
The implementation of Montgomery modular reduction

to speed up of modular exponentiation⋆

Ihor Prots’ko 1, Oleksandr Gryshchuk2

1 Lviv Polytechnic National University, S.Bandery, 12, Lviv, 79013, Ukraine
2 LtdС “SoftServe”, Sadova, 2d, Lviv, 79021, Ukraine

Abstract
Modular exponentiation over large integers involves multiple modular multiplications, which is very
computationally expensive. Many processing systems use the Montgomery modular multiplication
method, which reduces the latency of software and hardware implementations. The main directions of
software development and outlines of the parts of Montgomery modular multiplication for the
implementation are presented. The class Montgomery Arithmetic over large integers is implemented
using four methods for Montgomery modular multiplication. We present the computation of modular
exponentiation using the right-to-left binary exponentiation method for a fixed basis with a developed
pre-computation of a reduced set of remainders using modular Montgomery multiplication.
A comparison of the runtimes of three variants of functions for computing the modular exponentiation
over large integers is performed. The algorithm with pre-computation of residues for fixed base
provides a faster computation of modular exponentiation using Montgomery modular multiplication
compared to the functions of modular exponentiation of the MPIR, OpenSSL libraries for large number
more then 1K bits.

Keywords
Montgomery modular multiplication, modular exponentiation, multithreading, large numbers

1. Introduction

Modular reduction is the computation of x mod m. A basic operation in processing systems is
computations in Zm integers modulo m, where m is a large positive integer, which may or may
not be a prime. Modular reductions are normally used to create finite groups, rings, or fields. The
most common usage for performance-driven modular reductions is in modular exponentiation
algorithms. An efficient implementation of the modular reduction x mod m of large numbers is
the key to high performance.

The classical algorithm of modular reduction has no restriction on the size of x, m and can
easily be adapted to a division algorithm with quotient and remainder. The formalization consists
of estimating the quotient digit as accurately as possible. This is justified by the fact that using
multiplication and division are the most time-consuming operations in the inner loops of
algorithms, especially when calculating Modular reduction over multi-bit numerical data.

Among the modular reduction algorithms: classical, Barrett, and Montgomery's, the
Montgomery reduction is relatively simple and very efficient [1]. The baseline Montgomery
reduction algorithm will produce the residue for any size input. Montgomery reduction is a
common algorithm used for modulus reduction. The unique property of this algorithm is that it
does not compute the modulus directly, but instead, the modulus multiplied by a constant.

The further development using Montgomery reduction for computing modular multiplication
is much faster and does not require any division by m. This method is referred as Montgomery

CMIS-2024: Seventh International Workshop on Computer Modeling and Intelligent Systems, May 3, 2024,
Zaporizhzhia, Ukraine

 ihor.o.protsko@lpnu.ua (I. Prots’ko); ocr@ukr.net (O. Gryshchuk)

 0000-0002-3514-9265 (I. Prots’ko); 0000-0001-8744-4242 (O. Gryshchuk)
© 2024 Copyright for this paper by its authors.
 Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

modular multiplication and combines Montgomery reduction and multiple-precision
multiplication.

The scientific problem of speeding up modular reduction for processing systems is relevant
for the present stage of the development of information and computer technologies. The software
implementations of modular multiplication over large integers on general-purpose processors
are an important target for optimization. The further increase in the speed of the computational
implementation of the modular reduction operation and then the full multiplication part can be
achieved only by using the multithreading of multi-core processor architectures.

The paper is structured as follows: after the Introduction in Section 1 is described
Montgomery Reduction as a common algorithm used for modulus reduction, and outlines the
parts and basic stages of the Montgomery modular multiplication algorithm. Section 2 describes
the developed software implementation of efficient Montgomery multiplication over large
integers using the Multiple Precision Integers and Rationals library. For performance analysis in
Section 3, the experiments and discussion of the software implementation of Montgomery
modular multiplication for the computation of developed modular exponentiation are presented.
As a result, the developed software implementation provides a faster computation of modular
exponentiation using Montgomery modular multiplication compared to the general-purpose
functions of modular exponentiation of the MPIR and OpenSSL libraries over large integers.

 Literature review

There are different contemporary variations of Barrett and Montgomery algorithms, which
have advantages and mines. Barrett reduction is a reduction algorithm proposed in 1986 by P.D.
Barrett [2], designed to optimize the integers modulo m operation assuming m is constant and,
divisions are replaced by multiplications. P. Barrett offered the idea of estimating the quotient x
div m with operations that are less expensive in time than a classical multi-precision division by
m. The only pre-computation [22n/m] required for successful modular reduction use of Barrett’s
algorithm, where 2n is a number of bits. The computation of modular exponentiation based on
Barrett's algorithm is better than the other known ones for small numerical values.

Montgomery reduction uses on the changing of the original reduction modulo by some other
convenient modulo. By representing the residue classes modulo Montgomery's algorithm [3]
replaces a division by m with a multiplication followed by a division by a power of radix r. In
computer applications, b is usually defined as the power of 2, when m = 2k, k – the processor’s
word-size, this operation is very easy and inexpensive. The idea developed by P. Montgomery's
method suggests that the operations of addition and subtraction are practically unchanged, but
multiplication changes slightly in a simple procedure without using reductions modulo m.
Montgomery's algorithm (only for modulo m for which gcd(m, r) = 1) is faster than both the
classical and Barrett's one and as fast as multiplication almost.

There are different implementation algorithms of Montgomery reduction, which are
improving to simpler and higher regularity. The paper [4] proposes new residue number system
Montgomery reduction algorithms, which achieve less number of unit multiplications. Traditional
Montgomery approaches are combined with multiply-reduce methods at the bit-level in
hardware implementations or based on the processor’s word-size level for software
implementations [5]. The parallel execution of modular operations “square and multiplications”
based on Montgomery algorithm are described in the papers [6]. The implementation of the
Montgomery algorithm has been improved over the years, both at the software and hardware
levels [7].

3. Montgomery Reduction and Modular Multiplication

The Montgomery reduction of number T is defined as

,mod1 mRT  (1)

where m is a positive integer, T and R are integers such that R > m, gcd (m, R) =1, and 0 ≤ T < mR.

The formula (1) is called a Montgomery reduction of number T modulo m with respect to R.
Using Montgomery reduction easy to carry out modular reduction in the residue number system.
The residue number system is a method for representing an integer as an n-tiple of its residues
with respect to a given base. Montgomery Reduction i R−1mod m is a one-to-one mapping defined
from Z/mZ to Z/mZ , for 0 ≤ i < m.

To compute the Montgomery reduction, it is necessary to determine the value of R−1 that meets
the condition R R−1 mod m =1.

To find the inverse modulo, you can use the extended Euclidean algorithm. Indeed, if gcd(m,
R) =1, then the following integers will be found u and v, that

.1 = mvRv  (2)

If we pass to congruence modulo m in the last equality, then we obtain Ru ≡ 1 (mod m), which
gives (R −1) ≡ u (mod m).

For working with large numbers, where Montgomery multiplication is implemented, is
common to write the Montgomery radix R as

 ,2 = kkrR (3)

where k is the word-size of the computer architecture. Higher radices may be used but the radix-
2 provides a simple algorithmic and hardware implementation.

The algorithm to compute Montgomery constant μ=-m-1mod R for odd values m and R=2k is
presented in the Fig. 1.

Algorithm. Compute Montgomery constant μ=-m-1mod R
Input : Odd integer m and R=2k
Output : μ = - m -1 mod R_________________________________
y ← 1
for i =2 to k do
 if (m y mod 2i) ≠ 1 then
 y ← y + 2i-1
 end if
end for
return μ ← R – y ;

Figure 1: Algorithm of Computation of the Montgomery constant -m-1mod R

There are different fast Modular Reduction Methods to implementing Montgomery modular
reduction. The algorithm Montgomery Reduction for radix 2, which does not require some pre-
computation is presented in Fig. 2.

Algorithm Montgomery Reduction X R−1 mod m
Input : X, m and R=2k
Output : X 2-k mod m________________________________
x = X
 for i= 1 to k do
 if x is odd then
 x = x + m;
 x = x/2;
return x;

Figure 2: Algorithm of Computation of the Montgomery Reduction for radix 2

This algorithm is based on scanning the bit of a large number X from the right (the least significant

bit) to the left (the most significant bit).

In the paper [8] is described the efficiently computes Montgomery reduction. Let m’ = −m−1

mod R, if U = Tm’ mod R, m* m−1 mod R =1, then

 ./)(mod1 RmUTmRT 
 (4)

Taking the remainder modulo m was replaced by division by R, and also taking the remainder
modulo R in the numerator of the formula (4). As a result, we can choose such R that truncation
can be used instead of division. If we have long arithmetic with some radix r, then the degree of
this radix ri. That is, modulo residues and divisions will turn into shifts and throw out extra
numbers. In the chapter 14.3.2 Montgomery reduction [8] are presented the algorithms and
examples of Montgomery reduction based on formula (4). The algorithm does not require m’ =
−m−1 mod R, but rather m’ = −m−1 mod r.

Most processing systems are implemented by repetition of a modular multiplication with a
large modulus m, that is,

 .mod myxz  (5)

where m is usually a large prime or a product of two large primes x = (xn−1 ... x1x0)r and y = (yn−1 ...
y1y0)r , which are non-negative integers in a radix r representation such that x < m and y < m.

Let us represent x’ and y’ of a number x and y in the Montgomery space as follows
 x’ = x R mod m and y’ = y R mod m.
The Montgomery reduction of multiplication x’y’ is:

.modmod/)modmod(mod 11'' mRyxmRmRymRxmRyx  
(6)

This means that, after doing the multiplication of two numbers in the Montgomery space, we
need to reduce the result by multiplying it by R−1 and taking of modulo m. There is an efficient
way to use Montgomery reduction. This operation called the Montgomery modular
multiplication. Montgomery modular multiplication itself is fast, but it requires some pre-
computation. Montgomery multiplication algorithm involves three basic stages:

1. The conversion of operands from integer domain to Montgomery space;
2. The multiplication of operands in the Montgomery space;
3. The conversion of operands back from Montgomery space to integer domain.
The Montgomery multiplication needs to convert x and y into Montgomery space and their

product out of Montgomery space (Fig. 3). In this method the costly division operation usually
needed to perform modular reduction is replaced by simple shift operations by conversing the
operands into the reduced number system domain before the operation and re-conversing the
result after the operation. Montgomery modular multiplication involves: first conversion of
operands into the Montgomery space, multiplication and then after the result is re-conversed into
the Montgomery space.

Conversion to

 Montgomery space

 to

 Montgomery space

Fast multiplication

in Montgomery space

x y

 from

 Montgomery space

x’ y’

x y R mod m

x y mod m

Conversion

Conversion

Figure 3: Computation of modular reduction using Montgomery modular multiplication

For practical (Fig. 4) interest the R=rn will suffice when there can be a power of 2 and R=2n [9].
The condition R > m is clearly satisfied, but gcd (m, R) =1 needs to be relatively prime i.e. must
not have any common non-trivial divisors which will hold only if gcd (m, r) =1.

Montgomery modular multiplication algorithm X Y (R-1) mod m
Input : X, Y, m and R=2k,
Output : X Y 2-k mod m
 S0 : LSB of S, xi∈ (xn−1 ... x1x0)2__

S=0
for i= 0 to n do
 S = S + xi Y ;
 S = S + S0 m ;
 S = S/2 ;
if S ≥ m then S = S-m;
return S;

Figure 4: Algorithm of computation of the Montgomery modular multiplication

There are different implementations of Montgomery modular multiplication: the digit-serial
architectures [10], special purpose circuits, what perform multiplication and reduction
simultaneously [11], and parallel execution of modular multiplication [12]. In practice at the
software and hardware levels, Montgomery multiplication is the most efficient method when is
used a very regular structure, which speeds up the implementation [13, 14].

The software implementations of modular multiplication over large integers on general-
purpose processors are an important target and has been improved over the years. In the next
Section, we describe the software implementation of efficient Montgomery multiplication over
large integers using the Multiple Precision Integers and Rationals library.

4. The software implementation of Montgomery reduction to modular

multiplication

The software implementations of Montgomery modular multiplication on the general purpose
processors are an important target for optimization. Important focus is on the software
implementation of the full multiplication parts including the efficient reduction. Many works
improve the performance of a Montgomery Multiplication [15, 16]. Almost all the
implementations of modular multiplication in many processing systems are performed in
assembly languages to take advantage of the specific architectural properties of the processor
[17].

In this section, we describe software implementations of modular multiplication on the basis
of the realization of Montgomery modular multiplication, which includes the efficient modular
reduction and multiplication parts.

The modular multiplication is implemented in C++ language. The developed class
MontgomeryArithmetic (Fig. 5) implements the Montgomery modular multiplication and
reduction using the Multiple Precision Integers and Rationals library (MPIR) [18].

Class MontgomeryArithmetic

private:
 const mpz_class mod_;
 size_t mod_size_;
 mpz_class inv_;
 const size_t limbs_;
 const size_t bits_;

public:
 explicit MontgomeryArithmetic(const mpz_class& mod);
 mpz_class init(const mpz_class& x) const;
 void multiply(mpz_class& a, const mpz_class& b) const;
 void reduce(mpz_class& x) const;

Figure 5: The MontgomeryArithmetic class

According to the markings in Fig. 5, the member variables of the Class MontgomeryArithmetic are:
size_t mod_size_ is a divisor size in MPIR limbs (64-bit integers);
mpz_class inv_ is a pre-computed inverse factor for the Montgomery reduction;
const size_t limbs_ is the same as size_, but a more convenient name;

const size_t bits_ is a bit count for the modular arithmetic.
The parameters of the methods are:
mod is a divisor for modular arithmetic;
x is a number for the conversion;
a and b are the first and second numbers converted to the Montgomery space.

The constructor MontgomeryArithmetic(const mpz_class& mod) computes a modular inverse
factor for the Montgomery reduction and initializes other member variables, where the argument
mod is a divisor for modular arithmetic.

For computing the inverse factor m’=m-1mod R efficiently, we can use the mathematical
dependence, which is inspired by Newton's method. The algorithm for calculating the inverse
factor is described and proved in [19] :

.2mod1)2(2mod1 2kk xmxmxm  (7)

This means we can start with  x =1,  as the inverse of   m modulo   21, apply the trick of power
times and in each iteration we double the number . This algorithm uses only shifts, subtractions
and multiplication of large numbers in each iteration and has the same computational complexity
as the algorithm, which is shown in Fig. 1.

The method init mpz_class init(const mpz_class& x) const converts a number to the
Montgomery space. It is required to convert all numbers before applying the Montgomery
multiplication. The algorithm for the conversion is described in [19], where the relation is used

,/mod 22 RxRRxmRx  (8)

where x is a number for the conversion. Converting the number into the space is just a
multiplication inside the space of the number with   R 2. Therefore, we can pre-compute   R 2mod m
and just perform a multiplication instead of shifting the number. This algorithm uses the shifts
and the subtractions and multiplications of large numbers in each bits_ iteration.

 The method returns the converted value, which can be used for the Montgomery
multiplication. The method void multiply(mpz_class& a, const mpz_class& b) const multiplies two
numbers, where a, b are the numbers converted to the Montgomery space. The method returns
the result via first argument in place and then performs the Montgomery reduction. It modifies
the first argument in place to improve efficiency and avoid copying. For multiplication, it uses
regular multiplication provided by the MPIR library, which is optimized using AVX2 SIMD
instructions.

The method void reduce(mpz_class& x) const, where argument x is a number for the reduction
in place, computes the Montgomery reduction in place. Any number from the Montgomery space
can be converted back using this method. This is one of the most performance-critical methods.
The MPIR library [18] offers a few low-level implementations, which can be further optimized for
specific use cases. This method calls the mpn_redc1() function provided by MPIR to compute the
Montgomery reduction in place.

The methods and initialized member variables in the developed class MontgomeryArithmetic
provide an implementation of Montgomery modular multiplication corresponding to Fig. 3. The
operations of multiplication and division by R=2k are very fast in the methods of class, as they are
just bit shifts. Thus, Montgomery's algorithm is faster than the usual (a·b) mod m, which contains
division by m. However, the computation R-1, m-1 and conversion of numbers to the remains and
vice versa are time-intensive operations, as a result, of which it is inefficient to use the product
for a single computation. Montgomery reduction is the fastest in computing a reasonably long
series of modular reductions, for instance in computing exponential function. This algorithm is a
time critical step in the computation of the modular exponentiation operation.

5. Experiments and discussions of the software implementation of

Montgomery modular multiplication for the computation of

modular exponentiation

Modular exponentiation over large integers involves multiple modular multiplications, which is
very computationally expensive. Modular exponentiation of large numbers is extremely

necessary for providing high crypto capability of information data, for finding the discrete
logarithm, in number-theoretic transforms and many other applications.

Considerable attention is paid to the development of effective methods of modular
exponentiation aimed at effective computation and reduction of the execution time of the
modular exponentiation operations [20, 21]. One of the ways to speed up computations of
modular exponentiation is parallelization of computations using modern software technologies
for universal computer systems or creation of specialized computing tools. The software
implementation of the Montgomery multiplication and modular exponentiation computation is
included in the software libraries Crypto++, OpenSSL, PARI/GP, MPIR designed for working with
large numbers.

The production-grade software library and full-featured toolkit popular on Linux and other
systems is OpenSSL library. OpenSSL library contains a set of tools that implements the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) [22]. The functions
BN_mod_mul_montgomery, BN_MONT_CTX_new of OpenSSL library implement Montgomery
multiplication. The library includes three functions to calculate the modular exponentiation using
Montgomery multiplication: BN_mod_exp_mont(), which calculates A to the power of x modulo m,
and BN_mod_exp_mont_consttime(), BN_mod_exp_mont_consttime_x2().

Let's compare the use of Montgomery modular multiplication with the usual modular
multiplication operation on the example of an efficient computation of modular exponentiation
of large numbers. Consider the basic iterative algorithm using pre-computation to form a
shortened sequence of residues of the fixed base A for computing the modular exponentiation

.mod mAy x (9)

The central idea to calculate Ах mod m is to use the binary representation of the exponent x.
For a fixed-base A of the modular exponentiation (9), which is equal to the product of the
residuals r.0, r.1,…, r.k-1 of the exponent (A2i) mod m, (i = 0, 1, 2, …, k-1). Modular exponentiation
is implemented using the development of the right-to-left binary exponentiation method for a
fixed base with pre-computation of a reduced set of residuals. That can speed up the process of
computing the modular exponentiation by pre-computing (Fig. 6) the sequence of residuals, and
repetitions with the period T' after the offset u in the unit Precomputation u, T' [23].

The scheme (Fig. 6) for computing the modular exponentiation consists of the denotations:
 A is the input of the base number; m is the input of the module;
 x is the input of an exponent with binary digits x.(k-1), x.(k-2),…,x.2, x.1, x.0;
 (A^2i)m are blocks of computation of the integer exponent of exponent 2i of the number A

by the module m, i = 0,1,2,…, (k-1);
– r.0, r.1,…, r.k-1 are residuals A^2i mod m, (i = 0, 1, 2, …, k-1),
 (X) mod m is the block of modular multiplication;
 y is the output of the modular exponentiation.

Thus, applying the parallel execution of the computation of modular exponentiation with the

pre-computation, threads are created during the software execution of the modular
multiplication of residual values r.i, where i ≤ T', in the block of modular multiplication. These
residual values r.i are determined in the process of computing of residual exponents (A^2i) mod
m, (i = 0, 1, 2, ..., k-1). The only difficulty in organizing computations with such threads is the need
to synchronize the streams and the unit of Precomputation u, T' to ensure the correct
computation of the final value y of modular exponentiation.

To implement the algorithm for computing the integer power of a number Ах by modulus m,
the MPIR library is used, which is written in C and assembler and provides the ability to compile
its functions in Visual Studio C++. Accordingly, in the MPIR library, the data type mpz_t represents
large numbers of arbitrary length, which are chosen for the power of the number base and mod
with the number of bits from 256 to 2048 bits for testing. However, using the function
mpn_redc1() implement Montgomery multiplication is not efficient enough in the process of
modular exponentiation.

. . .

. . .

x. (k-1)

.

.

.

. . .

. . .

y

. . .

. . .x.0

.1

.2

.(k-2)

.(k - 1)

r .(k -1)

. . .

r. i

r . j

r. l

.0

A

m

x

(A 2 0)m^

(A 21)m^

(A 2 2)m^

(A 2 k-2)m^

(A 2 k-1)m^

r

r

r

r

r

.11r

r. 2

x

x

x

x

r.i

r . j

Precomputation

u ,T’

x

modular multiplication

Figure 6: The scheme for computation of modular exponentiation y = Ах mod m with pre-
computation

The algorithm consists of precompute() and precompute_parallel() functions. The
precompute() function determines the sequence of a reduced set of residues. The precompute()
function calculates the sequence of remainders for fixed numbers base and mod for exp = 2i (i = 0,
1, 2, …) and analyzes the periodicity with the appearance of each defined remainder r.i, which are
calculated by the find_remainders() function. The pre-computation has been made in a separate
find_remainders() function to optimize multiple remainder searches (A^2i) mod m. The function
update_remainers() reduces the length of the sequence of remainders as a result of fixing the
periodicity T', taking into account the offset u.

The precompute_parallel() function aim to compare the performance execution with the use
of Montgomery modular multiplication and usual modular multiplication operation. To
implement the algorithm, the mpz_init_set (mul, base), mpz_sizeinbase (exp, 2), mpz_tstbit (exp, i),
mpz_mul (r, r, mul) functions from the MPIR library are used, the parameters of which can be
multi-bit data limited to bit size 2048 bits. To organize efficient multithreading computation of
modular exponentiation according to the precompute_parallel() function, the thread_function()
and parallel() are implemented. The developed precompute_parallel() function uses multiple
threads for the computation of the modular exponentiation. The method run() runs parallel
exponentiation using multiple threads. It has the following steps:

1) creates a collection of the active exponent bits;
2) splits the exponent bits among the defined number of threads;
3) waits for every thread execution.
4) calculates the final result by multiplying partial results calculated by the threads.
 The final result of the function is written to the variable s_thread_result, and the computation

time is fixed and averaged to output.
We compare the time of calculating the modular exponent using the usual modular

multiplication with the Montgomery modular multiplication based on the developed functions
precompute_modulo(), precompute_parallel_modulo() and precompute_montgomery(),
precompute_parallel_montgomery(), respectively.

Testing of the calculation of modular exponentiation were carried out on a computer system
with a multi-core microprocessor Intel Core i9-10980XE (18 cores, 36 threads, 3.0GHz) with
shared memory in a 64-bit Windows. According to hyper-threading technology, each physical
core of 18 consists of two virtual 36 ones. The numerical results are presented in Figure 7, which
contains the values of average execution time (μs microseconds) for 500 and 250 trials of

computing the modular exponentiation for pseudo-random data base, exp, mod for 1024 bits and
2048 bits.

Figure 7: The results of testing the functions of computing the modular exponentiation on a
computer system with an Intel Core i9-10980XE processor with a chosen number of threads of
12

The pre-computation time to determine the sequence of a reduced set of residues is taken into
account, therefore the total average time for computing the modular exponentiation modexp() is
equal to:

1) for the usual modular multiplication operation:
 modexp() = precompute_modulo() time + precompute_parallel_modulo() time.
In accordance with the result of testing (Fig. 7) average time are equal to:
modexp()=(301+153)μs=454μs;
modexp()=(1290+411)μs =1701μs;
for pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively.

2) for the Montgomery modular multiplication:
modexp()= precompute_montgomery() time + precompute_parallel_montgomery() time.

In accordance with the result of testing average time (Fig. 7) are equal to:
modexp()= (1290+71)μs =251 μs;
modexp()= (1050+173)μs=1223μs;
for pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively.

Therefore, the implementation of the Montgomery modular multiplication is based on the
developed class MontgomeryArithmetic for computing the modular exponentiation speed up
454μs/251μs=1,8 and1701μs/1223μs=1,4 times for pseudo-random data the base, exp, mod of
1024 bits and 2048 bits.

A highly optimized modification of the well-known GMP or GNU Multiple Precision Arithmetic
Library the MPIR library [18] contains the function mpz_powm () to realize the computation of
modular exponentiation. The MPIR library uses an optimized version a floating-window
algorithm of the modular exponentiation with Montgomery multiplication/reduction, which
reduces the average number of multiplication operations. The function of the MPIR library

mpz_powm(expected_result, base, exp, mod) better performs modular exponentiation than
function BN_mod_exp_mont() of the OpenSSL and Crypto++ libraries in accordance with the
results received in [24], therefore we chose the function mpz_powm() for comparison (Fig. 5). At
testing results, the total average time of mpz_powm () function for computing the modular
exponentiation modexp() is 301μs and 2088μs and is greater than the average time for computing
the modular exponentiation the Montgomery modular multiplication 251μs and 1223μs for
pseudo-random data the base, exp, mod of 1024 bits and 2048 bits respectively.

The closest scientific work for comparing research results is work [25], where an approach
that uses vector SIMD instructions for parallel computation of multiple Montgomery
multiplications is applied. This work [25] describes the fact of the comparison of a parallel
version of Montgomery multiplication using vector SIMD instructions to the implementation of
the function of modular exponentiation in the OpenSSL library. The parallel version of
Montgomery multiplication using vector SIMD instructions performance increases by more than
a factor of 1.5 compared to the implementation in the OpenSSL library in the classical arithmetic
logic unit on the Atom platform for 2048-bit moduli. Our implementation of the modular
Montgomery multiplication to compute the modular exponentiation has factors 1.8 and 1.4 for
the pseudorandom data the base, exp, mod of 1024 bits and 2048 bits compared to the sequential
implementation in MPIR library. According to the obtained results of modular exponentiation
[24], the MPIR library is faster for large numbers than OpenSSL.

The values of an average execution time of modular exponentiation depend on the computing
capabilities in universal computer systems. Testing results was received on two computer
systems with different computing capabilities with processors an Intel Core i9-10980XE (18
cores, 36 threads, 3.0GHz) and Intel Core і9-13900К (24 cores, 32 threads, 3.0GHz). The results
are presented in Table 1, which contains the values of average execution time (μs microseconds)

for 500 trials of the functions modexp() and montgomery_modexp() using developed Montgomery

modular multiplication for computing the modular exponentiation with pseudo-random data of
1024 bits.

Table 1
The average execution time (μs) of the functions of computing the modular
exponentiation

Release/x86 Intel Core

i9-10980XE

Intel Core

 і9-13900К

Data bits / trials 1024 / 500 1024 / 500

precompute_ parallel modulo modexp() 554 225

precompute_parallel_montgomery_modexp() 255 153

The optimal number of threads is 12...16 for fast computation of modular exponentiation for
universal computer systems [24].

Therefore, based on the developed Montgomery modular multiplication software the further
implementation of the computation of modular exponentiation using multithreaded technologies
will provide an opportunity for the efficient computation of modular exponentiation with a fixed
base.

Conclusions

In the work is compared and analysed the developed software implementation of the class
MontgomeryArithmetic in modular exponentiation function. The main directions of software
development and outline of the parts of Montgomery modular multiplication for the
implementation are presented. Modular exponentiation with a fixed base is implemented using
the development of the right-to-left binary exponentiation method with pre-computation of a
reduced set of residuals with the use of Montgomery modular multiplication or the usual modular
multiplication The average run time of the computation on multi-core microprocessors of

universal computer systems have been defined. As a result, an algorithm with pre-computation
of residues for fixed base provides faster computation in average 1,5 times of modular
exponentiation using Montgomery modular multiplication compared to the functions of modular
exponentiation using the usual modular multiplication.

The scientific novelty of obtained results lies in the implementation of parallelism using
multithreading in the function of computing the modular exponentiation based on Montgomery
modular multiplication, which is the best among the known modular exponentiation functions of
Crypto++, OpenSSL and MPIR libraries for large numbers more than 1K bits.

The practical significance of the work lies in the fact that the obtained results can be
successfully applied in modern asymmetric cryptography, for efficient computation of number-
theoretic transforms and other computational problems.

Prospects for further research are the parallel implementation of Montgomery Modular
Multipliers in the developed function of the modular exponentiation for large numbers using the
computation on the video car

Acknowledgements

The authors are grateful to Roman Rykmas of the team leader of Uniservice LtdC for
participation in testing and discussing the results obtained by the functions of computing the
Montgomery modular multiplication.

The work was carried out within the framework of the state-budget scientific-research work
of DB "Neuroruh" of the Lviv Polytechnic National University.

References

[1] M. J. Ferrao, K. Kiran V. G, N., M. Megha, Implementation of Modular Reduction and
Modular Multiplication Algorithms. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), 8(6),
Ver. I (2018). doi: 10.9790/4200-0806013438.

[2] Barrett reduction, 2023. URL: https://handwiki.org/wiki/Barrett_reduction.
[3] Montgomery Reduction Scheme Functions, 2022. URL:

https://www.intel.com/content/www/us/en/docs/ipp-crypto/developer-reference/2022 -2
/montgomery-reduction-scheme-functions.html.

[4] S. Kawamura, Y. Komano, H. Shimizu, T. Yonemura, RNS Montgomery reduction
algorithms using quadratic residuosity. Journal of Cryptographic Engineering, 9 (2019). doi:
10.1007/s13389-018-0195-8.

[5] Bing Li, Jinley Wang, Guocheng Ding, Haisheng Fu, Bingjie Lei, Haitao Yang, Jiangang Bi,
Shaochong Lei. “A high-performance and low-cost Montgomery modular multiplication based on
redundant binary representation.” IEEE Trans. Circuits Syst. II Express Briefs 68.7(2021): 2660-
2664. doi:10.1109/tcsii.2021.3053630.

[6] I. Boiarshyn, O. Markovskyi, B. Ostrovska, Organization of parallel execution of modular
multiplication to speed up the computational implementation of public-key cryptography,
Information, Computing and Intelligent systems 3 (2022). doi:10.20535/2708-
4930.3.2022.265418.

[7] J. Bos, S. Friedberger, Faster modular arithmetic for isogeny-based crypto on embedded
devices, Journal of Cryptographic Engineering, 10.2 (2020). doi: 10.1007/s13389-019-00214-6.

[8] A. Menezes, J. Oorschot, A. Vanstone, Handbook of Applied Cryptography, Taylor & Francis
excl. spl reprint, India, 2018.

[9] R. K. Venkata, S. C. Simranjeet, V. Desalphine, D. Selvakumar, A Low Latency Montgomery
Modular Exponentiation, Procedia Computer Science, 171 (2020).
doi:10.1016/j.procs.2020.04.087.

[10] S. Fatemi, M. Zare, A. Khavari, M. Maymandi-Nejad, Efficient implementation of digit-serial
Montgomery modular multiplier architecture, IET Circuits Devices Syst., 13.7 (2019).
doi:10.1049/iet-cds.2018.5182.

[11] S. Srinitha, S. Niveda, S. Rangeetha, V. Kiruthika, A High Speed Montgomery Multiplier
used in Security Applications. In: Proceedings of the 3rd International Conference on Signal

Processing and Communication (ICPSC), Coimbatore, India, 2021, pp. 299–303, URL:
https://www.proceedings.com/content/059/059276 webtoc.pdf.

[12] B. Buhrow, B. Gilbert, C. Haider, Parallel modular multiplication using 512-bit advanced
vector instructions: RSA fault-injection countermeasure via interleaved parallel multiplication,
Journal of Cryptographic Engineering 2 (2021). doi: 10.1007/s13389-021-00256-10.

[13] Jinan Ding, Shuguo Li. “A low-latency and low-cost Montgomery modular multiplier based
on NLP multiplication.” IEEE Trans. Circuits Syst. II Exp. Briefs, 67.7 (2020): 1319-1323.
doi:10.1109/TCSII.2019.2932328.

[14] Z. Zhang, P. Zhang, A Scalable Montgomery Modular Multiplication Architecture with Low
Area-Time Product Based on Redundant Binary Representation, Electronics 11.3712 (2022). doi:
10.3390/electronics11223712.

[15] M. Issad, B. Boudraa, M. Anane, A. M. Bellemou, Efficient PSoC Implementation of Modular
Multiplication and Exponentiation Based on Serial-Parallel Combination, Journal of Circuits,
Systems and Computers 28.13 (2019). doi: 10.1142/s0218126619502293.

[16] D. Mukhopadhyay, Improvement over Montgomery Modular Multiplication. Information
Systems Security. In: Proceedings of 17th International Conference (ICISS 2021), Patna, India,
2021, pp. 212–217. doi: 10.1007/978-3-030-92571-0_14N.

[17] Drucker, S. Gueron, Fast modular squaring with AVX512IFMA, Report 2018/335,
Cryptology ePrint Archive, Preprint. MINOR revision (2018). URL:
http://eprint.iacr.org/2018/335.

[18] MPIR: Multiple Precision Integers and Rationals. 2021. URL: http://mpir.org/.
[19] Montgomery Multiplication, 2022. URL: https://cp-algorithms.com/algebra/

montgomery_ multiplication.html#implementation.
[20] J. Robert, C. Negre, T. Plantard, Efficient Fixed Base Exponentiation and Scalar

Multiplication based on a Multiplicative Splitting Exponent Recoding, Journal of Cryptographic
Engineering, 9.2 (2019). doi: 10.1007/s13389-018-0196-7.

[21] N. Emmart, F. Zhengt, C. Weems, Faster modular exponentiation using double precision
floating point arithmetic on the GPU. In: Proceedings IEEE 25th Symposium on Computer
Arithmetic (ARITH), Amherst, MA, USA, 2018, pp. 130–137. doi: 10.1109/ARITH.2018.8464792.

[22] OpenSSL . Cryptography and SSL/TLS Toolkit, 2024. URL: http://www.openssl.org/.
[23] I. Prots’ko O. Gryshchuk, The Modular Exponentiation with precomputation of reduced

set of resedues for fixed-base, Radio Electronics, Computer Science, Control 1 (2022). doi:
10.15588/1607-3274-2022-1-7.

[24] I. Prots'ko, O. Gryshchuk, V. Riznyk, Efficient Multithreading Computation of Modular
Exponentiation with Pre-computation of Residues for Fixed-base. In: Proceedings of Sixth
International Workshop on Computer Modeling and Intelligent Systems (CMIS 2023),
Zaporizhzhia, Ukraine, 2023, pp.224-234. doi:10.32782/cmis/3392-19.

[25] J. Bos, P. Montgomery, Montgomery arithmetic from a software perspective, in: J. W. Bos,
A. K. Lenstra, (Ed.), Topics in Computational Number Theory Inspired by Peter L. Montgomery,
1st. ed., Cambridge University Press, 2017, pp.10-39. doi: 10.1017/9781316271575.

https://cp-algorithms.com/

