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Abstract 
A model for the spread of the COVID-19 pandemic and its induced changes in individual sectors of the 
economy has been developed. An approach to studying the interconnection of the food production 
system, food transportation, and the socio-economic sphere during the pandemic conditions using a 
three-sector Lorenz model has been proposed. Research has been conducted on the impact of the 
pandemic on changes in the supply-demand balance in these sectors of the economy. A model of the T-
cell immune response has been developed, considering the peculiarities of its course in COVID-19, when 
excessive inflammation leads to cytokine release syndrome (cytokine storm), causing damage to vital 
organs and disruption of the immune system. The model considers the influence of cellular energetics 
on the regulation of the immune response and the amplification of inflammation.   

Keywords  
Mathematical modeling, COVID-19, economic processes 1 

1. Introduction 

In the 2021 Davos Forum report [1], it was noted that infectious diseases rank first among the 
highest risks influencing the next decade. On April 7, 2024, a total of 774,699,366 people was 
infected worldwide, and 7,033,430 people died [2]. The global changes of the past decades have 
so closely intertwined various spheres of social organization that the global COVID-19 pandemic 
has significantly impacted many processes in the world economy. This has initiated a chain of 
changes leading to disruptions in socio-economic connections at the local, regional, and global 
levels [3[. 

In an effort to control the epidemic process, governments have implemented lockdowns and 
other restrictions on economic activity, which have closed many businesses, limited domestic 
travel, closed borders to the movement of labor and certain food products, and introduced 
requirements for social distancing and curfews. Anti-epidemic measures are becoming a heavy 
burden on the economy as they begin to affect a complex set of ecological, economic, political, and 
social processes, which have enormous consequences for the lives of individuals, societal well-
being, economic activity, and food security. In formulating effective strategies to normalize the 
economic situation amidst the pandemic, many governments are faced with the difficult problem 
of how to provide support to the economy in the short term while avoiding unwanted inflationary 
consequences and risks that could threaten financial stability in the medium term. 

The uniqueness of the COVID-19 virus is associated with the lack of a single viewpoint on the 
nature of its origin and dissemination pathways. This leads to a situation of uncertainty that 
requires special mathematical methods used to investigate improbable or unique events, where 
the stochastic nature of the object under study, or the incompleteness of the sample, reduces the 
effectiveness of traditional statistical methods. Therefore, the task of developing models that 
consider the impact of random disturbances becomes particularly relevant in forecasting the 
development of the pandemic, as these disturbances become additional factors increasing the 
level of structural disruptions in the epidemic system.  
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At the same time, it becomes clear that forecasting the development of pandemics is 
impossible without the development of mathematical models to study the negative impact of 
global epidemics on economic development. These models should consider both epidemic and 
economic factors and allow the determination of effective strategies to minimize the number of 
casualties and economic losses from the epidemic under various scenarios of its development. 
They should also enable a systematic analysis of responses to challenges for sustainable 
development in the face of new bio-threats. The aim of this work is to develop precisely such 
mathematical models for studying the negative impact of global pandemics on economic 
development and to conduct a system analysis of responses to challenges for sustainable 
development in the face of new bio-threats. 

2. Modeling the impact of COVID-19 on economy 

In [4], an approach to studying the interconnection of water, food, energy resources, food 
transportation, and medical consequences of a pandemic was proposed using a multisectoral 
Lorenz model. This model unifies sectors of the economy that are similarly described in a single 
structure, with each sector considered in terms of productivity levels, the number of jobs, and the 
level of structural disruptions. Through modeling, conditions for the emergence of deterministic 
chaos were identified, and trajectories of changes in socio-economic factors were calculated, 
allowing for the reduction of the number of structural disruptions. This reduction is achieved by 
altering the balance between supply and demand in creating jobs and production in relevant 
sectors of the economy. The study of the model allowed tracing how changes in the balance of 
supply and demand in interconnected systems lead to the emergence of a chaotic stable at-
tractor.  

The SIR epidemic model used frequently to study the spread of COVID-19. It describes the 
interaction of three population groups: the healthy (S), the infected (I), and those who recovered 
(R) [5]. To investigate the interrelationship between changes in the economy and the epidemic 
process, these two approaches are combined. This allows connecting the SIR model with 
parameters whose dynamics are determined using a model of interconnections in the food 
production, its transportation, and the socio-economic sphere. It is assumed that the level of 
disruptions is proportional to the level of disruptions in the operation of production systems in 
different sectors of the economy.  

2.1. Mathematical model of COVID-19 spread 

Let's consider three manufacturing systems (MS) related to food production, its 
transportation, and medical sector. We will use the Lorenz model to study interrelated sectors of 
the economy [4].  Let (𝑋𝑖),  (𝑌𝑖) and (𝑍𝑖) be normalized levels of productivity, employment 
quantity, and level of structural disruptions respectively for the food production system (i = 1), 
food transportation (i = 2), and the socio-economic sphere (medical infrastructure) (i = 3). Let's 
assume that different sectors of the economy compete with each other for labor, while changes 
in climatic conditions, financial, and political instability introduce random disturbances 𝑤𝑖𝑗(𝑡), 

becoming additional factors increasing the level of structural disruptions in the socioeconomic 
system [4]. Since processes in different sectors of the economy proceed at different rates, we will 
scale time in them by introducing parameters ε𝑖 . The model has the following form:  

       ε𝑖

𝑑𝑋𝑖

𝑑𝑡
= σ𝑖(𝑌𝑖 − 𝑋𝑖) + δi�̇�𝑖𝑗,              ε𝑖

𝑑𝑌𝑖

𝑑𝑡
= [𝑟𝑖(𝑋1, 𝑋2, 𝑋3) − 𝑍𝑖]𝑋𝑖 − 𝑌𝑖 + δ𝑖�̇�𝑖𝑗 ,                   (1) 

     ε𝑖

𝑑𝑍𝑖

𝑑𝑡
= 𝑋𝑖𝑌𝑖 − 𝑏𝑖𝑍𝑖 + δ𝑖�̇�𝑖𝑗 ,   

where 𝑟𝑖 = 𝑟𝑖0(1 − ∑ 𝑎𝑖𝑘 𝑋𝑖) ; 𝛿𝑖– perturbation intensities;  σ 𝑖, 𝑟𝑖, 𝑏𝑖 – parameters of Lorenz 
model; 𝑎𝑖𝑘 – parameters that characterize competition in labor markets (𝑖 ≠ 𝑘);  𝑤𝑖𝑗(𝑡) – 

independent standard Wiener processes with parameters 𝐸 (𝑤𝑖𝑗(𝑡) − 𝑤𝑖𝑗(𝑠)) = 0,    𝐸 (𝑤𝑖𝑗(𝑡) −

𝑤𝑖𝑗(𝑠))2 = |𝑡 − 𝑠|[4]. 



Research on the canonical Lorenz model shows that increasing the parameters 𝑟𝑖 leads to the 
emergence of turbulence in the model (1). Since in model (1)  𝑟𝑖 are functions of the variables 𝑋𝑖 , 
in fact we have a Lorentz model with variable parameters 𝑟𝑖. Threats to food resources, according 
to [1], are considered long-term, while threats to disruptions in food transportation and the socio-
medical sphere are considered medium-term. Therefore, the following parameter values are 
chosen: ε1 = 1 , ε2 = ε3 = 2.5 .  The coefficients 𝑎𝑖𝑘  are selected considering the weight of threat 
factors. Their values are shown in Table 1. 

 
Table 1 
Ranking of threats factors 

Threats Rank of influence Value of parameters 

Crisis of food resources 43.9 𝑎12 = 0.012, 𝑎13 = 0.013 
Disruption of food supply chains 38.3 𝑎21 = 𝑎23 = 0.013 
Socio-economic risks 43.4 𝑎31 = 0.013, 𝑎32 = 0.012 

 

The results obtained in [4] allow us to relate the parameters σ 𝑖, 𝑟𝑖, 𝑏𝑖 with the characteristics 
of the sectors of the economy in the following way:  

σ𝑖 = (α1𝑖β2𝑖)/(α2𝑖γ2𝑖),  𝑟𝑖 = (β1𝑖γ1𝑖)/(β2𝑖γ2𝑖),    𝑏𝑖 = ζ𝑖/(α2𝑖γ2𝑖) ,                                          (2)                                              

where α1𝑖 and α2𝑖 are parameters characterizing adaptive capabilities; β1𝑖 are demands for 
the activity of the i-th MS, normalized per unit of the material production system, considering the 
workplace in the corresponding industry of production 𝑌𝑖; β2𝑖 are supplies, normalized per unit 
of function of the i-th MS 𝑋𝑖; γ1𝑖 are demands for an increase in number of jobs, normalized per 
unit of 𝑋𝑖; γ2𝑖 are supplies of jobs involved in providing 𝑋𝑖 , normalized per unit of 𝑌𝑖; ζ𝑖 are the 
specific rate of  growth in the number of disruptions.  For the study of the epidemic process, we 
will use the modified SIR model, which has the following form:  

𝑑𝑦1

𝑑𝑡
= −

𝑅(𝑍3)𝑦1𝑦2

𝑁𝑇𝑖𝑛𝑓
+ α(𝑡)𝑦3  +  β1�̇�1 ,    

𝑑𝑦2

𝑑𝑡
=

𝑅(𝑍3)𝑦1𝑦2

𝑁𝑇𝑖𝑛𝑓
−

𝑈1(𝑋3)𝑦2

𝑁𝑇𝑚
 +  𝛽2�̇�2,                          (3) 

𝑑𝑦3

𝑑𝑡
= (1 − 𝑎0)

𝑈1(𝑋3)𝑦2

𝑁𝑇𝑚
 − α(𝑡)𝑦3 +  β3�̇�3 ,      

𝑑𝑦4

𝑑𝑡
= 𝑎0

𝑈1(𝑋3)𝑦2

𝑁𝑇𝑚
 +  β4�̇�3,  

where 𝑦1– susceptible individuals, 𝑦2– infected patients, 𝑦3 – recovered patients, 𝑦4– deceased 
patients;  β𝑘 (k=1,4) - disruption intensity parameters; 𝑤𝑘(𝑡) has the same meaning as it had in 
model (1) and corresponds to the same conditions; 𝑎0- the fraction of infected individuals who 
died; 𝑇𝑖𝑛𝑓– the active period during which the infected individual is contagious; 𝑇𝑚– average 

recovery period of an infected individual;  𝑁– total population. We will consider that the 
effectiveness of the medical system's operation is determined by the level of disruptions within 
it 𝑍3, the dynamics of which is calculated using model (1), and the reproduction rate (average 
number of infections caused by one infected individual) depends on the effectiveness of the 
medical system's operation and is determined by the function 𝑅(𝑍3). We will also assume that 
the recovery rate depends on the productivity level of the medical system, which is determined 
by the function 𝑈1(𝑋3). The dynamics of variable 𝑋3 is also calculated using model (1). 
Additionally, we will consider that immunity to the virus decreases over time for those who have 
recovered from COVID-19, i.e., a person can get sick again. The rate of this process is described 
by function 𝛼(𝑡) in model (4). The negative impact of the epidemic on economic processes will be 
investigated by replacing the parameters 𝑟𝑖 in (2) with function 𝑟𝑖𝑈2𝑖(𝑦2). An increase in the 
number of infected individuals will increase the parameters 𝑟10, 𝑟20 and 𝑟30 in (2) and when they 
reach bifurcation values, this will lead to the emergence of stochastic regimes. 

2.2. Investigation of the epidemic dynamics 

Let us consider the initial wave of the epidemic, when there are no individuals with 
immunity to the virus. Let 𝛼(𝑡) = 0, and let the functions 𝑅(𝑍3), 𝑈1(𝑋3) and 𝑈2(𝑦2) have the 
following form:     



 𝑅(𝑍3) = 𝑅(1 + 𝑍3/𝑘1), 

𝑈1(𝑋3) = 1 + 𝑘2𝑋3
2/(𝑘3+𝑋3

2),  𝑈2𝑖(𝑦2) = 1 + 𝑙𝑖𝑦2 /𝑁,                                                            (4) 

where 𝑙𝑖  and  𝑘𝑖  are parameters of the model  (𝑖 = 1,3̅̅ ̅̅  ).    
In figures 1-2, the results of simulating the initial wave of the epidemic are shown for various 

initial numbers of infected individuals and varying recovery rates 𝑘2. 
 

 
Figure 1: Dynamics of the number of infected individuals 𝑦2  under different initial conditions:  
 1 – 𝑦2(0) = 500; 2 – 𝑦2(0) = 50;  3 – 𝑦2(0) = 5. 

 

 
Figure 2: Dynamics of the number of 𝑦2 and deceased individuals 𝑦4 with variation in 𝑘2: 
 1– 𝑘2 = 27;  2– 𝑘2 = 30; 3– 𝑘2 = 34.5            

 

Figure 3 displays the results of modeling when a portion of the sick who died (𝑎0) is a function 
of the level of disruptions in the medical sector (𝑍3) and is defined as follows: 
𝑎0(𝑍3) = 𝑎0[1 + 𝑘4𝑍3/(𝑘5 + 𝑍3)].   

 

 
Figure 3: Dependency of the dynamics of deceased individuals 𝑦4 on the number of disruptions 
𝑍3:  1– 𝑘4 = 0;  2– 𝑘4 = 0.01;  3– 𝑘4 = 0.02;  4– 𝑘4 = 0.025 .   

 
𝑦𝑖 , in all figures are measured by the number of people, 𝑍𝑖  are measured by the number of 

disruptions, time is measured in months. 
In [4], the investigation focused on how changes in the parameter 𝑟 affect the formation of 

system (1) regimes and the emergence of a stable strange attractor. Let's examine how the 



emergence of a pandemic can alter the functioning of interrelated sectors of the economy from 
deterministic to chaotic regimes. The of the Lorenz model shows that increasing the parameter 𝑟 
is crucial for the onset of turbulence. The operating modes in model (1) change at the following 
bifurcation values of 𝑟:  𝑟 = 13.926, 𝑟 = 24.06,  𝑟 = 24.74. When r>24.74, the system transitions 
to a regime of metastable chaos – a strange attractor emerges [6]. For modeling purposes, the 
value of parameter 𝑟 = 16 was chosen. The increase in the variable 𝑦2  will raises 𝑟 and lead to a 
change in the operating mode. 

In figure 4, it is shown how the increase in the parameter 𝑙3, which characterizes the level of 
impact of the pandemic on the functioning of the medical sector, contributes to the emergence of 
stochastic regimes (time measured in months). In the absence of such influence (𝑙3 = 0), damped 

oscillations of the variable 𝑍3 are observed. 
 

 
Figure 4: Modeling the impact of pandemic on structured disruptions of medical sector.  
 

At 𝑙3 = 100, the variable 𝑍3  reaches a steady level.  Then it only deviates from it, depending 

on the changes in 𝑦
2

. At 𝑙3 = 850 and 𝑙3 = 1000, cyclic oscillations begin, which dampen when 

the level of infected individuals decreases to level that was before the beginning of the epidemic. 
At 𝑙3 = 1250 and 𝑙3 = 1500, stable chaotic oscillations arise.  

In figure 5 the results of modeling changes in the levels of disruptions in the food production 

system 𝑍1, food transportation 𝑍2, and medical infrastructure 𝑍3 during the epidemic are shown. 
During the simulation, the total population was chosen to be 34 million people. With increasing 
values of the parameters 𝑟𝑖, the number of infected individuals also increases. Periodic 
trajectories transition to chaotic ones upon reaching the bifurcation value of this parameter. 

 

 

Figure 5: Modeling the emergency of chaotic operating regimes in various sectors of economy. 



There exists a mutual negative influence. On one hand, the state of the economy affects the 
ability to implement effective measures against the pandemic. On the other hand, the infection 
rate influences the state of the economy. Figure 6 presents the results of modeling with variations 
in parameters 𝑏𝑖. The increase in these parameters simulates a decrease in job supply levels in 
sectors of the economy related to food production, its transportation, and medical infrastructure. 
We considered the case where these parameters are equal to each other. The growth of 𝑏𝑖 leads 
to a significant change in the phase portrait of the system, resulting in a reduction in the levels of 
structural disruptions in various sectors of the economy 𝑍𝑖  and a decrease in the peak number of 
infected individuals 𝑦2 in the chosen initial modeling interval. With 𝑏𝑖 growing the overall number 
of infected individuals 𝛴𝑦2 initially decreases and then begins to rise again. 

 

 
Figure 6: Changes in the level of infected individuals and structural disruption with parameters  
𝑏𝑖 variations:  a) 𝑏𝑖 = 1 ; b) 𝑏𝑖 = 15 ; c)  𝑏𝑖 = 17.  

 
When modeling, we used a standard package for solving differential equations - the GNU 

Octave environment version 4.4.1, which is licensed under the GNU GPL and can run on Linux, 
macOS, BSD and Windows operating systems. Identification of model parameters was carried out 
using data [2]. According to these data, the peak of the epidemic in Ukraine was reached after 3 
months, with the number of deaths reaching about 100,000 after 5 months when the first wave 
of the epidemic subsided. The total number of infected individuals during this time was over 3.5 
million. These data align well with the results of modeling the first wave of the pandemic's 
development in Ukraine. To estimate the parameters of model (1), more detailed models [7, 8] 



were used, developed as part of the joint project of the National Academy of Sciences of Ukraine 
and the International Institute for Applied Systems Analysis (Austria) "Complex modeling of the 
management of the safe use of food, water, and energy resources for sustainable social, economic, 
and environmental development." 

3. Modeling the T-cell immune response in COVID-19  

One of the most serious complications of COVID-19 is an excessive immune response, in which 
the level of pro-inflammatory cytokines responsible for regulating intercellular and inter-
systemic interactions sharply increases (a "cytokine storm").This leads to the disruption of the 
immune system, an increase in the level of free radicals, causing multiple damages to internal 
organs (lungs, heart, kidneys, blood vessels, liver, gastrointestinal tract, brain), severe multiorgan 
failure, and alters the balance of synthesis and expenditure of energy in cells, posing a lethal risk. 
Unfortunately, the specific mechanism of the cytokine storm remains undefined, making research 
on the impact of the immune system on the course of COVID-19 highly relevant. 
Typically, when modeling the epidemic process, the key parameters determining the dynamics of 
epidemics include: 1) the average incubation period of the disease; 2) the average active period 
when the patient is contagious; 3) the average recovery period; 4) the average period until death. 
It is important to note that these constants in epidemiological models are functions of the state of 
the patient's immune system, which plays a crucial role in fighting infection. However, there are 
currently no epidemiological models that allow for the consideration of the influence of the 
immune system's state on the course of the disease and the selection of therapy. Therefore, the 
task arises to develop a mathematical model of the immune response in COVID-19 and analyze, 
through it, possible mechanisms of imbalance between different components of the immune 
system leading to a cytokine storm. This task will be addressed in the following section.  

3.1. Mathematical model of immune system 

In mathematical modeling of the immune system response to antigenic determinants of 
various natures (viruses, allergens, tumor antigens, etc.), typically, the components facilitating 
antigen presentation, its destruction, regulation of proliferative processes, and modulation of the 
immune response are considered. These include helper, killer, macrophage, and suppressor cells 
[9]. 

In each of these links, there is a group of precursor cells, including cytotoxic T-cells –𝑌𝑝𝐾 , 

helper T-cells –𝑌𝑝𝐻 , normal macrophages – 𝑌𝑁𝑀  , suppressor T-cells – 𝑌𝑝𝑆 ; as well as a group of 

mature cells forming the immune response, including effector T-cells – 𝑌𝐾 ,  helper T-cells – 𝑌𝐻 , 

activated macrophages – 𝑌𝐴𝑀  and suppressor T-cells – 𝑌𝑆 . The listed cellular populations are 

responsible for the recognition and destruction virus-infected cells (VIC) – 𝑌𝑉𝐶  . VIC debris – 𝑌𝐷  
contribute to the emergence of antigen-presenting cells (AK).  

When infected with the coronavirus, the infection affects gene expression and protein 
synthesis. The virus imposes its protein synthesis algorithms on cells, necessary for its 
replication. Within hours, it neutralizes the cell's antiviral signaling, delaying and confusing the 
immune response. The virus reduces the ability of infected cells to translate genes into proteins, 
thereby decreasing overall protein synthesis. Additionally, it actively degrades cellular 
messenger RNA (mRNA), while its own mRNA remains protected. Finally, the virus can also 
prevent the export of mRNA from the cell nucleus, where they are synthesized. Based on the 
analysis of data [10, 11] on the peculiarities of the immune response in COVID-19, the following 
assumptions can be made, which should be considered in the model. 

1. VIC accelerates the transition of precursor cytotoxic T-cells to a mature form and enhances 
the proliferation of effector cells. Moreover, they promote the production of lymphoid factors (F) 
by helper cells: interleukins, growth factors, and others that activate the proliferation of mature 
T-cells, the transition of normal macrophages into the activated form, and the inflammatory 
process. 

2. Increased inflammation (I) enhances the proliferation rate of mature effector, helper, 
suppressor T cells, and activated macrophages, as well as accelerates the influx of all precursors. 



3. VIC are recognized and destroyed by cytotoxic T-lymphocytes and activated macrophages. 
4. The proliferation of helper cells is activated after contact with antigen-presenting cells (AK). 
5. The increase in the level of effector cells activates the process of maturation of suppressors. 

Suppressor cells inhibit the processes of proliferation and maturation of helper and effector cells, 
as well as the processes of VIC destruction by effectors and macrophages. 

6. There is a temporary hierarchy that allows identifying a group of fast variables that manage 
to reach a stationary state: antigen-presenting bed, lymphoid factors, and the inflammatory 
reaction. 

7. The coronavirus can evade immune system recognition through suppression at the 
precursor cell level, thereby reducing the levels of killer and helper T-cells. Additionally, it may 
affect the efficiency of killer T-cells and activated macrophages in destroying cells infected with 
the coronavirus. 

8. The coronavirus can also infect activated macrophages. This increases the level of VIC due 
to the action of virus-infected macrophages  𝑌𝑉𝑀.    

9. One of the possible paths of COVID-19 immunopathogenesis is the induction of damage and 
death to vessel endothelium due to virus replication in the infection focus. Uncontrolled 
inflammatory reactions lead to significant tissue damage and the development of severe forms of 
the disease. 

10. Tissue damage results in an energy imbalance, disrupting the interrelationships between 
energy function 𝑌𝐶𝐹 and mitochondrial activity 𝑌𝐶𝑀  for energy synthesis in the cell. A significant 
indicator of this imbalance, which increases with infection growth, is the number of structural 
disruptions 𝑌𝐶𝐷  in the cellular energy system. An increase in 𝑌𝐶𝐷 leads to a decrease in the activity 
of effector cells to destroy VIC. In [12], the Lorenz model was used to investigate these 
relationships. We will use these results to describe the energy block of the model for cells affected 
by the coronavirus.  Taking these assumptions into account, the model has the following form:  
 
𝑑𝑌𝑝𝐾

𝑑𝑡
= 𝑎1(1 + 𝑎2𝐼) −  

𝑎3𝑌𝑝𝐾𝑌𝑉𝐶

(𝑐1 + 𝑐2𝑌𝑆)(𝑑1 + 𝑑2𝑌𝑉𝐶)
− 𝑎4𝑌𝑝𝐾 , 

𝑑𝑌𝑝𝐻

𝑑𝑡
= 𝑎5(1 + 𝑎6𝐼) −  

𝑎7𝑌𝑝𝐻𝐴𝐾

(𝑐3 + 𝑐4𝑌𝑆)(𝑑3 + 𝑑4𝑌𝑉𝐶)
− 𝑎8 𝑌𝑝𝐻 , 

𝑑𝑌𝑁𝑀

𝑑𝑡
= 𝑎9(1 + 𝑎10𝐼) − 𝑎11𝑌𝑁𝑀F − 𝑎12 𝑌𝑁𝑀, 

𝑑𝑌𝑝𝑆

𝑑𝑡
= 𝑎13(1 + 𝑎14𝐼) − 𝑎15𝑌𝐾𝑌𝑝𝑆 − 𝑎16 𝑌𝑝𝑆, 

𝑑𝑌𝐾

𝑑𝑡
=  

𝑎3𝑌𝑝𝐾𝑌𝑉𝐶

(𝑐1 + 𝑐2𝑌𝑆)(𝑑1 + 𝑑2𝑌𝑉𝐶)
− 𝑎17𝑌𝐾 + 

𝑎18𝑌𝐾𝐼

(𝑐5 + 𝑐6𝑌𝑆)
 , 

𝑑𝑌𝐻

𝑑𝑡
=  

𝑎7𝑌𝑝𝐻𝐴𝐾

(𝑐3 + 𝑐4𝑌𝑆)(𝑑3 + 𝑑4𝑌𝑉𝐶)
− 𝑎19 

𝑎20𝑌𝐻𝐹

(𝑐7 + 𝑐8𝑌𝑆)
 , 

𝑑𝑌𝐴𝑀

𝑑𝑡
=  𝑎11𝑌𝑁𝑀F − 𝑎21 𝑌𝐴𝑀 − 𝑎22 𝑌𝐴𝑀𝑌𝑉𝐶  , 

𝑑𝑌𝑆

𝑑𝑡
= 𝑎15𝑌𝐾𝑌𝑝𝑆 − 𝑎23 𝑌𝑆 +  𝑎24 𝑌𝑆𝐼, 

𝑑𝑌𝑉𝑀

𝑑𝑡
=  𝑎22 𝑌𝐴𝑀𝑌𝑉𝐶 −  𝑎25 𝑌𝑉𝑀,                                                                                                                 (5) 

𝑑𝑌𝑉𝐶

𝑑𝑡
=  

𝑎26𝑌𝑉𝐶

(𝑐9 + 𝑐10𝑌𝑉𝐶)
−  

𝑎27𝑌𝑉𝐶(𝑌𝐾 + 𝑌𝐴𝑀)

𝑐10 + 𝑑5𝑌𝐶𝐷 + 𝑌𝑉𝐶
+  

𝑎28𝑌𝑉𝑀𝑌𝑉𝐶(1 + 𝑌𝑉𝐶)3

𝐿 + (1 + 𝑌𝑉𝐶)4
 , 

𝑑𝑌𝐷

𝑑𝑡
=   

𝑎27𝑌𝑉𝐶(𝑌𝐾 + 𝑌𝐴𝑀)

𝑐10 + 𝑑5𝑌𝐶𝐷 + 𝑌𝑉𝐶
− 𝑎29 𝑌𝐷, 

𝑑𝑌𝐶𝐹

𝑑𝑡
=  σ(𝑌𝐶𝑀 − 𝑌𝐶𝐹),

𝑑𝑌𝐶𝑀

𝑑𝑡
=  𝑌𝐶𝐹(𝑟 +  𝑑6𝐼 − 𝑌𝐶𝐷 ) − 𝑌𝐶𝑀      

𝑑𝑌𝐶𝐷

𝑑𝑡
=  𝑌𝐶𝐹𝑌𝐶𝑀 − 𝑏𝑌𝐶𝐷, 



𝐴𝐾 =   
𝑌𝐷(𝑌𝑁𝑀 + 𝑌𝐴𝑀)

𝑐11 + 𝑌𝐷
, 𝐹 =   

𝑌𝐻𝑌𝑉𝐶

𝑐12 + 𝑌𝑉𝐶
, 𝐼 =   

𝑐13𝐹

𝑐14 + 𝐹 
, 

where 𝑎𝑖  are constants that characterize: i = 1, 5, 9, 13 – inflows of  𝑌𝑝𝐾 , 𝑌𝑝𝐻 , 𝑌𝑁𝑀, 𝑌𝑝𝑆,  

respectively; i = 2, 6, 10, 14 – delay mode for activation of  𝑌𝑝𝐾 , 𝑌𝑝𝐻 , 𝑌𝑁𝑀, 𝑌𝑝𝑆  inflows , respectively; 

i = 3, 7, 11, 15 – speed of 𝑌𝐾 , 𝑌𝐻 , 𝑌𝑀, 𝑌𝑆 , cells maturation, respectively; i =  4, 8, 12, 16, 17, 19, 21, 

23, 25 – death rates of 𝑌𝑝𝐾 , 𝑌𝑝𝐻 , 𝑌𝑁𝑀, 𝑌𝑝𝑆,  𝑌𝐾, 𝑌𝐻, 𝑌𝑀, 𝑌𝑆 , respectively; i =  18, 20, 24, 26 – population 

reproduction rates of  𝑌𝐾 , 𝑌𝐻 , 𝑌𝑆 , 𝑌𝑉𝐶 , respectively; i = 27, 29 – destruction rates of 𝑌𝐶𝑉  and 𝑌𝐷, 

respectively; i =22 – this rate quantifies how quickly viruses infect macrophages 𝑌𝑉𝑀 ;   i =28 – 
this rate represent how infected macrophages stimulate the reproduction or replication of 

viruses; 𝑐𝑘(𝑘 = 1,14)– are constants that characterize the nonlinear effects of the interaction 

between different chains of the immune system; 𝑑𝑙(𝑙 = 1,4)– are constants characterizing 

immunosuppression from the coronavirus; 𝑑5 – is a constant characterizing a decrease in the 
efficiency of virus destruction due to structural disruptions in the energy system 𝑌𝐶𝐷 ; 𝑑6  –  is a 
constant characterizing the influence of inflammation on the energy system; 𝐿 –  is a constant 
characterizing the activity of stimulating virus reproduction from the side of macrophages 𝑌𝑉𝑀;   
𝑟, 𝜎, 𝑏 are parameters of the Lorenz model, which are functions of energy synthesis and 
expenditure processes in the cell [12].  

3.2. Model investigation of immune system response in COVID-19 

The mathematical formulation of the problem is as follows: given the model (4), the Cauchy 
problem needs to be solved over the time interval [0, T] for the specified intervals of model 
parameters. Consider the immune response in conditions where there are no interconnections 
between the immune and energy systems (𝑑1 = 𝑑3 = 1; 𝑑2 = 𝑑4 = 𝑑5 = 𝑑6 = 0), and there is no 
infection of macrophages (𝑎22 = 0).  

 Figure 7 illustrates how the dynamics of the immune response change with an increase in the 
parameter 𝑐13, which characterizes the influence of lymphoid factors on the level of inflammation. 
𝑌𝑉𝐶 , 𝑌𝐷, 𝑌𝐴𝑀 , 𝐹, 𝐴𝐾 in all figures are measured by the number of cells, 𝑌𝐶𝐷 is measured by the 
number of violations, 𝐼 is dimensionless variable. 

 

 
Figure 7:  Changes in the dynamics of the immune response when parameter 𝑐13 increases: 
1 − 𝑐13 = 9; 2 − 𝑐13 = 50; 3 − 𝑐13 = 100. 

 
Figure 8 shows how the dynamics of the immune response changes when the initial number 

of 𝑌𝑉𝐶   increases. As follows from the simulation results, at relatively high initial levels of 𝑌𝑉𝐶   , the 
intensity of the immune response is sufficient for rapid destruction of 𝑌𝑉𝐶  . However, with small 
initial values of viruses (curve 4), the immune response is delayed, so viruses have time for 
reproduction and their complete destruction requires more time. 

Let’s explore what changes in the immune response will result from considering the 
interactions between the immune and energy systems. In figure 9, the results of modeling are 
presented with variations in the parameter 𝑑5.  This parameter characterizes the degree of 
inhibition of the effector function of killer cells and activated macrophages by the coronavirus. 



The modeling results indicate that an increase in the degree of inhibition (increasing of 𝑑5) leads 
to an increase in the time to reach the peak in lymphoid factors, inflammation, and 𝑌𝑉𝐶  .  The level 
of disruptions in the cellular energy system 𝑌𝐶𝐷 also increases. (S - the area under the curve of 
disruptions). 
 

 
Figure 8:  Changes in the dynamics of the immune response when initial level of 𝑌𝑉𝐶  increases; 
 1 − 𝑌𝑉𝐶(0) = 40; 2 − 𝑌𝑉𝐶(0) = 20; 3 − 𝑌𝑉𝐶(0) = 10;  4 − 𝑌𝑉𝐶(0) = 1. 
 

 
Figure 9:  Dynamic of model variables with variation of parameter 𝑑5:    
1 − 𝑑5 = 1; 2 − 𝑑5 = 2.4; 3 − 𝑑5 = 2.6. 

 
The results of the simulation for the case where the VIC infects macrophages are shown in 

figures 10 and 11. As evident from figure 10, when the value of parameter 𝑎28 is reaches 0.07, the 
total amounts of the viruses, lymphoid factors, inflammation, and disruptions sharply increase, 
corresponding to the cytokine release syndrome.  

 

 
Figure 10:  The dependency of the total quantity of VIC, lymphoid factors, inflammation, and  
disruptions on the parameter 𝑎28. 



 

 
Figure 11:  The dynamics of VIC, lymphoid factors, inflammation, and disturbances with an 
increase in the 𝑎28: 1 − 𝑎28 = 0.07; 2 − 𝑎28 = 0.075; 3 − 𝑎28 = 0.076; 4 − 𝑎28 = 0.0761.  
 

Further growth leads to uncontrolled reproduction of the virus, which is incompatible with 
life. As seen from this figure, the system is highly sensitive to small changes in the parameter 𝑎28 
within the interval [0.07, 0.0761].  

If we consider the variables of model (5) as the mean values across a selected population, then 
the indicator of the number of structural disruptions 𝑌𝐶𝐷 could characterize the collective 
immunity of this population. It is possible to examine the dependence of the parameters of model 
(3) on 𝑌𝐶𝐷. The relationships between (3) and (5) will be defined through the parameters 𝑎0, 𝑇𝑖𝑛𝑓, 

𝑇𝑚. Parameters 𝑘1 and 𝑘2 from (4) also may be examined as functions of  𝑌𝐶𝐷. This will be 
considered in the further development of this work. 

4. Conclusions  

A model of the COVID-19 pandemic spread and associated changes in individual economic sectors 
has been developed. An approach to studying the interrelation within the food production system, 
food transportation, and the socio-economic sphere has been proposed using the three-sector 
Lorenz model. The model integrates economic sectors, uniformly described within a single 
framework, each of which is considered in terms of productivity, employment, and structural 
disruptions. The model studies were conducted with aim of: 1) assessing the influence of initial 
conditions and the state of economic sectors on the dynamics of the epidemic; 2) analyzing the 
impact of the epidemic process on interconnected sectors of the economy. The existence of 
deterministic and stochastic operational modes of interconnected economic sectors during a 
pandemic has been demonstrated. The transition from one mode to another is accompanied by 
an increase in the level of structural disruptions. The dynamics of these disruptions have been 
determined, along with the dependence of their total quantity on the epidemic process. 

A mathematical model of T-cell immune response has been developed considering the 
peculiarities of its course in COVID-19, where excessive inflammation and increased levels of pro-
inflammatory cytokines lead to cytokine release syndrome, causing damage to vital organs and 
disruption of immune system. The model considers the influence of cellular energetics, 
particularly mitochondria, on the regulation of the immune response and the amplification of 
inflammation. The simulation results have allowed investigation of the following: 1) how 
increases in the initial levels of virus-infected cells affect the average recovery period of severe 
symptomatic patients; 2) how inhibition of effector functions of killer cells and the level of 
inflammation affect the dynamics of the immune response; 3) how changes in the balance of 
energy synthesis and expenditure within the cell affect the occurrence of periodic and turbulent 
trajectories of the immune response. 

The scientific novelty of the work lies in the following: 1) a proposed approach to the 
development of complex systems based on the use of multi-sector Lorenz models, allowing the 
exploration of interrelationships between the state of economy and the dynamics of epidemic; 2) 
the development of a mathematical model that accounts for the role of herd immunity in the 
dynamics of pandemic spread; 3) the developed models consider the superposition of two types 



of random processes - "deterministic" Lorenz stochasticity and traditional Wiener stochasticity. 
Further development of the work will be associated with solving optimization tasks for immune 
response management aimed at minimizing virus-induced damage to the organism and 
substantiating various therapeutic regimens used in treatment. 
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