas as bare land and vegetation. 
Furthermore, the study's findings emphasize the critical need for algorithm refinement and the 



integration of sophisticated preprocessing techniques to enhance classification accuracy, especially in 
complex urban landscapes. 
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