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Abstract 
A novel approach to synthesizing software systems for teaching toothbrushing techniques is proposed. 
This approach leverages augmented reality technology and machine learning methods to monitor 
toothbrush movements, recognize cleaning gestures, and analyze and evaluate the user's performance. 
This paper outlines the proposed approach, determines the optimal marker type, size, and brightness 
conditions required for precise positioning assessment, and highlights Kalman filtering for suppressing 
noise introduced by camera imperfections and swift toothbrush movements. 
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1. Introduction 

Diseases of the oral cavity represent one of the most significant health challenges for countries 
and populations worldwide. According to estimates by the World Health Organization (WHO) in 
2019, oral cavity diseases affected nearly 3.5 billion people [1]. 

Among the primary oral cavity diseases are dental caries, gingivitis, oral cavity cancer, HIV 
infection, cleft lip and palate, and oral cavity and dental traumas. Additionally, research exists 
showing a correlation between deteriorating oral health and overall health conditions, which may 
be associated with diseases such as heart disease, endocarditis, and premature births [2]. 

Inadequate or improper oral hygiene ranks as one of the leading causes of the high prevalence 
and intensity of dental diseases. While addressing insufficient oral hygiene is relatively 
widespread and straightforward, identifying and rectifying improper hygiene practices can be 
challenging. Factors contributing to the development of incorrect oral hygiene habits include low 
levels of education, habit formation during childhood, and the confusing abundance and variety 
of tooth-cleaning recommendations [3, 4]. 

Therefore, the development of systems to educate individuals on proper oral hygiene 
practices, providing tools to cultivate correct habits in both adults and children, emerges as a 
prudent approach to prevent the mentioned oral cavity diseases. Furthermore, such systems 
serve as excellent solutions for promoting nationwide preventive measures. 

2. Related work 

Recently, the scientific community has increasingly focused on utilizing technological solutions 
for oral cavity health care. Solutions developed for teaching oral hygiene primarily employ the 
following approaches: wearable electronics (smartwatches and bracelets), the creation of smart 
brushes using MEMS sensors, and the use of augmented and virtual reality technologies. 

In [5], the authors describe the development of smart toothbrushes for monitoring teeth 
cleaning effectiveness using a recurrent probabilistic neural network (RPNN). To address the 
problem, they propose using a modified toothbrush with an inertial measurement unit (IMU) to 
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determine its spatial position. The main part of this work is dedicated to proper processing and 
recognition of movements occurring during teeth cleaning, utilizing the RPNN model. The authors 
highlight the advantages of RPNN over convolutional neural networks (CNN) and long short-term 
memory networks (LSTM), such as low computational resource usage, high recognition accuracy, 
and efficiency. 

In [6], the study aims to present a protocol for developing a serious game to motivate oral 
hygiene practice in children. Kinect hardware (from Microsoft) is employed to track human 
movements. The system requires users to perform specific tasks (moves), after which it evaluates 
their actions and provides recommendations for improving toothbrushing technique. The author 
bases the work on the Stillman and Fones toothbrushing techniques. 

The research [7] addresses toothbrush monitoring using augmented reality technology. The 
authors use multiple AR markers attached to a dodecahedron base to collect positioning data. The 
work also discusses the correlation between the number of AR markers and the accuracy of 
results. It is recommended to use three markers to achieve 95% monitoring accuracy. The 
authors emphasize the usefulness of this method in developing oral hygiene training systems. 

In [8], a smartwatch equipped with an accelerometer is proposed for monitoring movements. 
A feedforward neural network is used for gesture recognition, with a publicly available UCI 
repository selected as the dataset. The authors aim to detect human motion primitives using a 
triaxial accelerometer. 

Motion tracking in [9] employs augmented reality technology. The software system attempts 
to solve two problems: monitoring toothbrush movements and identifying soiled tooth surfaces. 
OpenCV library is used for toothbrush movement tracking, with a single AR (ArUco) marker 
attached to the toothbrush for positioning data. The authors state that the soiled tooth surface 
detection accuracy is 98%. 

In [10], a smartwatch equipped with a magnetic sensor and a modified toothbrush with tiny 
magnets attached is proposed for motion tracking. This setup allows for the transmission of user 
motion data to the watch. The system comprises two phases: a training phase and a working 
phase. During the training phase, the user must perform tooth cleaning several times using the 
Bass technique for calibration. Subsequently, in the working phase, the user continues to use the 
software, receiving feedback on the correctness of their technique. At the conclusion of the study, 
the author notes that the system usage significantly improves the tooth cleaning technique in 
respondents, resulting in more effective plaque removal. The accuracy of gesture monitoring with 
this approach is reported to be 85.6%. 

After analyzing recent publications in this field, one can identify the following shortcomings: 
 Use of IMU sensors based on MEMS technology: studies were conducted using sensors of 
high accuracy, which are impractical for commercial projects. The authors propose using 
MEMS technology due to its low cost. However, MEMS sensors have low accuracy [11, 12]. 
 Use of laboratory conditions: studies using computer vision for motion monitoring did 
not consider external conditions (e.g., lighting).  
 Significant computational resource usage for real-time data processing, reducing system 
data accessibility.  
 Some studies utilized no known toothbrushing techniques when evaluating process 
effectiveness, a crucial factor for developing educational systems. 
 Proposed methods that require IMU sensors to work are cost-ineffective, which makes 
them inaccessible to most people. 
The described problems hinder the creation of an effective and accessible training system for 

oral cavity hygiene. This research aims to address the mentioned problems. 

3. System architecture overview 

In general, the software system should function as follows. The user selects the toothbrushing 
technique they aim to learn. Subsequently, the system provides visual instructions for the 
individual to follow. The software continuously monitors user activity in real time through a 
webcam. It evaluates the user's actions and provides recommendations for enhancing their 
performance in the completed exercises. From this standpoint, several issues emerge that the 
prospective software system needs to tackle: 



 Capturing video streams 
 Recognizing human faces 
 Determining the spatial position of a toothbrush at any given moment 
 Identifying brush-cleaning areas 
 Evaluating the user's proficiency in executing a specific tooth cleaning technique and 

offering guidance for improvement. 
Hence, to address the mentioned challenges, we propose the system architecture shown in 

Figure 1. The system comprises five modules (and a GUI), each targeting the mentioned issues. 

 
Figure 1: Deployment diagram of the proposed software system 

 
Each module is designed to be interchangeable, facilitating the easy substitution of one 

implementation with another as needed (for instance, replacing one marker type with another). 
Furthermore, each module operates concurrently in a separate thread. It ensures that all 
computations can be executed in parallel, thus enhancing the overall system performance in 
terms of frames per second (FPS). Inter-module communication is facilitated through signals and 
slots. This mechanism is specific to QT and similar to the observer pattern. Data acquired from a 
module are transmitted to the main component (GUI) via signal emission. Subsequently, if 
necessary, the data is relayed to other components using the same principle. 

The proposed architecture exhibits versatility and can be applied universally to similar 
application types, irrespective of the platform (Mobile, Web, PC). This adaptability underscores 
its potential utility across diverse technological environments. 

4. Face detection 

Recognition of the human face is primarily intended to check whether a person is visible and 
looking directly into the camera frame. It ensures that the system will not start/resume the 
training with no person present. It also guarantees that brush-cleaning areas are detected 
accordingly since the person looks directly into the camera.  

For the object detection module implementation, we used a CNN specifically employing the 
YOLO (v8) single-stage detector [13]. We trained the model using an annotated open dataset 
comprising 1280 images of human faces (900 training and 380 validation). Each image had 
dimensions of 640x640 pixels. The number of epochs was 25. 

5. Toothbrush pose estimation 

5.1. Comparison of popular markers libraries 

A fiducial marker system comprises planar (2D) markers positioned within a specific 
environment, intended to be detected by a camera across various applications. These markers 
enable the estimation of the object pose [7]. However, certain assumptions must be considered 
regarding the following factors: 



 Marker Placement: Strategic positioning of fiducial markers within the environment is 
essential to maximize their visibility to the camera system while minimizing potential 
occlusions and obstructions. Also, it directly impacts marker pose estimation accuracy. 

 Lighting Control: Environmental lighting conditions must be carefully controlled to 
minimize fluctuations that could deteriorate marker detection. Consistency in lighting 
setups is crucial for ensuring reliable performance. 

 Distance Consideration: Variations in the distance between the camera and fiducial 
markers must be accounted for, as they can influence optimal marker size for the 
project as well as its detection. 

 Detection Speed: In real-time application projects, the detection algorithm must work 
as fast as possible to ensure proper system response. 

Given the metrics outlined above, an attempt can be made to evaluate and contrast existing 
marker libraries to identify the most suitable option for our project requirements. The selected 
candidates for comparison include ArUco, AprilTag, STag, CCTag, and ARTag (Figure 2). 

Pose estimation and motion tracking efficacy highly depend on the marker type, size, tilt, the 
distance between the marker and camera, and marker occlusions. The smaller the marker size 
and the greater the mentioned distance, the slower marker detection. Besides, if the marker is 
partially occluded, it may be misrecognized. Not all the marker types provide the same results, 
i.e., the efficacy of pose estimation highly depends on the marker type. However, this issue is not 
covered in the literature. To choose the appropriate marker type, we designed a set of 
experiments with different marker sizes, distances from the camera, and percentages of occluded 
areas. The results are presented in Tables 1 – 5 (paragraphs 5.1.1 – 5.1.4). 

ArUco (DICT_5X5_1000) AprilTag (DICT_APRILTAG_36h11) CCTag (3 rings)

STag (HD17) ARTag (ID2)
 

Figure 2: Fiducial markers used in our comparison with specified dictionaries 

5.1.1. Marker size 

Typically, the monitor should be within the range of distances from the eyes, specifically 
between the near (52 cm) and middle (73 cm) distances [14]. Therefore, it is imperative to 
determine the optimal marker size capable of detection within the range from 40 cm to 100 cm. 
The experimental setup involves placing the camera in a fixed position (XY) while the marker is 
positioned at various distances (with a 90-degree tilt; pitch rotation), including 40 cm, 60 cm, 80 
cm, and 100 cm. Subsequently, the program executes 100 frames trying to detect the marker. We 



performed ten experimental runs under the same lighting conditions and averaged the resulting 
data to derive the final marker detection rate. The results are resented in Tables 1 – 3. 
Table 1 
Comparing the marker detection rate with MSize = 10 mm 

Marker/Distance 40 cm 60 cm 80 cm 100 cm 

AprilTag 97% 69% 0 0 
ArUco 98% 77% 0 0 
STag 95% 75% 0 0 
CCTag 0 0 0 0 
ARTag 93% 38% 0 0 

Table 2 
Comparing the marker detection rate with MSize = 15 mm 

Marker/Distance 40 cm 60 cm 80 cm 100 cm 

AprilTag 100% 89% 62% 2% 
ArUco 100% 95% 94% 7% 
STag 100% 94% 84% 4% 
CCTag 0 0 0 0 
ARTag 100% 83% 42% 2% 

Table 3 
Comparing the marker detection rate with MSize = 20 mm 

Marker/Distance 40 cm 60 cm 80 cm 100 cm 

AprilTag 100% 100% 96% 93% 
ArUco 100% 100% 100% 95% 
STag 100% 100% 97% 95% 
CCTag 3% 0 0 0 
ARTag 100% 100% 92% 91% 

5.1.2. Marker tilt angle 

Marker tilt angle pertains to the degree of rotation or inclination of a fiducial marker relative to 
the camera's field of view. A tilted marker departs from its optimal alignment, potentially influencing 
its detectability and pose estimation accuracy. In the experimental configuration, the camera remains 
stationary (fixed in the XY plane) while tilted along different axes (pitch and yaw). Our findings indicate 
that most markers demonstrate satisfactory performance when tilted up to 65 degrees in both 
counter-clockwise and clockwise directions. 

5.1.3. Marker detection speed 

Several factors can impact the speed of marker detection, including the marker size, the detection 
algorithm efficiency, processing power, and lighting conditions. However, including such data in this 
paper may introduce bias given the variability introduced by these factors. Nonetheless, under stable 
and fixed conditions, such as consistent lighting, distance, and marker size, it would be beneficial to 
present speed detection data. In our experiments, we used the marker size of 16mm, positioned at a 
40 cm distance. The webcam configuration is given in section 8. Table 4 shows the results. 
Table 4 
Comparing the marker detection speed 

Marker AprilTag ArUco STag CCTag ARTag 

Time (s) 0.00425 0.00454 0.0143 0.2 0.00913 

5.1.4. Marker occlusion 

Marker occlusion refers to instances where a portion or the entirety of a fiducial marker is 
obstructed from the camera's view. Such obstruction can arise due to various factors, including 



physical objects blocking the marker or the marker partially concealed behind another object. 
Some markers are specifically designed to exhibit greater resistance to occlusion. 

To assess a marker's resistance to occlusion, we ran an experiment where a piece of paper 
covered a certain percentage (50%, 25%, 10%, 5%) of the total area of the marker. In this 
experiment, 20 mm markers were employed, and the camera was fixed along the Z-axis at a 
distance of 30 cm from the ground. The experiment findings are summarized in Table 5. 
Table 5 
Comparing the marker resistance to occlusion 

Marker/ 
Occlusion 

1%  
(4 mm) 

5%  
(20 mm) 

10%  
(40 mm) 

25%  
(100 mm) 

50%  
(200 mm) 

AprilTag Partial detection 0 0 0 0 
ArUco 1 1 Partial detection 0 0 
STag 1 1 1 Partial detection 0 
CCTag 1 1 1 1 1 
ARTag Partial detection 0 0 0 0 

5.2. Markers placement 

To ensure optimal accuracy and precision in pose estimation with markers, it is imperative to 
arrange them in a configuration where at least two markers are visible simultaneously. This 
precautionary measure is vital for several reasons: 

 Pose estimation encounters challenges when only a single marker is visible within the 
frame, resulting in ambiguity in solving the Perspective-n-Point (PnP) problem [15]. This 
limitation arises from the insufficient information provided by a single marker, impacting the 
accuracy and reliability of the pose estimation. 
 Single-marker pose estimation is constrained by limitations in accuracy and the range of 
viewing angles. Without multiple markers for reference, the system may struggle to determine 
accurately the pose of the object being tracked. 
 When used for brushing the inner side of dental areas, a single marker is susceptible to 
occlusion, obstructing the marker's view and impeding accurate tracking. 
Considering these factors, it is advisable to utilize 3D objects instead of plain markers, such as 

cubes, tetrahedrons, or octahedrons. However, numerous studies focusing on object position 
tracking using fiducial markers [7, 16, 17] advocate for the adoption of a dodecahedron-based 
design, which offers favorable properties for robust tracking and accurate pose estimation. 

5.3. Finalizing toothbrush design 

After completing all of our experiments, we have finalized the following configuration: an 
ArUco marker with a size of 15.8 mm coupled with a dodecahedron-based object featuring edges 
measuring 17 mm in length, produced using an off-the-shelf 3D printer. The ArUco marker was 
selected due to its superior detection rate and optimal performance compared to other fiducial 
markers. The marker size was determined through range testing considerations, aiming to strike 
a balance between detectability and user comfort, particularly regarding the toothbrush handle. 
Figure 3 depicts our modified toothbrush design. Figure 4 shows its usage in the developed 
application. 

 
Figure 3: Our proposed modified toothbrush for 6DOF tracking 



 
Figure 4: A sample of the marker usage in the developed application 

5.4. Data filtration 

Given the real-time nature of the system, characterized by swift movements of the marker and 
variations in camera quality, a considerable amount of noise is introduced within the captured 
frames. To somewhat mitigate this noise, we implemented a linear Kalman filter. This approach 
is expected to yield improved accuracy in tracking outcomes [18]. 

Initially, it is necessary to establish our state vector (1), comprising 18 states. These states 
encompass positional information (x, y, z) alongside their first and second derivatives (velocity 
and acceleration). Additionally, rotation is presented as three Euler angles (roll, pitch, yaw), 
accompanied by their respective first and second derivatives (angular velocity and acceleration). 

𝑋 = (𝑥 𝑦 𝑧 �̇� �̇� �̇� �̈� �̈� �̈� 𝜓 𝜃 𝜑 �̇� �̇� �̇� �̈� �̈� �̈�)𝑇               (1) 
Next, one should determine the number of measurements. It amounts to 6. These 

measurements are derived from the rotation (R) and translation (t), yielding the positional 
coordinates (x, y, z) and the Euler angles (ψ, θ, φ). Furthermore, the number of control actions to 
apply to the system is specified, which, in this scenario, is zero. Lastly, we define the interval 
between measurements denoted as the differential time. In this instance, it is calculated as 1/T, 



where T represents the frame rate of the video. We picked some random values of the process 
noise, measurement noise, and error covariance matrix. 

The matrix (2) represents the state transition model A of the Kalman filter, which is used to 
predict the evolution of the state vector from one time step to the next in a linear dynamic system. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 𝑑𝑡 0 0 𝑑𝑡2 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 𝑑𝑡 0 0 𝑑𝑡2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 𝑑𝑡 0 0 𝑑𝑡2 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 𝑑𝑡 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 𝑑𝑡 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 𝑑𝑡 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡 0 0 𝑑𝑡2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡 0 0 𝑑𝑡2 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡 0 0 𝑑𝑡2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 𝑑𝑡
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          (2) 

The matrix (3) represents the measurement model H of the Kalman filter, which relates the 
measurements obtained from sensors to the state vector. The first three rows in (3) indicate that 
the measurements directly correspond to the positional data (x, y, z). The next three rows indicate 
that the measurements directly correspond to Euler angles (ψ,θ,ϕ) in the state vector. 

[
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

 
 
 
 
 

                (3) 

6. Detecting brush cleaning area 

The Brush Cleaning Areas Recognition module is tasked with identifying specific regions of the 
brushing area associated with particular brushing techniques. For instance, the Bass technique 
implies 15 areas, including upper and lower segments on the right and left sides, outer segments, 
and specific regions within the incisors.  

When employing an IMU sensor with 9 Degrees of Freedom (9DOF), contemporary solutions 
often suggest using deep learning architectures such as CNNs, LSTMs, and RPNNs, among others 
[5, 10]. However, integrating existing implementations with our 6 Degrees of Freedom (6DOF) 
tracking system poses considerable challenges due to several factors. The unpredictable 
positioning of the camera within the user's environment, coupled with the variable distance 
between the camera and the user (ranging from 40 to 70 cm), renders the utilization of X, Y, and 
Z positioning impractical. Consequently, the available data is limited to rotations around the X, Y, 
and Z axes (3DOF), presenting significant obstacles in accurately discerning the brushing region 
even with a comprehensive dataset. 

As a result, the efficient adaptation of current methodologies for identifying brushing areas 
within the context of our tracking system presents notable difficulties, primarily due to the 
inherent limitations of rotational data and the unpredictable nature of the user's setup. 

7. Training module 

The Training module is structured to fulfill the following objectives: 
 Monitoring and tallying the number of brushing strokes performed by the user. 



 Initiating and terminating the brushing timer to track the duration of brushing sessions. 
 Assessing the user's proficiency in tooth cleaning techniques based on available data. 
 Managing the training session by pausing or resuming activities when the user is absent 
or present in the frame. 
 Providing personalized guidance and recommendations for improvement. 
The counting of brushing strokes can be accomplished through two proposed methods. The 

first method involves utilizing an acoustic sensor, such as a microphone, to detect the occurrence 
of brush strokes [19]. However, this approach implies that the user has a noise-free environment 
and relies on the brush strokes audible enough to be registered on the microphone. Alternatively, 
the second method entails leveraging positioning data obtained from the Pose Estimation 
Module. This data encompasses the X, Y, and Z coordinates between two consecutive frames, as 
well as changes in velocity, enabling the calculation of brush stroke occurrences. 

Regarding the assessment of the user's proficiency in executing specific tooth-cleaning 
techniques, one can conduct a comprehensive analysis utilizing various data collected during the 
training session. These include but are not limited to the total count of brush strokes performed 
by the user, the average speed of brush strokes executed during the session, the duration of time 
allocated to brushing specific areas within the oral cavity, the ratio of correctly executed 
movements to the total number of movements performed. By incorporating these metrics into 
the evaluation process, one can attain a holistic understanding of the user's performance and 
adherence to the prescribed tooth-cleaning techniques. 

8. Experimental setup 

We evaluate each of the proposed and implemented system modules (specifically Face Detection 
and Toothbrush Pose Estimation), as well as some other mentioned results (described in section 
5.1) on the following hardware/software configuration: 

 Desktop: OS: Fedora Linux 39 (6.7.3 kernel); CPU: AMD Ryzen 5 5600X (12) @ 3.700GHz; 
RAM: 32Gb DDR4. 
 SW Dependencies: OpenCV: 4.9.0.80; YOLOv8 (Ultralytics): 8.1.11; PySide6: 6.6.1; Python: 
3.12.1; Numpy: 1.26.4. 
 Webcam: Model: Asus Webcam C3; Resolution: 1280x720; Sensor Resolution: 2 Mpix; 
FPS: 30; Codec: MJPEG; Exposure: Auto Exposure is disabled, Exposure Time 1/60s; Auto 
Focus: Disabled. 
 Marker (on dodecahedron): Size: 15.8 mm; Dictionary: DICT_5X5_1000; IDs Range: 0 – 
11; Type: ArUco. 
Camera calibration is of key importance [20, 21, 22]. Our camera is calibrated using a 10x15 

chessboard pattern with a marker size of 18 mm, attached to a wooden board (Figure 5). 

 
Figure 5: Calibration board (chessboard, 10x15, marker size 18 mm) 



Root mean square (RMS) reprojection error – 0.223. The camera intrinsics (camera matrix and 
distortion coefficients) are the following: 

[
641.125534 0 628.572419

0 641.125534 351.051382
0 0 0

] = 𝐾 

[0.0519576 −0.0213721 0 0 0.0030762] = 𝐷 

9. Results 

9.1. Face detection accuracy and precision 

In the assessment of our trained YOLO model, we have selected the following metrics: 
 TP (True Positive): Refers to the tally of positively classified samples with accuracy. 
 TN (True Negative): Represents the count of negatively classified samples accurately. 
 FP (False Positive): Indicates the number of negatively classified samples inaccurately 
labeled as positive. 
 FN (False Negative): Signifies the number of positively labeled samples inaccurately 
categorized as negative. 
 Precision: Quantifies the ratio of TP to the total number of predicted positive instances. 
 Recall: Measures the ratio of TP to the total number of actual positive occurrences. 
 AP (Average Precision): Provides a measure for assessing the precision-recall curve. 
 F1 Score: serving as an overarching performance indicator, reflects the harmonic mean of 
precision and recall. It is computed by doubling the product of precision and recall, then 
dividing by their sum. 
When using the YOLOv8 model, all essential metrics for evaluating our model's performance 

are readily available. True Positives (TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN) can be extracted from the confusion matrix (Figure 6). Specifically, TP = 166, FP = 
6, FN = 3, TN = 0. The precision is measured at 0.9651, recall at 0.9822, and the F1 score at 0.9736. 
The overall Average Precision (AP) stands at 0.993. Inference time – 28.3ms. 

Figure 6: Confusion matrix 
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9.2. Pose estimation accuracy 

To assess the pose estimation accuracy, we established an experimental setup using a grid 
pattern drawn on an A2 sheet of paper, with each square having a side length of 5 cm. The 
experiment involved moving a toothbrush incrementally in each plane direction by 5 cm and by 
10 cm in the Z-direction while maintaining the camera's position at a fixed Z-coordinate of 1 
meter. The experiment outcomes are presented in Table 6. 
Table 6 
Pose estimation accuracy 

 Ground truth Estimated values Absolute error Percentage 

Х (m)  
(at Z = 1m) 

0.1 0.108 0.008 8% 

0.15 0.159 0.009 6% 

0.2 0.211 0.011 5.5% 

Y (m) 
(at Z = 1m) 

0.1 0.1075 0.0075 7.5% 

0.15 0.1611 0.0111 7.4% 

0.2 0.214 0.014 7% 

Z (m) 

0.8 0.824 0.024 3% 

0.9 0.929 0.029 3.2% 

1 1.031 0.031 3.1% 

9.3. Usage of Kalman’s filter on bad pose rejection and noise reduction 

To evaluate Kalman's Filter efficacy for noise reduction and mitigation of undesired pose 
fluctuations, we conducted a series of experiments. They were meticulously designed to assess 
the filter's capability to reject false pose estimations and minimize the ambient noise impact: 

1. Steady Movement along the X-axis in one direction: The toothbrush undergoes deliberate, 
unhurried motion exclusively along the negative direction of the X-axis. 
2. Steady Movement along the X-axis in both directions: Similar to the preceding scenario, 
the toothbrush undergoes deliberate, unhurried motion along the X-axis in both directions. 
3. Steady Movement along the X-axis with Marker Occlusion: As in the initial scenario, the 
toothbrush undergoes consistent motion along the X-axis. However, a distinct feature of this 
scenario is an intentional occlusion of the marker during the midway point of the trajectory. 
In the absence of Kalman filtering (Figures. 7 and 8), the pose exhibits susceptibility to 

undesirable vibration noise, closely mirroring its fluctuations. Such behavior proves 
disadvantageous in our application, where stability in pose determination is crucial. 

 
Figure 7: Fluctuations in unfiltered data 



 
Figure 8: Filtered vs unfiltered data 

 
Conversely, upon the Kalman filter usage, the pose maintains a relatively stable trajectory, 

mitigating the adverse effects of noise-induced fluctuations. 
In scenarios where no pose information is accessible due to occlusion of the ArUco marker 

(Figure 9), the conventional methods fail to provide reliable estimations. However, with the 
integration of the Kalman filter into our approach, the system remains capable of inferring the 
state and anticipating marker locations during these occluded intervals. The outcomes of our 
analysis demonstrate the algorithm's efficacy in addressing occlusion challenges, yielding 
optimal estimations despite the absence of direct pose data. 

 
Figure 9: Filtering at ArUco occlusion 

10. Discussion 

In the proposed system architecture, which holds potential for universal application across 
similar projects, and exhibits commendable accuracy in pose estimation, several critical 
impediments to its real-world applicability have been identified. 

Initially, the facial detection mechanism within the project predominantly functions as a 
superficial feature rather than a core component. Its primary use—to ascertain whether a user is 



facing the camera, thereby enabling the pause and resume of training sessions and, theoretically, 
assisting in brush area identification—limits its practical utility. Moreover, the attainment of 
precise pose estimation is contingent upon fulfilling numerous prerequisites: 

 Camera Calibration: Effective pose estimation necessitates user-initiated camera 
calibration, incorporating an automated procedure within our system. Although 
explored in existing studies, camera calibration is not a straightforward task. The 
inevitable variance in distortion coefficients is likely to introduce bias into the data 
collected, thereby compromising the accuracy of pose estimation. 

 Toothbrush Modification: To utilize our system, users have to engage in a modification 
process for their toothbrush. It involves the creation of a dodecahedron using a 3D 
printer and affixing markers onto it. However, the accessibility of 3D printers remains 
limited, and the precise alignment and attachment of markers to the dodecahedron is 
crucial. Any inaccuracies in this process may compromise the accuracy of marker 
detection and pose estimation, thus impacting the overall system functionality. 

 Rolling-shutter Cameras: Predominantly, contemporary webcams operate on a 
rolling-shutter mechanism, capturing images not instantaneously but by rapidly 
scanning the scene. This approach results in predictable distortions of swiftly moving 
objects or intense light fluctuations, leading to the erroneous detection of markers and 
inaccurate pose estimation. Solutions to this challenge encompass transitioning to 
cameras with a global shutter, increasing shutter speed—at the expense of potential 
exposure issues—and the implementation of advanced Image Processing Algorithms. 

 Lighting Conditions: The marker detection is linked to lighting conditions, requiring 
an environment that is neither excessively bright nor dim. This issue is mitigated when 
employing an IMU solution but is exacerbated by reduced exposure times. 

Lastly, the utilization of the proposed 6DOF marker pose estimation system introduces 
significant challenges in accurately determining the brushing area, a dilemma that demands a 
viable resolution as detailed in sections 6 and 7 of our analysis. 

This comprehensive evaluation underscores the complexities and limitations inherent in the 
deployment of the proposed system within practical settings, highlighting the necessity for 
further refinement and adaptation to overcome these obstacles. The future work implies the data 
fusion of the obtained results with IMU data and gesture recognition [23]. 
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