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Abstract 
Modular exponentiation over large integers involves multiple modular multiplications, which is very 
computationally expensive. Many processing systems use the Montgomery modular multiplication 
method, which reduces the latency of software and hardware implementations. The main directions of 
software development and outlines of the parts of Montgomery modular multiplication for the 
implementation are presented. The class Montgomery Arithmetic over large integers is implemented 
using four methods for Montgomery modular multiplication. We present the computation of modular 
exponentiation using the right-to-left binary exponentiation method for a fixed basis with a developed 
pre-computation of a reduced set of remainders using modular Montgomery multiplication.  
A comparison of the runtimes of three variants of functions for computing the modular exponentiation 
over large integers is performed. The algorithm with pre-computation of residues for fixed base
provides a faster computation of modular exponentiation using Montgomery modular multiplication 
compared to the functions of modular exponentiation of the MPIR, OpenSSL libraries for large number 
more then 1K bits.
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1. Introduction 

Modular reduction is the computation of x mod m. A basic operation in processing systems is 
computations in Zm integers modulo m, where m is a large positive integer, which may or may 
not be a prime. Modular reductions are normally used to create finite groups, rings, or fields. The 
most common usage for performance-driven modular reductions is in modular exponentiation 
algorithms. An efficient implementation of the modular reduction x mod m of large numbers is 
the key to high performance.  

The classical algorithm of modular reduction has no restriction on the size of x, m and can 
easily be adapted to a division algorithm with quotient and remainder. The formalization consists 
of estimating the quotient digit as accurately as possible. This is justified by the fact that using 
multiplication and division are the most time-consuming operations in the inner loops of 
algorithms, especially when calculating Modular reduction over multi-bit numerical data.  

Among the modular reduction algorithms: classical, Barrett, and Montgomery's, the 
Montgomery reduction is relatively simple and very efficient [1]. The baseline Montgomery 
reduction algorithm will produce the residue for any size input. Montgomery reduction is a 
common algorithm used for modulus reduction. The unique property of this algorithm is that it 
does not compute the modulus directly, but instead, the modulus multiplied by a constant.  

The further development using Montgomery reduction for computing modular multiplication 
is much faster and does not require any division by m. This method is referred as Montgomery 
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modular multiplication and combines Montgomery reduction and multiple-precision 
multiplication. 

The scientific problem of speeding up modular reduction for processing systems is relevant 
for the present stage of the development of information and computer technologies. The software 
implementations of modular multiplication over large integers on general-purpose processors 
are an important target for optimization. The further increase in the speed of the computational 
implementation of the modular reduction operation and then the full multiplication part can be 
achieved only by using the multithreading of multi-core processor architectures.  

The paper is structured as follows: after the Introduction in Section 1 is described 
Montgomery Reduction as a common algorithm used for modulus reduction, and outlines the 
parts and basic stages of the Montgomery modular multiplication algorithm.  Section 2 describes 
the developed software implementation of efficient Montgomery multiplication over large 
integers using the Multiple Precision Integers and Rationals library. For performance analysis in 
Section 3, the experiments and discussion of the software implementation of Montgomery 
modular multiplication for the computation of developed modular exponentiation are presented. 
As a result, the developed software implementation provides a faster computation of modular 
exponentiation using Montgomery modular multiplication compared to the general-purpose 
functions of modular exponentiation of the MPIR and OpenSSL libraries over large integers.

 Literature review

There are different contemporary variations of Barrett and Montgomery algorithms, which 
have advantages and mines. Barrett reduction is a reduction algorithm proposed in 1986 by P.D. 
Barrett [2], designed to optimize the integers modulo m operation assuming m is constant and, 
divisions are replaced by multiplications. P. Barrett offered the idea of estimating the quotient x 
div m with operations that are less expensive in time than a classical multi-precision division by 
m. The only pre-computation [22n/m] required for successful modular reduction use of Barrett’s 
algorithm, where 2n is a number of bits. The computation of modular exponentiation based on 
Barrett's algorithm is better than the other known ones for small numerical values. 

Montgomery reduction uses on the changing of the original reduction modulo by some other 
convenient modulo. By representing the residue classes modulo Montgomery's algorithm [3] 
replaces a division by m with a multiplication followed by a division by a power of radix r. In 
computer applications, b is usually defined as the power of 2, when m = 2k, k – the processor’s 
word-size, this operation is very easy and inexpensive. The idea developed by P. Montgomery's 
method suggests that the operations of addition and subtraction are practically unchanged, but 
multiplication changes slightly in a simple procedure without using reductions modulo m. 
Montgomery's algorithm (only for modulo m for which gcd(m, r) = 1) is faster than both the 
classical and Barrett's one and as fast as multiplication almost.  

There are different implementation algorithms of Montgomery reduction, which are 
improving to simpler and higher regularity. The paper [4] proposes new residue number system 
Montgomery reduction algorithms, which achieve less number of unit multiplications. Traditional 
Montgomery approaches are combined with multiply-reduce methods at the bit-level in 
hardware implementations or based on the processor’s word-size level for software 
implementations [5]. The parallel execution of modular operations “square and multiplications” 
based on Montgomery algorithm are described in the papers [6]. The implementation of the 
Montgomery algorithm has been improved over the years, both at the software and hardware 
levels [7]. 

3. Montgomery Reduction and Modular Multiplication 

The Montgomery reduction of number T is defined as 

,mod1 mRT                                                                             (1) 

where m is a positive integer, T and R are integers such that R > m, gcd (m, R) =1, and 0 ≤  T < mR. 



The formula (1) is called a Montgomery reduction of number T modulo m with respect to R. 
Using Montgomery reduction easy to carry out modular reduction in the residue number system. 
The residue number system is a method for representing an integer as an n-tiple of its residues 
with respect to a given base. Montgomery Reduction i R−1mod m is a one-to-one mapping defined 
from Z/mZ to Z/mZ , for 0 ≤ i < m.  

To compute the Montgomery reduction, it is necessary to determine the value of R−1 that meets 
the condition R  R−1 mod m =1.  

To find the inverse modulo, you can use the extended Euclidean algorithm. Indeed, if    gcd(m, 
R) =1, then the following integers will be found u and v, that 

.1 = mvRv                                                                              (2) 

If we pass to congruence modulo m in the last equality, then we obtain Ru ≡ 1 (mod m), which 
gives (R −1) ≡ u (mod m). 

For working with large numbers, where Montgomery multiplication is implemented, is 
common to write the Montgomery radix R as 

                                                           ,2 = kkrR                                                                              (3) 

where k is the word-size of the computer architecture. Higher radices may be used but the radix-
2 provides a simple algorithmic and hardware implementation. 

The algorithm to compute Montgomery constant μ=-m-1mod R for odd values m and R=2k is 
presented in the Fig. 1.  

 
Algorithm. Compute Montgomery constant μ=-m-1mod R 
Input : Odd integer m and R=2k  
Output : μ = - m -1 mod  R_________________________________ 
y ← 1 
for i =2 to k do 
     if (m y mod 2i ) ≠ 1 then  
         y ← y + 2i-1 
     end if 
end for 
return μ ← R – y ; 

  

Figure 1: Algorithm of Computation of the Montgomery constant -m-1mod R 
 

There are different fast Modular Reduction Methods to implementing Montgomery modular 
reduction. The algorithm Montgomery Reduction for radix 2, which does not require some pre-
computation is presented in Fig. 2. 

 

Algorithm  Montgomery Reduction  X R−1 mod m 
Input : X, m and R=2k 
Output : X 2-k mod m________________________________ 
x = X 
 for i= 1 to k do 
    if x is odd then 
        x = x + m; 
        x = x/2; 
return x; 

 

Figure 2: Algorithm of Computation of the Montgomery Reduction for radix 2 

 

This algorithm is based on scanning the bit of a large number X from the right (the least significant 

bit) to the left (the most significant bit).  

In the paper [8] is described the efficiently computes Montgomery reduction. Let m’ = −m−1 

mod R, if U = Tm’ mod R,    m* m−1 mod R =1, then 

                             ./)(mod1 RmUTmRT 
                                               (4) 



Taking the remainder modulo m was replaced by division by R, and also taking the remainder 
modulo R in the numerator of the formula (4). As a result, we can choose such R that truncation 
can be used instead of division. If we have long arithmetic with some radix r, then the degree of 
this radix ri. That is, modulo residues and divisions will turn into shifts and throw out extra 
numbers. In the chapter 14.3.2 Montgomery reduction [8] are presented the algorithms and 
examples of Montgomery reduction based on formula (4). The algorithm does not require m’ = 
−m−1 mod R, but rather m’ = −m−1 mod r.  

Most processing systems are implemented by repetition of a modular multiplication with a 
large modulus m, that is, 

       .mod myxz                                                                    (5) 

where m is usually a large prime or a product of two large primes x = (xn−1 ... x1x0)r and y = (yn−1 ... 
y1y0)r , which are non-negative integers in a radix r representation such that x < m and   y < m.  

Let us represent x’ and y’ of a number x and y in the Montgomery space as follows                           
 x’ = x R mod m and y’ = y R mod m. 
The Montgomery reduction of multiplication x’y’ is: 

.modmod/)modmod(mod 11'' mRyxmRmRymRxmRyx  
(6) 

This means that, after doing the multiplication of two numbers in the Montgomery space, we 
need to reduce the result by multiplying it by R−1 and taking of modulo m. There is an efficient 
way to use Montgomery reduction. This operation called the Montgomery modular 
multiplication. Montgomery modular multiplication itself is fast, but it requires some pre-
computation. Montgomery multiplication algorithm involves three basic stages: 

1. The conversion of operands from integer domain to Montgomery space; 
2. The multiplication of operands in the Montgomery space; 
3. The conversion of operands back from Montgomery space to integer domain.  
The Montgomery multiplication needs to convert x and y into Montgomery space and their 

product out of Montgomery space (Fig. 3). In this method the costly division operation usually 
needed to perform modular reduction is replaced by simple shift operations by conversing the 
operands into the reduced number system domain before the operation and re-conversing the 
result after the operation. Montgomery modular multiplication involves: first conversion of 
operands into the Montgomery space, multiplication and then after the result is re-conversed into 
the Montgomery space. 

Conversion  to  

 Montgomery space

 to  

 Montgomery space

Fast multiplication

in  Montgomery space

x y

 from 

 Montgomery space

x’ y’

x y R  mod m

x y  mod m

Conversion

Conversion

 
  

Figure 3: Computation of modular reduction using Montgomery modular multiplication 
 
For practical (Fig. 4) interest the R=rn will suffice when there can be a power of 2 and R=2n [9]. 
The condition R > m is clearly satisfied, but gcd (m, R) =1 needs to be relatively prime i.e. must 
not have any common non-trivial divisors which will hold only if gcd (m, r) =1. 
 

Montgomery modular multiplication algorithm X Y (R-1) mod m 
Input : X, Y, m and R=2k,  
Output : X Y 2-k mod m 
 S0 : LSB of S, xi∈ (xn−1 ... x1x0)2______________________________________________________________ 



S=0 
for i= 0 to n do 
     S = S + xi Y ; 
     S = S + S0 m ; 
     S = S/2 ; 
if  S ≥ m then S = S-m; 
return S; 

 

Figure 4: Algorithm of computation of the Montgomery modular multiplication 
 

There are different implementations of Montgomery modular multiplication: the digit-serial 
architectures [10], special purpose circuits, what perform multiplication and reduction 
simultaneously [11], and parallel execution of modular multiplication [12]. In practice at the 
software and hardware levels, Montgomery multiplication is the most efficient method when is 
used a very regular structure, which speeds up the implementation [13, 14]. 

The software implementations of modular multiplication over large integers on general-
purpose processors are an important target and has been improved over the years. In the next 
Section, we describe the software implementation of efficient Montgomery multiplication over 
large integers using the Multiple Precision Integers and Rationals library. 

4. The software implementation of Montgomery reduction to modular 

multiplication 

The software implementations of Montgomery modular multiplication on the general purpose 
processors are an important target for optimization. Important focus is on the software 
implementation of the full multiplication parts including the efficient reduction. Many works
improve the performance of a Montgomery Multiplication [15, 16]. Almost all the 
implementations of modular multiplication in many processing systems are performed in 
assembly languages to take advantage of the specific architectural properties of the processor 
[17].  

In this section, we describe software implementations of modular multiplication on the basis 
of the realization of Montgomery modular multiplication, which includes the efficient modular 
reduction and multiplication parts. 

The modular multiplication is implemented in C++ language. The developed class 
MontgomeryArithmetic (Fig. 5) implements the Montgomery modular multiplication and 
reduction using the Multiple Precision Integers and Rationals library (MPIR) [18]. 

Class MontgomeryArithmetic 

private: 
    const mpz_class mod_; 
    size_t mod_size_; 
    mpz_class inv_; 
    const size_t limbs_; 
    const size_t bits_; 

public: 
    explicit MontgomeryArithmetic(const mpz_class& mod); 
    mpz_class init(const mpz_class& x) const; 
    void multiply(mpz_class& a, const mpz_class& b) const; 
    void reduce(mpz_class& x) const; 

Figure 5: The MontgomeryArithmetic class 
 
According to the markings in Fig. 5, the member variables of the Class MontgomeryArithmetic are: 
size_t mod_size_ is a divisor size in MPIR limbs (64-bit integers); 
mpz_class inv_ is a pre-computed inverse factor for the Montgomery reduction; 
const size_t limbs_ is the same as size_, but a more convenient name; 



const size_t bits_ is a bit count for the modular arithmetic. 
The parameters of the methods are: 
mod is a divisor for modular arithmetic; 
x is a number for the conversion; 
a and b are the first and second numbers converted to the Montgomery space. 

The constructor MontgomeryArithmetic(const mpz_class& mod) computes a modular inverse 
factor for the Montgomery reduction and initializes other member variables, where the argument 
mod is a divisor for modular arithmetic. 

For computing the inverse factor m’=m-1mod R efficiently, we can use the mathematical 
dependence, which is inspired by Newton's method. The algorithm for calculating the inverse 
factor is described and proved in [19] :                             

.2mod1)2(2mod1 2kk xmxmxm                             (7) 

This means we can start with  x =1,  as the inverse of   m modulo   21, apply the trick of power 
times and in each iteration we double the number . This algorithm uses only shifts, subtractions 
and multiplication of large numbers in each iteration and has the same computational complexity 
as the algorithm, which is shown in Fig. 1. 

The method init mpz_class init(const mpz_class& x) const converts a number to the 
Montgomery space. It is required to convert all numbers before applying the Montgomery 
multiplication. The algorithm for the conversion is described in [19], where the relation is used 

,/mod 22 RxRRxmRx                                                (8) 

where x is a number for the conversion. Converting the number into the space is just a 
multiplication inside the space of the number with   R 2. Therefore, we can pre-compute   R 2mod m 
and just perform a multiplication instead of shifting the number. This algorithm uses the shifts 
and the subtractions and multiplications of large numbers in each bits_ iteration. 

 The method returns the converted value, which can be used for the Montgomery 
multiplication. The method void multiply(mpz_class& a, const mpz_class& b) const multiplies two 
numbers, where a, b  are the numbers converted to the Montgomery space. The method returns 
the result via first argument in place and then performs the Montgomery reduction. It modifies 
the first argument in place to improve efficiency and avoid copying. For multiplication, it uses 
regular multiplication provided by the MPIR library, which is optimized using AVX2 SIMD 
instructions. 

The method void reduce(mpz_class& x) const, where argument x is a number for the reduction 
in place, computes the Montgomery reduction in place. Any number from the Montgomery space 
can be converted back using this method. This is one of the most performance-critical methods. 
The MPIR library [18] offers a few low-level implementations, which can be further optimized for 
specific use cases. This method calls the mpn_redc1() function provided by MPIR to compute the 
Montgomery reduction in place.  

The methods and initialized member variables in the developed class MontgomeryArithmetic 
provide an implementation of Montgomery modular multiplication corresponding to Fig. 3. The 
operations of multiplication and division by R=2k are very fast in the methods of class, as they are 
just bit shifts. Thus, Montgomery's algorithm is faster than the usual (a·b) mod m, which contains 
division by m. However, the computation R-1, m-1 and conversion of numbers to the remains and 
vice versa are time-intensive operations, as a result, of which it is inefficient to use the product 
for a single computation. Montgomery reduction is the fastest in computing a reasonably long 
series of modular reductions, for instance in computing exponential function. This algorithm is a 
time critical step in the computation of the modular exponentiation operation. 

5. Experiments and discussions of the software implementation of 

Montgomery modular multiplication for the computation of 

modular exponentiation 

Modular exponentiation over large integers involves multiple modular multiplications, which is 
very computationally expensive. Modular exponentiation of large numbers is extremely 



necessary for providing high crypto capability of information data, for finding the discrete 
logarithm, in number-theoretic transforms and many other applications.  

Considerable attention is paid to the development of effective methods of modular 
exponentiation aimed at effective computation and reduction of the execution time of the 
modular exponentiation operations [20, 21]. One of the ways to speed up computations of 
modular exponentiation is parallelization of computations using modern software technologies 
for universal computer systems or creation of specialized computing tools. The software 
implementation of the Montgomery multiplication and modular exponentiation computation is 
included in the software libraries Crypto++, OpenSSL, PARI/GP, MPIR designed for working with 
large numbers.  

The production-grade software library and full-featured toolkit popular on Linux and other 
systems is OpenSSL library.  OpenSSL library contains a set of tools that implements the Secure 
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) [22]. The functions 
BN_mod_mul_montgomery, BN_MONT_CTX_new of OpenSSL library implement Montgomery 
multiplication. The library includes three functions to calculate the modular exponentiation using 
Montgomery multiplication: BN_mod_exp_mont(), which calculates A to the power of x modulo m, 
and BN_mod_exp_mont_consttime(), BN_mod_exp_mont_consttime_x2(). 

Let's compare the use of Montgomery modular multiplication with the usual modular 
multiplication operation on the example of an efficient computation of modular exponentiation 
of large numbers. Consider the basic iterative algorithm using pre-computation to form a 
shortened sequence of residues of the fixed base A for computing the modular exponentiation 

.mod mAy x                                                             (9)

The central idea to calculate Ах mod m is to use the binary representation of the exponent x. 
For a fixed-base A of the modular exponentiation (9), which is equal to the product of the 
residuals r.0, r.1,…, r.k-1 of the exponent (A2i ) mod m, (i = 0, 1, 2, …, k-1). Modular exponentiation 
is implemented using the development of the right-to-left binary exponentiation method for a 
fixed base with pre-computation of a reduced set of residuals.  That can speed up the process of 
computing the modular exponentiation by pre-computing (Fig. 6) the sequence of residuals, and 
repetitions with the period T' after the offset u in the unit Precomputation u, T' [23]. 

The scheme (Fig. 6) for computing the modular exponentiation consists of the denotations: 
 A is the input of the base number; m is the input of the module;  
 x is the input of an exponent with binary digits x.(k-1), x.(k-2),…,x.2, x.1, x.0;  
 (A^2i)m are blocks of computation of the integer exponent of exponent 2i of the number A 

by the module m, i = 0,1,2,…, (k-1);  
– r.0, r.1,…, r.k-1 are residuals A^2i mod m, (i = 0, 1, 2, …, k-1), 
 (X) mod m is the block of modular multiplication;  
 y is the output of the modular exponentiation. 

Thus, applying the parallel execution of the computation of modular exponentiation with the 

pre-computation, threads are created during the software execution of the modular 
multiplication of residual values r.i, where i ≤ T', in the block of modular multiplication. These 
residual values r.i are determined in the process of computing of residual exponents (A^2i) mod 
m, (i = 0, 1, 2, ..., k-1). The only difficulty in organizing computations with such threads is the need 
to synchronize the streams and the unit of Precomputation u, T' to ensure the correct 
computation of the final value y of modular exponentiation. 

To implement the algorithm for computing the integer power of a number Ах by modulus m, 
the MPIR library is used, which is written in C and assembler and provides the ability to compile 
its functions in Visual Studio C++. Accordingly, in the MPIR library, the data type mpz_t represents 
large numbers of arbitrary length, which are chosen for the power of the number base and mod 
with the number of bits from 256 to 2048 bits for testing. However, using the function 
mpn_redc1() implement Montgomery multiplication is not efficient enough in the process of 
modular exponentiation. 
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Figure 6: The scheme for computation of modular exponentiation y = Ах mod m with pre-
computation 

The algorithm consists of precompute() and precompute_parallel() functions. The 
precompute() function determines the sequence of a reduced set of residues. The precompute() 
function calculates the sequence of remainders for fixed numbers base and mod for exp = 2i (i = 0, 
1, 2, …) and analyzes the periodicity with the appearance of each defined remainder r.i, which are 
calculated by the find_remainders() function. The pre-computation has been made in a separate 
find_remainders() function to optimize multiple remainder searches (A^2i) mod m. The function 
update_remainers() reduces the length of the sequence of remainders as a result of fixing the 
periodicity T', taking into account the offset u. 

The precompute_parallel() function aim to compare the performance execution with the use 
of Montgomery modular multiplication and usual modular multiplication operation. To 
implement the algorithm, the mpz_init_set (mul, base), mpz_sizeinbase (exp, 2), mpz_tstbit (exp, i), 
mpz_mul (r, r, mul) functions from the MPIR library are used, the parameters of which can be 
multi-bit data limited to bit size 2048 bits. To organize efficient multithreading computation of 
modular exponentiation according to the precompute_parallel() function, the thread_function() 
and parallel() are implemented. The developed precompute_parallel() function uses multiple 
threads for the computation of the modular exponentiation. The method run() runs parallel 
exponentiation using multiple threads. It has the following steps:  

1) creates a collection of the active exponent bits;  
2) splits the exponent bits among the defined number of threads;  
3) waits for every thread execution.  
4) calculates the final result by multiplying partial results calculated by the threads. 
 The final result of the function is written to the variable s_thread_result, and the computation 

time is fixed and averaged to output.  
We compare the time of calculating the modular exponent using the usual modular 

multiplication with the Montgomery modular multiplication based on the developed functions 
precompute_modulo(), precompute_parallel_modulo() and precompute_montgomery(), 
precompute_parallel_montgomery(), respectively.  

Testing of the calculation of modular exponentiation were carried out on a computer system 
with a multi-core microprocessor Intel Core i9-10980XE (18 cores, 36 threads, 3.0GHz) with 
shared memory in a 64-bit Windows. According to hyper-threading technology, each physical 
core of 18 consists of two virtual 36 ones. The numerical results are presented in Figure 7, which 
contains the values of average execution time (μs microseconds) for 500 and 250 trials of 



computing the modular exponentiation for pseudo-random data base, exp, mod for 1024 bits and 
2048 bits. 

Figure 7: The results of testing the functions of computing the modular exponentiation on a 
computer system with an Intel Core i9-10980XE processor with a chosen number of threads of 
12 

The pre-computation time to determine the sequence of a reduced set of residues is taken into 
account, therefore the total average time for computing the modular exponentiation modexp() is 
equal to: 

1) for the usual modular multiplication operation:  
     modexp() = precompute_modulo() time + precompute_parallel_modulo() time. 
In accordance with the result of testing (Fig. 7) average time are equal to: 
modexp()=(301+153)μs=454μs;  
modexp()=(1290+411)μs =1701μs;  
for pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively. 

2) for the Montgomery modular multiplication: 
modexp()= precompute_montgomery() time + precompute_parallel_montgomery() time. 

In accordance with the result of testing average time (Fig. 7) are equal to: 
modexp()= (1290+71)μs =251 μs; 
modexp()= (1050+173)μs=1223μs; 
for pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively. 

Therefore, the implementation of the Montgomery modular multiplication is based on the 
developed class MontgomeryArithmetic for computing the modular exponentiation  speed up 
454μs/251μs=1,8 and1701μs/1223μs=1,4 times for pseudo-random data the base, exp, mod of 
1024 bits and 2048 bits. 

A highly optimized modification of the well-known GMP or GNU Multiple Precision Arithmetic 
Library the MPIR library [18] contains the function mpz_powm () to realize the computation of 
modular exponentiation. The MPIR library uses an optimized version a floating-window 
algorithm of the modular exponentiation with Montgomery multiplication/reduction, which 
reduces the average number of multiplication operations. The function of the MPIR library 



mpz_powm(expected_result, base, exp, mod) better performs modular exponentiation than 
function BN_mod_exp_mont() of the OpenSSL and Crypto++ libraries in accordance with the 
results received in [24], therefore we chose the function mpz_powm() for comparison (Fig. 5).  At 
testing results, the total average time of mpz_powm () function for computing the modular 
exponentiation modexp() is 301μs and 2088μs and is greater than the average time for computing 
the modular exponentiation the Montgomery modular multiplication 251μs and 1223μs for 
pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively. 

The closest scientific work for comparing research results is work [25], where an approach 
that uses vector SIMD instructions for parallel computation of multiple Montgomery 
multiplications is applied. This work [25] describes the fact of the comparison of a parallel 
version of Montgomery multiplication using vector SIMD instructions to the implementation of 
the function of modular exponentiation in the OpenSSL library. The parallel version of 
Montgomery multiplication using vector SIMD instructions performance increases by more than 
a factor of 1.5 compared to the implementation in the OpenSSL library in the classical arithmetic 
logic unit on the Atom platform for 2048-bit moduli. Our implementation of the modular 
Montgomery multiplication to compute the modular exponentiation has factors 1.8 and 1.4 for 
the pseudorandom data the base, exp, mod of 1024 bits and 2048 bits compared to the sequential 
implementation in MPIR library. According to the obtained results of modular exponentiation 
[24], the MPIR library is faster for large numbers than OpenSSL. 

The values of an average execution time of modular exponentiation depend on the computing 
capabilities in universal computer systems. Testing results was received on two computer 
systems with different computing capabilities with processors an Intel Core i9-10980XE (18 
cores, 36 threads, 3.0GHz) and Intel Core і9-13900К (24 cores, 32 threads, 3.0GHz). The results 
are presented in Table 1, which contains the values of average execution time (μs microseconds) 

for 500 trials of the functions modexp() and montgomery_modexp() using developed Montgomery 

modular multiplication for computing the modular exponentiation with pseudo-random data of 
1024 bits.  

 

Table 1 
The average execution time (μs) of the functions of computing the modular 
exponentiation 

Release/x86 Intel Core     

i9-10980XE 

Intel Core 

 і9-13900К 

Data bits / trials  1024 / 500 1024 / 500 

precompute_ parallel modulo modexp()      554 225 

precompute_parallel_montgomery_modexp()      255 153 

The optimal number of threads is 12...16 for fast computation of modular exponentiation for 
universal computer systems [24].  

Therefore, based on the developed Montgomery modular multiplication software the further 
implementation of the computation of modular exponentiation using multithreaded technologies 
will provide an opportunity for the efficient computation of modular exponentiation with a fixed 
base. 

Conclusions 

In the work is compared and analysed the developed software implementation of the class 
MontgomeryArithmetic in modular exponentiation function. The main directions of software 
development and outline of the parts of Montgomery modular multiplication for the 
implementation are presented. Modular exponentiation with a fixed base is implemented using
the development of the right-to-left binary exponentiation method with pre-computation of a
reduced set of residuals with the use of Montgomery modular multiplication or the usual modular 
multiplication The average run time of the computation on multi-core microprocessors of 



universal computer systems have been defined. As a result, an algorithm with pre-computation 
of residues for fixed base provides faster computation in average 1,5 times of modular 
exponentiation using Montgomery modular multiplication compared to the functions of modular 
exponentiation using the usual modular multiplication.

The scientific novelty of obtained results lies in the implementation of parallelism using 
multithreading in the function of computing the modular exponentiation based on Montgomery 
modular multiplication, which is the best among the known modular exponentiation functions of 
Crypto++, OpenSSL and MPIR libraries for large numbers more than 1K bits. 

The practical significance of the work lies in the fact that the obtained results can be 
successfully applied in modern asymmetric cryptography, for efficient computation of number-
theoretic transforms and other computational problems.  

Prospects for further research are the parallel implementation of Montgomery Modular 
Multipliers in the developed function of the modular exponentiation for large numbers using the 
computation on the video car
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