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Abstract 
This research paper introduces a novel approach to address privacy concerns in video-based elderly fall 
detection systems without compromising such technologies’ efficacy and real-time response. The 
methodology integrates EfficientNetB0 for robust feature extraction from video sequences and Long 
Short-Term Memory networks for accurate fall classification. Despite achieving exemplary performance 
metrics, including 100% scores in accuracy, Area Under the Curve, recall, and Precision, the pervasive 
issue of privacy infringement in video surveillance remains a significant challenge. To tackle this, we 
propose a dynamic blurring technique that selectively obscures identifiable features within video 
frames, such as faces and distinguishing clothing, thus maintaining individual anonymity. This method 
ensures that the privacy of the monitored individuals is preserved while retaining the essential details 
necessary for the fall detection algorithm to function effectively. This paper details this privacy-
preserving technique and demonstrates its feasibility without detracting from the system’s 
performance. Our findings indicate that integrating dynamic blurring into the fall detection pipeline 
offers a promising solution to the privacy concerns associated with video-based monitoring systems. It 
protects sensitive personal information while providing high care and safety. This research contributes 
to the broader discourse on ethical technology use in healthcare. Moreover, it emphasizes the 
importance of balancing advanced monitoring capabilities with the imperative of privacy preservation. 
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1. Introduction 

The growing demographic of the elderly population has precipitated an increased incidence of 
falls [1], a leading cause of morbidity and mortality among this group [2]. The recent technological 
solutions for fall detection have emerged as a critical component in mitigating these risks [3]. 
Among these, video-based fall detection systems have shown significant promise due to their 
non-invasiveness and capability for real-time monitoring [4]. However, video surveillance in 
healthcare, particularly in homes and care facilities, raises significant privacy concerns [5]. This 
research aims to find a balance between ensuring safety through surveillance and upholding the 
right to privacy. 

There has been a significant relationship between the efficacy of video-based fall detection and 
the imperative to protect individual privacy [6]. While effective in identifying falls, traditional 
approaches often overlook the privacy implications of constant video monitoring [7]. Possible 
solutions include avoiding video data, implementing basic obfuscation techniques [8], 
compromising effectiveness, or insufficient privacy [9]. Previous research has proposed various 
methods, including wearable devices [10-13] and environmental sensors [14-16], to circumvent 
the associated privacy issues. However, these alternatives fall short in accuracy and real-time 
response capabilities compared to video-based systems. 

In response to these challenges, this paper proposes an innovative solution that retains the 
advantages of video surveillance while addressing privacy concerns. Our approach employs 
dynamic blurring, selectively obscuring identifiable features within video frames. Thus, 
individuals are anonymized without compromising the system’s ability to detect falls. This 
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method differs from existing solutions by offering a real-time, privacy-preserving mechanism 
that does not detract from the system’s performance. Integrating EfficientNetB0 [17] for feature 
extraction and Long Short-Term Memory  (LSTM) [18] networks for fall events ensures high 
precision in fall detection. 

This research aims to develop a fall detection system that fulfills the need for efficient, real-
time monitoring with the imperative of privacy preservation. Our objectives include designing 
and implementing a dynamic blurring technique within a video-based fall detection framework. 
Moreover, we also aim to evaluate this system’s accuracy and privacy protection performance 
and demonstrate its applicability in real-world settings. This research can potentially contribute 
to the development of ethically responsible technological solutions in healthcare, particularly in 
the context of elderly care. This work seeks to pave the way for broader acceptance by addressing 
the privacy concerns associated with video-based monitoring. Moreover, deploying such systems 
enhances the safety and well-being of the elderly population. 

2. Literature Review 

The exploration of fall detection systems, particularly for the elderly, is an area of research that 
has seen substantial evolution over time. Dean et al. [19] 2006 implemented the first real-time 
fall detection system using a triaxial accelerometer. At that time, most traditional techniques 
centered around simplistic, mechanical solutions and gradually transitioned towards 
incorporating technology [20]. Among the earliest methods were basic alert systems, which 
relied on the user to trigger an alert manually in case of a fall [21]. While pioneering for their time, 
these systems were limited by their dependence on the users to activate the alarm post-fall, which 
could be compromised due to injury. 

Advancements in technology brought in a new wave of methodologies, primarily categorized 
into sensor-based [14-16], wearable devices [10], [12], and video surveillance systems [22], [23-
25], alongside other innovative approaches. Sensor-based systems often utilize accelerometers 
and gyroscopes to detect sudden movements or orientations indicative of a fall. Wearable devices, 
such as smartwatches [26], integrate these sensors and offer portability. However, sensor-based 
and wearable systems face challenges related to user compliance, discomfort, and the potential 
for false positives due to non-fall-related abrupt movements [27]. In contrast, video surveillance 
systems offer a less intrusive alternative, capturing a broader context of the individual ’s 
environment [28]. This method’s appeal lies in its passive nature, requiring no active input or 
wearables from the monitored individuals. Despite these advantages, video-based systems have 
challenges [29]. High-quality video processing demands significant computational resources, and 
managing vast data volumes poses storage and efficiency concerns. Moreover, the critical issue 
of privacy infringement emerges, given the intrusive nature of continuous video monitoring [9]. 

Traditional algorithms such as Support Vector Machines (SVMs) [30] and Decision Trees [31] 
were widely employed in the early stages of machine learning applications for fall detection. 
These methods primarily relied on handcrafted features extracted from sensor data or basic 
video analytics, including motion vectors and silhouette shapes. Flow-based methods, 
particularly optical flow [32], were also prominent, enabling the detection of movement patterns 
by analyzing the apparent motion of objects, surfaces, and edges. While effective to a certain 
extent, these approaches faced limitations in handling the high variability and complexity of 
human falls. They often struggled to distinguish falls from other activities involving rapid 
movements, leading to high false alarm rates [33], [34]. Additionally, their dependency on 
manually crafted features restricted their adaptability, as these features might not generalize well 
across different scenarios. 

The recent emergence of deep learning architectures like Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) has changed many dynamics [35]. Advanced 
models such as ResNet [36], LSTM [37], and YOLO especially marked a leap forward in fall 
detection. CNNs, with their ability to perform automatic feature extraction, have proven 
particularly adept at analyzing spatial characteristics in video frames [38]. While RNNs and 
LSTMs excel in capturing temporal dependencies, it is crucial to understand the sequence of 
movements leading to a fall. YOLO [39], an object detection model, brought further advancements 
by enabling real-time processing. Despite their successes, the search for enhanced performance 



led to exploring hybrid methods that combine multiple deep learning models. For instance, 
integrating CNNs with LSTMs allows for the effective processing of video data both spatially and 
temporally, offering a better understanding of fall events [40]. These hybrid approaches [41], 
alongside innovative methods within deep learning frameworks, promise to address the 
dynamics of fall detection [42]. 

Recent advancements aim to address these privacy concerns while maintaining system 
efficacy. Techniques such as dynamic blurring and real-time anonymization have been explored 
to obscure identifiable features in video feeds. This can help safeguard individual privacy without 
significantly compromising detection capabilities. Despite these efforts, there is a gap in the 
literature concerning developing a system that seamlessly integrates high detection accuracy 
with robust privacy protection. Our contribution to this field addresses this gap by proposing a 
novel fall detection system that employs EfficientNetB0 for advanced feature extraction and 
LSTM networks for accurate temporal classification, complemented by a dynamic blurring 
mechanism to ensure privacy. This integrated approach promises high performance, as 
evidenced by optimal accuracy, recall, and precision scores. Moreover, it introduces a viable 
solution to the privacy concerns that have long shadowed video-based monitoring systems. By 
achieving this delicate balance, our research paves the way for the broader acceptance of video-
based fall detection systems, ensuring the safety of the elderly population. 

3. Methodology 

This research presents a methodological framework to address the challenge of detecting falls 
through video surveillance while safeguarding their privacy. The foundation of the proposed 
approach is mathematical models and techniques to ensure precision, efficiency, and reliability. 
The proposed method integrates state-of-the-art EfficientNetB0 for spatial feature extraction and 
LSTM networks for temporal sequence analysis. Additionally, we introduce a dynamic blurring 
mechanism formulated to preserve privacy by selectively obscuring identifiable features within 
video frames. Figure 1. provides the overall architecture of the proposed approach.  
 
 

 
Figure 1. Overall Architecture of the Proposed Methodology 

3.1. Dataset and Processing 

The dataset employed in this study was sourced from the UR Fall Detection Dataset [43], 
encompassing 70 sequences, of which 30 are fall events, and 40 represent activities of daily living 
(ADL). The fall events were captured using two Microsoft Kinect cameras, accompanied by 
accelerometric data, whereas the ADL events were documented using a single camera (camera 0) 
alongside accelerometer data. The accelerometric data was acquired through PS Move (60Hz) 
and x-IMU (256Hz) devices. The dataset is structured such that each sequence comprises depth 
and RGB images from both camera perspectives (parallel to the floor and ceiling-mounted), 
synchronization data, and raw accelerometer readings. Each video stream is archived separately 



as a sequence of PNG images. The depth data, stored in PNG16 format, necessitates rescaling to 
represent depth in millimeters (D) as follows accurately: 
 

𝐷𝑖  (𝑥, 𝑦) =
 𝑉(𝑥,𝑦)⋅𝑆𝑖

65535
   (1) 

 
Where 𝐷𝑖 (𝑥, 𝑦) denotes the depth at position (𝑥, 𝑦) for the ith camera, 𝑉(𝑥, 𝑦) represents the 

pixel value at position (𝑥, 𝑦) in the PNG16 image, and 𝑆𝑖  is the scale ratio for the i-th camera. The 
scale ratios are defined as 𝑆0  = 6000 for fall sequences using camera 0, 𝑆1  = 3640 for fall 
sequences using camera 1, and 𝑆0 = 7000 for ADL sequences using camera 0. The preprocessing 
of video data involves a series of steps to prepare the frames for feature extraction. Initially, each 
video is accessed frame by frame using OpenCV’s VideoCapture functionality. Subsequently, each 
frame is resized to a uniform dimension of 224 × 224 pixels to align with the input requirements 
of the EfficientNetB0 model. This resizing operation can be mathematically represented as a 
function R that maps the original frame dimensions to the target dimensions, preserving the 
aspect ratio and interpolating pixel values as necessary: 

 
𝑅: ℝ𝑤×ℎ×3   →  ℝ224×224×3      (2) 

 
Where w and ℎ denote the original width and height of the frame, respectively. After resizing, 

the frames undergo normalization to scale the pixel values to the [0, 1] range, facilitating more 
stable and efficient model training. The normalization process for a frame F can be defined as: 

 

𝐹𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐹

225
      (3) 

 
This operation ensures that each pixel value in the frame is proportionally reduced to a 

decimal between 0 and 1, thus standardizing the input data for subsequent processing through 
the EfficientNetB0 architecture. 

3.2. Feature Extraction Using EfficientNetB0 

The feature extraction component of our methodology is built upon the EfficientNetB0 
architecture, a cutting-edge CNN known for its scalability and efficiency. EfficientNetB0 uniformly 
scales the network’s depth, width, and resolution, optimizing its performance across various 
constraints. EfficientNetB0 are its convolutional operations, which form the backbone of its 
feature extraction capabilities. A convolutional operation on an input image or feature map can 
be mathematically described as: 
 

𝐹𝑜𝑢𝑡(𝑥, 𝑦) = ∑ ∑ 𝐾 (𝑏
𝑗= −𝑏

𝑎
𝑖= −𝑎 𝑖, 𝑗) ⋅ 𝐹𝑖𝑛(𝑥 − 𝑖, 𝑦 − 𝑗)    (4) 

 
Where Fout is the output feature map, Fin is the input image or feature map, K is the kernel or 

filter of size (2𝑎 + 1) × (2𝑏 + 1), and (𝑥, 𝑦) denotes the pixel coordinates. This operation is 
applied across the entire input feature map, extracting features through the weighted summation 
of pixel values within the kernel’s receptive field. EfficientNetB0 also leverages batch 
normalization to enhance training stability and convergence. Batch normalization can be defined 
as: 

𝐵𝑁(𝑥) = 𝛾(
𝑥−𝜇𝐵

√𝜎2
𝐵+𝜖

) + 𝛽     (5) 

 
Where x is the input to the batch normalization layer, μB and σB2 are the mean and variance 

of the batch, respectively, γ and β are learnable parameters of the layer, and ϵ is a small constant 
added for numerical stability. Furthermore, EfficientNetB0 employs depthwise separable 
convolutions, a technique that reduces computational cost without sacrificing depth or 
expressivity. A depthwise separable convolution comprises two stages: depthwise and pointwise 
convolution. The depthwise convolution applies a single filter per input channel, and the 



pointwise convolution then combines the output channels using a 1×11×1 convolution. This can 
be represented as: 

 

𝐷𝑊(𝑥, 𝑦, 𝑐) = ∑ ∑ 𝐾𝑐  (𝑏
𝑗= −𝑏

𝑎
𝑖= −𝑎 𝑖, 𝑗) ⋅ 𝐹𝑖𝑛(𝑥 − 𝑖, 𝑦 − 𝑗, 𝑐)    (6) 

 

𝑃𝑊(𝑥, 𝑦, �́�) = ∑ �́�(�́�)𝐶
𝑐= 1 ⋅ 𝐷𝑊(𝑥, 𝑦, 𝑐)     (7) 

 
Where DW denotes the output of the depthwise convolution for channel c, PW is the output of 

the pointwise convolution for channel c′, 𝐾𝑐  is the kernel for the depthwise convolution, and K′ is 
the 1×11×1 kernel for the pointwise convolution. C is the number of channels. Activation 
functions such as the Swish function, defined as 𝑓(𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), are applied after 
convolutional operations to introduce non-linearity, enabling the network to learn complex 
features. By integrating these elements, EfficientNetB0 provides a powerful and efficient 
framework.  

3.3. Dynamic Blurring for Privacy Preservation 

we address privacy concerns in video-based monitoring by implementing dynamic blurring for 
privacy preservation. This process involves the selective obfuscation of regions of interest (ROI) 
within video frames, specifically targeting identifiable features of individuals to maintain 
anonymity while preserving the utility of the data for fall detection. The identification of ROIs for 
blurring is governed by a detection function 𝐷(𝐹𝑖𝑛, 𝜃), where 𝐹𝑖𝑛 represents an input frame, and 
𝜃 denotes the parameters of the detection model, which may include facial recognition, pose 
estimation, or other relevant feature detection algorithms. The output of this function is a set of 
bounding boxes 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}, where each 𝑏𝑖  specifies the coordinates and dimensions of an 
ROI within the frame. The dynamic blurring is then applied to these identified ROIs using a 
Gaussian blur operation, mathematically described as: 
 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2       (8) 

 
Where (𝑥, 𝑦) are the coordinates relative to the center of the kernel, and 𝜎 is the standard 

deviation, which controls the extent of blurring. The size of the kernel, 𝑘 × 𝑘, is chosen based on 
the desired level of blurriness, typically set to several times the value of 𝜎 to ensure that the edges 
of the kernel contribute negligibly to the blur. The application of the Gaussian blur to an ROI 𝑏𝑖  
within the frame 𝐹𝑖𝑛 can be represented as: 

 

𝐹𝑏𝑙𝑢𝑟𝑟𝑒𝑑(𝑥, 𝑦) = (𝐹𝑖𝑛 ∗ 𝐺)(𝑥, 𝑦) =  ∑ ∑ 𝐹𝑖𝑛
𝑏
𝑛= −𝑏

𝑎
𝑚= −𝑎  (𝑥 − 𝑚, 𝑦 − 𝑛) ⋅ 𝐺(𝑚, 𝑛, 𝜎)  (9) 

 
for all (𝑥, 𝑦) within 𝑏𝑖 , where ∗ denotes the convolution operation, and a and b are half the 

width and height of the Gaussian kernel, respectively. 

3.4. Temporal Analysis with LSTM 

The LSTM network is a specialized RNN designed to model temporal dependencies in sequence 
data effectively. Its architecture is uniquely suited to address the vanishing gradient problems, 
enabling it to capture long-term dependencies. An LSTM unit comprises three main gates: the 
input gate (i), the forget gate (f), and the output gate (o), each responsible for regulating the flow 
of information. We utilized bidirectional LSTM with the following structure, as shown in Figure 
2. 
 



 
Figure 2. The architecture used for the LSTM Network 

3.5. Classification Framework 

Following the extraction of temporal features, the next step involves classification, which is 
classified between fall and non-fall events. This process typically involves passing the LSTM 
output through one or more fully connected layers in a SoftMax layer for binary classification: 
 

ℎ𝑧 = 𝑊ℎ ⋅ ℎ𝑡 + 𝑏ℎ      (10) 

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
     (11) 

where ℎ𝑡 is the output from the LSTM at time t, 𝑊ℎ and 𝑏ℎ are the weights and biases for the 
dense layer, respectively, z is the logit, and p represents the probabilities for each class obtained 
through the SoftMax function. The class with the highest probability is selected as the predicted 
class for each input sequence. This framework facilitates the effective classification of video 
sequences into fall or non-fall categories based on the temporal patterns identified by the LSTM 
network. 

3.6. Training Process 

The training of the integrated model is underpinned by a mathematical framework that includes 
the definition of a loss function, the selection of an optimization algorithm, and the application of 
regularization techniques to prevent overfitting. The loss function L quantifies the discrepancy 
between the predicted outputs p and the true labels y. For binary classification tasks, such as fall 
detection, the binary cross-entropy loss is commonly used: 
 

𝐿(𝑦, 𝑝)
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]𝑁

𝑖=1   (15) 

 
Where N is the number of samples, 𝑦𝑖  is the true label, and 𝑝𝑖  is the predicted probability for 

the i-th sample. The optimization of the model parameters is achieved through Stochastic 
Gradient Descent (SGD), which iteratively updates the weights W based on the gradients of the 
loss function: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝐿      (16) 
 

Where 𝜂 is the learning rate, and ∇L denotes the gradient of the loss function for the weights 
at time t. L2 regularization and dropout techniques are applied to mitigate overfitting by adding 
a penalty term to the loss function or randomly omitting units from the network during training, 
respectively. The backpropagation process facilitates the computation of gradients ∇L through 
the network, employing the chain rule to propagate errors from the output layer back through 
the LSTM and EfficientNetB0 layers, enabling the model to learn and adjust its parameters to 
minimize the loss function. 



4. Results and Analysis 

Figure 3. (Left) provides ‘Model Accuracy’ plots, which show the proportion of correctly 
classified instances (accuracy) against the number of epochs for both the training and validation 
datasets. It is observed that the training accuracy shows a consistent upward trend, indicating 
that the model is learning and improving its performance on the training data as the epochs 
progress. While generally following an upward trajectory, the validation accuracy exhibits some 
fluctuations. This could indicate the model’s encounters with challenging or previously unseen 
data in the validation set. These expected fluctuations indicate how the model might perform 
when exposed to new data. It is worth noting that both the training and validation accuracies 
converge to high values close to 1.0, suggesting that the model has achieved a high level of 
proficiency in distinguishing between fall and non-fall events. Figure 3. (Right) graph shows the 
model’s loss over the same number of epochs. For the training set, the loss decreases sharply and 
continues to decline steadily, which is typical behavior as the model adjusts its weights to 
minimize the prediction error. For the validation set, the loss decreases in tandem with the 
training loss but with notable spikes at specific points. These spikes often signify that the model 
made predictions significantly off the actual labels for some batches in the validation set. This can 
happen if the model encounters data points that differ from the learned patterns during training. 
 

 
Figure 3. Accuracy and Loss graphs of the proposed LSTM model 

 
The confusion matrix in Figure 4. provides a quantitative assessment of the model’s 

classification accuracy. It shows the number of true positive (TP) and true negative (TN) 
predictions, along with false positive (FP) and false negative (FN) predictions. In this case, the 
matrix reveals perfect classification on the test data, with all fall events being correctly identified 
(6 TP) and no ADL events being misclassified as falls (0 FN), implying an exceptional level of 
model performance. 

 
Figure 4. Confusion metric of unseen test videos 

 



The Receiver Operating Characteristic (ROC) curve in Figure 5. plots the true positive rate 
(TPR) against the false positive rate (FPR) at various threshold settings. The area under the curve 
(AUC) in this ROC curve approaches 1, which suggests excellent model performance, with a high 
true positive rate and a low false positive rate across threshold values. 

 

 
Figure 5. ROC curve of the proposed model on unseen test data 

 
Figure 6 shows the model’s performance on real test videos; the model correctly predicted 

this particular scenario as a ‘Fall,’ corroborated by the RGB image on the right. This clearly shows 
an individual in a prone position on the floor. Moreover, the depth image reveals the successful 
application of the dynamic blurring method. The individual’s features are indistinguishable, and 
the privacy-preserving objective of the method is evident. The contours and the general posture 
of the person are discernible, which is sufficient for fall detection purposes, but the finer details 
necessary for personal identification have been effectively obfuscated. The blurring technique 
implemented in the system is designed to activate upon detecting a human figure within the video 
frame, applying a Gaussian blur where the person is detected. This ensures that any potentially 
sensitive information is rendered non-identifiable, addressing privacy concerns paramount in 
real-world applications of surveillance-based systems. The obscured depth image confirms that 
the privacy-preserving measures do not impede the algorithm’s ability to detect a fall.  

 

 
Figure 6. Model evaluation on the test video from the fall folder 

 
Figure 7 shows the system’s prediction for this scene, labeled ‘ADL,’ which is validated by the 

RGB image on the right. It depicts an individual in an upright position, supporting the prediction 
that no fall has occurred. The prediction’s accuracy is a testament to the model’s ability to 
effectively discern between falls and non-fall events. Furthermore, similar to the previous fall 
scenario, the depth image demonstrates the application of the dynamic blurring technique. The 
individual’s detailed features are indistinct, ensuring privacy is maintained. Despite the blurring, 
essential characteristics for ADL recognition, such as the vertical orientation of the body and the 
absence of unusual postures associated with falls, are preserved and remain detectable by the 
system. 



 

 
Figure 7. Model Evaluation on the test video from the ADL folder 

 
The analysis of the presented results underscores the robustness and reliability of the 

implemented fall detection model. This is evidenced by the convergence of the accuracy and loss 
metrics, the unequivocal classification outcomes depicted in the confusion matrix, and the 
favorable diagnostic characteristics portrayed by the ROC curve. These results collectively affirm 
the model’s efficacy in accurately detecting fall events. It preserves the privacy of individuals 
through dynamic blurring, as no identifiable features are discernible in the depth visualizations. 

 
Table 1. Comparative analysis of results with other state-of-the-art models 

 
Model/Study TPR TNR Accuracy 

Eltahir et al.  [40] 95.88 97.02 97.56 
Chan Su [38] 98.07 99.03 98.06 

Single stream (RGB) [22] 100 96.61 96.99 
Single stream (OF) [22] 100 96.34 96.75 

Multi-stream (RGB+OF+PE) [22] 100 98.61 98.77 
EfficientNet-B0 [41] 93.33 100 97.14 

Improved YOLOv5s [39] – – 97.2 
A single-frame human binary image with 

YOLOv5s [42] 
– – 96.7 

Our Method 100 100 100 

 
As shown in Table 1, the comparative analysis of fall detection methodologies yields a 

substantive understanding of the advancements and varying efficacies of diverse approaches in 
this research domain. The table encapsulates the True Positive Rate (TPR), True Negative Rate 
(TNR), and overall Accuracy, serving as pivotal metrics for the assessment of each method. The 
model presented by Eltahir et al. [40] manifests a commendable balance between sensitivity and 
specificity, with a TPR of 95.88% and a TNR of 97.02%, culminating in an accuracy of 97.56%. 
Chan Su’s model slightly improves sensitivity at 98.07% and specificity at 99.03%, with an 
analogous accuracy of 98.06%. These two models set a robust baseline in fall detection, 
evidencing high efficacy. The single-stream models using RGB and Optical Flow (OF) data 
individually attain a TPR of 100%, indicative of their flawless identification of fall events. 
However, their specificity scores, 96.61% and 96.34%, respectively, although high, suggest a 
slightly less robust capacity to classify non-fall activities accurately. This slight discrepancy is 
reflected in their accuracy scores, which, while impressive at 96.99% and 96.75%, do not reach 
the pinnacle of Chan Su’s model. 



 
Figure 8. Comparison of Accuracy with other state-of-the-art models 

 
The multi-stream approach amalgamating RGB, OF, and Pose Estimation (PE) data represents 

a significant leap forward, yielding a perfect TPR and an enhanced TNR of 98.61%, leading to an 
accuracy of 98.77%. This approach underscores the utility of integrating multiple data streams 
for improved specificity without compromising sensitivity. EfficientNet-B0, despite a lower TPR 
of 93.33%, achieves a perfect TNR of 100%. This accentuates the model’s exceptional 
performance in identifying non-fall events, though it falls short of the multi-stream model’s 
balanced accuracy. The improved YOLOv5s model and the single frame human binary image 
approach using YOLOv5s do not disclose TPR or TNR but report accuracies of 97.2% and 96.7%, 
respectively. While these figures suggest competent models, the lack of detailed TPR and TNR 
data precludes a complete comparative analysis. Our proposed methodology establishes a new 
benchmark, recording a flawless TPR and TNR of 100% and an unmatched accuracy of 100%. 
This unprecedented performance indicates a superior ability to correctly identify fall incidents 
and an unparalleled precision in confirming non-fall activities. 

5. Conclusion 

In this research, we have successfully developed and evaluated a novel video-based fall detection 
system that prioritizes privacy without compromising the real-time detection efficacy of elderly 
falls. By integrating EfficientNetB0 and LSTM networks, our methodology ensures robust feature 
extraction and accurate fall event classification. The introduction of dynamic blurring as a 
privacy-preserving technique represents a significant advancement, allowing for anonymizing 
identifiable features within video frames while maintaining the system’s operational integrity. 
Our findings reveal that this approach achieves perfect accuracy, recall, precision, and area AUC 
scores. It also effectively addresses the critical privacy concerns of video surveillance in sensitive 
environments such as homes and elderly care facilities. Implementing dynamic blurring ensures 
that the privacy of monitored individuals is safeguarded, setting a new precedent in the ethical 
application of surveillance technologies in healthcare.  

Our future research will focus on further enhancing the adaptability and generalizability of the 
system across diverse settings and populations. This includes exploring additional privacy-
preserving mechanisms and integrating multimodal data sources to enrich the system’s 
contextual understanding. This research contributes significantly to elderly care technology, 
presenting a practical solution to the long-standing challenge of balancing effective fall detection 
with stringent privacy requirements. Our work advances the technological capabilities in this 
domain and addresses critical ethical considerations. This paves the way for broader acceptance 
and deployment of video-based monitoring systems in healthcare settings. 
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