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Abstract	
The paper of the report represents the study dedicated to the main link of the aircraft flight speed to 
the minimal time of the air transportation process. The simplest problem of the aviation 
transportation technologies fundamental factors optimization models the considered process of the 
delivery and it makes an attempt to the process theoretical description. Two segment air traffic 
elementary chain of supply is implied at the presented research. The algorithm, which is used for 
calculating the objective parameters of the aircraft motion, is developed. Approaches to aircraft speed 
optimization are used. The speed of the delivery by the aircraft at each of the segments have been 
conditionally optimized. The objective value is the time of delivery. The aircraft speeds are subject to 
both linear and nonlinear constraints. The influence of the speeds’ variations upon the conditionally 
minimal objective delivery time values are studied. Theoretical contemplations are conducted in the 
framework of the Lagrange uncertainty multipliers implementation. The hypothetical provisions of the 
derived mathematical models are illustrated with the help numerical simulation. The part of the 
computer modeling is conducted on the Mathcad platform at the educational and scientific laboratory 
"Modeling of transport systems and processes" of National Aviation University. The necessary 
diagrams are plotted. The obtained results of both theoretical study and computer simulation allows 
construction of optimal delivery chains with a better determination of the exchange point location. 
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1. Introduction	

Computer and numerical simulation for searching optimal aircraft speed by the criterion of the 
minimal time of the delivery is an urgent task. That requires a proper maintenance of aircraft 
itself [1], as well of the airplane engines and powerplants [2], in order to support the 
aeronautical components’ reliability [3] and risk [4] at the due level. 

However, the unsolved part to the general problem there, at references [1 – 4], is the lack of 
the conditional optimization. 

In such context, expected operational efficiency and utility [5] is combined with the choice 
problems [6]. 

This means that the transport technologies theoretical constraints, like in reference [7], 
strengthening learning for intelligent applications [8, 9] are important. 

These variants of uncertainty can be estimated using entropy approaches [10]. 
In conjunction with the economic models [11], the entropy methods resulted in the 

subjective analysis theory [12] allows solving various types of the applicable problems, similar 
to the stated in the references of [13 – 16]. Some problems relevant to the air transport 
management and aviation transport technologies have already been posed in [17 – 20]. 

According to the presented concepts, a scientific gap that needs to be solved is the 
development of a reliable mathematical approach to the actual and important problems related 
to the formulation of the optimal combination of aviation resources, especially in relation to 
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supporting the process of analytical decision-making based upon the advantages of the 
computer modeling. 

Thus, in the case with the aircraft transportation speeds, it is necessary to formulate the 
scientific hypothesis of the conducted research as the speeds’ variations, subject to both linear 
and nonlinear constraints, impact upon the conditional minimal value of the delivery time. 

The problem statement of the presented research concerns with the theoretical studies 
focused on the calculations of the optimal speed of the aircraft as the key element of the aviation 
transport technologies. 

Thus, the goals of the article are a general description of the possible optimization of the 
aircraft speed for the theoretical and mathematical obtaining of rational solutions. 

2. Possibilities	of	optimization	

The simplest problem of the aviation transportation technologies fundamental factors 
optimization stated here is based upon an elementary two segment supply chain consideration. 
The speed of the delivery by the aircraft at each of the segments could be conditionally 
optimized. 

This necessitates the further development of the optimization methods of [18] and [19]. 

2.1. Basic	concept	

It is going to be considered the theoretical background for calculating aircraft movement 
parameters and approaches to their optimization. 

The simulation of the aircraft motion was conducted with use of the software capabilities of 
the educational and scientific laboratory "Modeling of transport systems and processes". 

2.1.1. A	case	of	a	linearly	dependable	constraint	

Taking into account the speed of the aviation transportation delivery 
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where  21,vvT  is the time of the delivery; 1v  and 2v  are correspondingly the speeds of the 

first and the second aircraft that fly towards each other the same time  21,vvT ; AB  is the 

distance covered by both aircraft in the time of  21,vvT  and at the speeds of 1v  and 2v  in 
respect. 

Model (1) imply, for instance, a case when allows you to find an initial reference solution, 
and then, improving it, get the optimal solution. 

Considering the condition of 
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where P  is some idempotent (independent upon the parameters of the considered problem 
model, stable, steady, unchanged, constant) value; 1f  and 2f  are the corresponding speeds 

coefficients; 
min1v  and 

min2v  are the minimal values in respect for the aircraft speeds of 1v  and 

2v  possible range of variation. The idea of (2) is close to [18]. 
The linear dependence between the aircraft speeds of 1v  and 2v  coefficients values of 1f  

and 2f  could be derived supposing as from (2). 
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where 
max1v  and 

max2v  are the maximal values in respect for the aircraft speeds of 1v  and 2v  

possible range of variation. 
Comparing the corresponding members of (4) and (5) 
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System (6) yields 
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Having determined the coefficients of 1f  and 2f  from (2) – (7), it is possible to consider now 
the condition of (2) as a constraint to the objective function of (1): 
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Therefore, the problem is becoming a problem of a conditional optimization. 
Namely, find the optimal aircraft speeds: 1v  and 2v , (1) – (8), extremizing the time of the 

delivery by the aviation transportation:  21,vvT , (1), subject to the only constraint of (2) as (8). 
Thus, the extended Lagrange function is 
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where  is the Lagrange uncertain multiplier. 
The necessary conditions for a possible extremum of (9) existence are 
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Then 
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The systems of (10) and (11) yield 
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From the first two equations of system (12) 
Cvvvv 

minmaxminmax 2211 . (13) 

Then, using the third equation of system (12) 

minmin 2211 vvvvC  . (14) 

Applying (13) and (14) to the first or second equation of system (12) 
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From (15) 
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But system (12) might have a solution. It is because its first two equations are the same. 
Indeed, instead of (12) there is a possibility to write 
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The rewritten system (12) means 
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Then 

 













.

;

minmin

minmin

2121

2
21

vvCvv

vvC

CAB

 

 
 

(19) 

So, 21 vv   has a constant (idempotent) value. One of the speeds can be determined through 
the other one. It can be resolved with the help of the expressions of (2) – (5), or conditions of 
(8), (9), the third equations of (11), (12), as well as from (14), the third equation of (17), and the 
second equations of (18) or (19) too. 

Moreover, therefore, the duration of flight has a idempotent (stable, steady, unchanged, 
constant) value as well. That follows the model expression (1). 

Thus, the system of two equations (18) obtained from/of (12) has happened to be a system 
of two equations with three unknowns. And (19) is actually the one equation with the two 
unknowns. 

The following sections dedicated to simulation and discussion will visualize and dispute 
upon the case set as (1) – (19). 

 



2.1.2. A	variation	upon	the	constraint	

This subsection deals with the time:  21,vvT , (1), but subject a nonlinear constraint in the 
type of the variation to the equation of (2) or to the equation (4). 

The necessary conditions for a possible extremum of (9) existence are 
Now, it is going to be 
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where  1v  is the variation to the linear dependence of 2v , (2), or the equation (4), both 2v  
and  1v  being dependent upon 1v . 

Suppose a nonlinear variation of  1v , (20). The proposed model is 
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maxmin1 11111 vvvvkv   , (21) 

where 
1
k  is a coefficient. 

On the other hand, it is possible to model the opposite side, of the equation of (2), or to the 
equation (4), dependence of 2v , (2), upon 1v  variation. That is 
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where  1v  is the variation to the linear dependence of 2v , (2) or the equation (4), upon 1v , 
however this time the variation provides the 2v  values on the contrary to the previous option of 
(20) and (21). 

The variation itself can have formally the mathematically identical expression though: 
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where 
1
k  is a coefficient. 

Making allowance for the above option of (20) and (21), just for the certainty of the problem 
setting, the new constraint will have the view of 
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Or in the view convenient for differentiating 
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After applying the conditions of (10) to (25) 
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The second equation of (27) immediately meant that 
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Then, substituting (28) for its value into the first equation of (27) it yields 
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And 
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Which means 
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The solution (32) ensures 
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2.2. Simulation	

Let's consider the results obtained with the help of the theoretical considerations mentioned 
above using formulas (1) - (20) and calculation procedures. In the interests of achieving the goal 
of the study, computer modeling of the process of objectivity of the criteria for evaluating the 
optimization of transport work in the implementation of air transportation was carried out. 

2.2.1. Computer	modeling	with	the	linearly	dependable	constraint	

In case of (1) – (19), the accepted calculation data are as follows: 
4101AB ,   3

1 101600  v    and   3
2 101600  v . (34) 

The results for  21,vvT  obtained by (1) with the use of data (28) are shown in the Figure 1 
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Figure	1: Time of the air transportation delivery 
 
The three-dimensional plot of  21,vvT  by (1) is shown in the Figure 2. 
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Figure	2: Time of the air transportation delivery 

 
Applying the constraint in the view of (2), or  12 vv : (4), or (5), to the duration of the aircraft 

transportation delivery (flight time), i.e. 

      1
121

121, vT
vvv

AB
vvvT 


 . 

(35) 

In such case,   121, vvvT : (1), modified to (35), it proves to have no extremum shown in the 
Figure 3. 
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Figure	3: Absence of the extremum of the time of the delivery 
 
The constant (idempotent) value of   121, vvvT : (1), modified to (35), visible in the Figure 3 

relates to the equations of (2) – (5), represented in the Figure 4. 
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Figure	4: Linearly constrained speeds dependence 

 
Additional data used for plotting diagrams in the Figures 3 and 4 may be relevant to the P  

value, (2) – (4) and (6), (7), however, it can be canceled or substituted, (8) – (19). 
The absence of the extremum is noticeable in the three-dimensional plots of   121, vvvT : (1), 

and the equations of  12 vv : (2) – (5), illustrated for the perceptional ease in the Figure 5. 
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Figure	5: Absence of the extremum of the time of the air transport delivery 

 
X,Y,Z shown in the Figure 5 are the parametric equations of the plain symbolizing the linear 

constraints (2) – (5). 
1. 1. The results of additional experimental studies made it possible to obtain new data 

regarding the values of the weighting coefficients of the component indicators of the 
integral indicator and to reveal a significant deviation from the values obtained 
according to experts' assessments. 

2.  Local extrema are more inherent in the solution of optimization tasks of the parameters 
of specific technologies and devices, since, as a rule, they have technical limitations of 
independent variable objective functions. 
 

2.2.2. Computer	modeling	with	the	nonlinearly	dependable	constraint	

In the case with the aircraft transportation speeds variations of (20) – (33), in addition to the 
data of (34), there is a need to have data for the computer simulations of the variations:  1v  
and  1v . 

In fact, it was necessary to accept the values for the coefficients of 
1

k  and 
1
k : entering the 

expressions (21) and (23), and used throughout the modeling (20) – (33). Those data were as 
the following: 

3105
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 k . (36) 

The results are presented in the Figure 6. 
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Figure	6: Aircraft speeds variations 
 
The variated speeds with the basic one are shown in the Figure 7. 
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Figure	7: Variated aircraft speeds 

 
Computer modeling for the time of the air transportation delivery is illustrated in the Figure 

8. 
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Figure	8: Time of the air transportation delivery constrained by the nonlinearly dependable 
aircraft speeds 

 
The three-dimensional plots of  21,vvT  by (1) and  12 vv  by (2) – (5), as well as  12 vv  by 

(20) are shown in the Figure 9. 
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Figure	9: Time of the air transportation delivery subject to constraints upon the aircraft speeds 

 
The extreme values are shown in the Figures 10 and 11 as well. 
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Figure	10: Phase diagram of the time of the air transportation delivery subject to constraints 
upon the aircraft speeds 

 
The phase portraits in the Figures 10 and 11 demonstrate the minimal time and the optimal 

speeds combination. 
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Figure	11: Combined phase portrait of the time of the air transportation delivery subject to 
constraints upon the aircraft speeds 

3. Discussion	

As it was shown, the creation of similar formalized models, that is, the relationship of target 
functions at different levels of the system hierarchy, will allow to maximize adequacy to optimal 
conditions of air transport operation. 

The results of the experiment and the computational experiment based on the mathematical 
model by successive approximation by appropriate iterative methods are compared. 

1. Optimization will always end with the search for local extrema of the objective 
functions, since the intervals of variation of the independent variables included in the objective 
functions are set a priori. 

2. Phase portraits and trajectories of oscillation forms in the configuration space of the 
system were constructed and analyzed. The conditions for the localization of the forms of 
oscillations of the system have been obtained. The stability of the oscillation forms was studied. 
The presented system and mathematical model can be a source for new modeling approaches. 

At the first stage of the research, a problem was identified that lay in the optimization of the 
aircraft's speed. To achieve this goal and systematize our understanding of the problem and 
potential ways to solve it, the following was defined: 

 The problem that required our attention and what goal we want to achieve through the 
research. 
 Possible ways of solving the problem, various alternatives were considered and the 
most effective and suitable variant of its mathematical solution was chosen. 
The improvement of the criteria for evaluating the transport work in the performance of air 

transportation is carried out in the direction of expanding the list of factors that are taken into 
account when determining the relevant indicators, successively - the number (mass) of objects 
of transportation (passengers and cargo), range (distance between the points of departure and 



destination) and speed (time) of their spatial movement (delivery) from the point of departure 
to the destination. 

If we draw a parallel between the ratio of optimal speed and the theory of individual risk 
perception, then this may make it possible to conduct another study regarding the theoretical-
mathematical model of the demand for insurance services based on the conditional 
optimization apparatus. When solving this problem by the method of undetermined Lagrange 
multipliers, the derivative must equal zero before the necessary extremum condition. 
Accordingly, in this case, at the optimal point, the budgetary limitation of the insurance cost 
should be beneficial for the policyholder. 

 

4. Conclusion	

The obtained values as the implementation of this study allowed to analytically and graphically 
determine the region of the optimal solution, taking into account the limitations of the objective 
function. 

The conditionally optimized aircraft speeds ensure minimal time of the air transport 
delivery, which in turn leads to the improvement of the air transportation technologies. 

For further research, it is proposed to investigate the dynamics, of the process of choosing 
the desired optimal technologies of air transport, and models based on the given calculation 
conditions that implement operational alternatives and the subjective entropy. 
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